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On the theory of fixed point theorems for convex
contraction mappings

VIORICA MUREŞAN1 and ANTON S. MUREŞAN2

ABSTRACT. Based on the concepts and problems introduced in [Rus, I. A., The theory of a metrical fixed point
theorem: theoretical and applicative relevances, Fixed Point Theory, 9 (2008), No. 2, 541–559], in the present paper
we consider the theory of some fixed point theorems for convex contraction mappings. We give some results on
the following aspects: data dependence of fixed points; sequences of operators and fixed points; well-posedness
of a fixed point problem; limit shadowing property and Ulam-Hyers stability for fixed point equations.

1. INTRODUCTION

The class of convex contraction mappings and some applications have been introduced
in [9] and studied in many papers [6], [10], [11], [16] - [19], [22], [23], [26] - [29]. On the
other hand, I. A. Rus [25], has formulated many questions like: ”what does it mean the
theory of a theorem ?” or ”what does it mean the theory of a fixed point theorem ?”

For some classes of mappings, there have been given various results about the theory
of a fixed point theorem, see [8], [14], [15], [25], [27] and the papers cited therein. More
specifically, in the paper [20], M. Păcurar obtained several results about the fixed point
theory for some cyclic Berinde operators, while in [21] M. Păcurar and I. A. Rus have
studied the fixed point theory for some cyclic ϕ-contractions.

Starting from the results in [24] and [25], the aim of this paper is to state and study
some problems about asymptotic fixed point theorems like: data dependence, sequences
of operators and fixed points, well-posedness of fixed point problem, limit shadowing
property and Ulam-Hyers stability of fixed point equation. So, we give partial answers to
the above question.

2. NEEDED NOTIONS AND RESULTS

Let (X, d) be a complete metric space and let f : X → X be an operator.

Definition 2.1. ([9]) Let (X, d) be a metric space. A self map f : X → X is called a convex
contraction if

(2.1) d(f2(x), f2(y)) ≤ a · d(f(x), f(y)) + b · d(x, y),∀x, y ∈ X,

where a, b are constants satisfying 0 < a, b < 1 and a+ b < 1.
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Example 2.1. If b = 0, then by the convex contraction condition (2.1) we obtain the Banach
contraction condition:

d(f(x), f(y)) ≤ a · d(x, y),∀x, y ∈ X,
subject to a change of notation.

If a = 0, then by the convex contraction condition (2.1), we obtain the well known
”asymptotic” contraction condition:

d(f2(x), f2(y)) ≤ b · d(x, y),
that ensures the existence of a fixed point (even in the case when 2 is replaced by a given
integer n).

Example 2.2. ([9])
Let X = [0, 1] with the usual metric and let f : [0, 1]→ [0, 1] be defined by

f(x) =
x2 + 1

2
, x ∈ [0, 1].

Then f is not a Banach contraction, although Ff = {1}.
But f is a convex contraction, as we have∣∣f2(x)− f2(y)∣∣ ≤ 1

2
|f(x)− f(y)|+ 1

4
|x− y| , x, y ∈ [0, 1],

with a =
1

2
and b =

1

4
.

The first main result in [9] is the following fixed point theorem.

Theorem 2.1. ([9]) Let (X, d) be a complete metric space and f : X → X a continuous (a, b)-
convex contraction, i.e., a mapping satisfying

d(f2(x), f2(y)) ≤ a · d(f(x), f(y)) + b · d(x, y),∀x, y ∈ X,
where 0 < a, b < 1 and a+ b < 1. Then

1) Ff = {x ∈ X : f(x) = x} = {x∗};
2) For any x0 ∈ X , the Picard iteration {xn}∞n=0 given by xn+1 = f(xn), n = 0, 1, 2, ...,

converges to x∗.

For other classes of contractive type mappings presented in the following, we refer to
[22]-[27], and [9]-[11].

Definition 2.2. The operator f is called a graphic contraction if there exists α ∈ [0, 1) such
that

d(f(x), f2(x)) ≤ αd(x, f(x)), (∀) x ∈ X.
Definition 2.3. The operator f is called contractive if

d(f(x), f(y)) < d(x, y), (∀) x, y ∈ X, x 6= y.

Definition 2.4. The operator f is called convex contractive of order 2 if there exist a1, a2 ∈
[0, 1) with a1 + a2 = 1, such that

d(f2(x), f2(y)) < a1d(x, y) + a2d(f(x), f(y)), (∀) x, y ∈ X, x 6= y.

A well known result of V. Nemytskii [18] states that, if f is a contractive operator,
defined on a compact space X, then Ff 6= ∅.

In [9] V.I. Istrăţescu proved some extensions of Nemytskii (see [18]) and of Edelstein
(see [7]) results as follows (see [9], Theorem 1.7, Theorem 1.8, Theorem 2.3 and Theorem
2.4):
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Theorem 2.2. Let f : X → X be a continuous convex contractive operator of order 2. If X is a
compact space then f has a unique fixed point x∗f , i.e. Ff = {x∗f}.
Theorem 2.3. Let f : X → X be a continuous convex contractive operator of order 2. We
suppose that any orbit (fn(x))∞0 , x ∈ X, has a limit point ξ. Then ξ is the unique fixed point of
f , i.e. x∗f = ξ.

Definition 2.5. The operator f is said to be a two-sided convex contraction if there exist
a1, a2, b1, b2 ∈ [0, 1), with a1 + a2 + b1 + b2 < 1, such that

d(f2(x), f2(y)) ≤ a1d(x, f(x)) + a2d(f(x), f
2(x))+

+b1d(y, f(y)) + b2d(f(y), f
2(y)), (∀) x, y ∈ X, x 6= y.

Definition 2.6. The operator f is said to be a convex contraction of type 2, if there exist
c0, c1, a1, a2, b1, b2 ∈ [0, 1), with c0 + c1 + a1 + a2 + b1 + b2 < 1, such that

d(f2(x), f2(y)) ≤ c0d(x, y) + c1d(f(x), f(y)) + a1d(x, f(x))+

+a2d(f(x), f
2(x)) + b1d(y, f(y)) + b2d(f(y), f

2(y)), (∀) x, y ∈ X.
Theorem 2.4. Any continuous two-sided convex contraction operator has a unique fixed point.

Theorem 2.5. Any continuous convex contraction operator of type 2 has a unique fixed point.

Following I. A. Rus [25] we present some needed definitions and results.

Definition 2.7. The operator f is called a weakly Picard operator (WPO) if the sequence
(fn(x))n∈N converges, for all x ∈ X, and the limit, denoted by f∞(x) = x∗f , is a fixed point
of f .

Remark 2.1. If f is a weakly Picard operator and, there exists c > 0 a real number such that

d(x, f∞(x)) ≤ c d(x, f(x)), (∀) x ∈ X
where f∞(x) = x∗f , then the operator f is a c-weakly Picard operator.

Definition 2.8. The operator f is called a Picard operator (PO) if Ff = {x∗f} and fn(x)→
x∗f as n→∞, for all x ∈ X.
Remark 2.2. If f is a WPO and Ff = {x∗f}, then f is a PO.

Definition 2.9. The operator f is called a Bessaga operator (BO) if Ff = Ffn = {x∗f}, for
all n ∈ N∗.
Definition 2.10. The operator f is called a Janos operator (JO) if ∩n∈N∗fn(X) = {x∗f}.
Definition 2.11. The fixed point problem for the operator f is well possed if the following
conditions are satisfied:

(i) Ff = {x∗f};
(ii) if xn ∈ X , n ∈ N are such that d(xn, f(xn))→ 0 as n→∞, then xn → x∗f as n→∞.

Definition 2.12. The operator f has the limit shadowing property if the following impli-
cation holds

[xn ∈ X,n ∈ N such that d(xn+1, f(xn))→ 0 as n→∞]
implies that
[there exists x ∈ X such that d(xn, fn(x))→ 0 as n→∞].

Definition 2.13. The equation x = f(x) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and each solution y∗ of the inequation
d(y, f(y)) ≤ ε, there exists a solution x∗ of the equation x = f(x), such that d(y∗, x∗) ≤

cfε.
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3. MAIN RESULTS

By using the above definitions we state and prove the following results.
Regarding the data dependence of the fixed point in the case of two-sided convex con-

traction operator, we have

Theorem 3.6. Let f : X → X be a continuous two-sided convex contraction operator and let
g : X → X be, such that:

(a) g has at least a fixed point, say x∗g ∈ Fg ,
(b) there exists η1 > 0 such that d(f(x), g(x)) ≤ η1, for any x ∈ X,
(c) there exists η2 > 0 such that d(f2(x), g2(x)) ≤ η2, for any x ∈ X.
If x∗f 6= x∗g then d(x∗f , x

∗
g) ≤ (b1 + b2)η1 + (1 + b2)η2.

Proof. Because f is a continuous two-sided convex contraction operator it results that
Ff = {x∗f}. Then, if we suppose that x∗f 6= x∗g, we have

d(x∗f , x
∗
g) = d(f2(x∗f ), g

2(x∗g)) ≤ d(f2(x∗f ), f2(x∗g)) + d(f2(x∗g), g
2(x∗g)) ≤

≤ a1d(x∗f , f(x∗f )) + a2d(f(x
∗
f ), f

2(x∗f )) + b1d(x
∗
g, f(x

∗
g)) + b2d(f(x

∗
g), f

2(x∗g)) + η2 ≤
≤ b1d(x∗g, f(x∗g)) + b2d(f(x

∗
g), f

2(x∗g)) + η2 ≤
≤ b1η1 + b2[d(f(x

∗
g), g(x

∗
g)) + d(g(x∗g), f

2(x∗g)) + η2 ≤
≤ b1η1 + b2η1 + b2η2 + η2.

So, the theorem is proved. �

Remark 3.3. Moreover, if in the previous theorem, the operator f is a graphic contraction
(see [14]), then

d(x∗f , x
∗
g) ≤

b1η1 + η2 + b2αd(x
∗
f , f(x

∗
g))

1− b2α
.

Theorem 3.7. Let f : X → X be a continuous two-sided convex contraction operator and let
fn : X → X be, n ∈ N, such that:

(a) for each n ∈ N there exists x∗n ∈ Ffn ,
(b) fn ⇒ f, as n→∞.
Then x∗n → x∗f , as n→∞.

Proof. Because f is a continuous two-sided convex contraction we have Ff = {x∗f}.
As {fn}n≥0 converges uniformly to f , there exist η1n ∈ R+, n ∈ N, such that η1n →

0, n→∞ and d(fn(x), f(x)) ≤ η1n for any x ∈ X.
As {f2n}n≥0 converges uniformly to f2, there exist η2n ∈ R+, n ∈ N, such that η2n →

0, n→∞ and d(f2n(x), f2(x)) ≤ η2n for any x ∈ X.
Applying the previous theorem for each pair f and fn, n ∈ N, it follows that we have

d(x∗n, x
∗
f ) = d(f2n(x

∗
n), f

2(x∗f )) ≤ (b1 + b2)η1n + (1 + b2)η2n.
Since η1n → 0 and η2n → 0 as n → ∞ the conclusion of theorem follows immediately.

�

Theorem 3.8. Let f : X → X be a continuous two-sided convex contraction operator. If there
exists α > 0 such that

d(f(x), f2(x)) ≤ αd(x, f(x)), (∀) x ∈ X, (1)
then the fixed point problem for f is well possed, that is, assuming there exist zn ∈ X, n ∈ N such
that [d(zn, f(zn))→ 0 as n→∞] implies [zn → x∗f as n→∞].
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Proof. Because f is a continuous two-sided convex contraction operator, Ff = {x∗f}.
Let zn ∈ X, n ∈ N such that d(zn, f(zn))→ 0 as n→∞.
Therefore, we obtain

d(zn, x
∗
f ) ≤ d(zn, f(zn)) + d(f(zn), f

2(zn)) + d(f2(zn), f
2(x∗f )) ≤

≤ d(zn, f(zn)) + αd(zn, f(zn)) + a1d(zn, f(zn))+

+a2d(f(zn), f
2(zn)) + b1d(x

∗
f , f(x

∗
f )) + b2d(f(x

∗
f ), f

2(x∗f )) ≤
≤ (1 + α+ a1 + a2α)d(zn, f(zn)).

From these relationships we get that

d(zn, x
∗
f ) ≤ (1 + α+ a1 + a2α)d(zn, f(zn)),

which obviously implies that
zn → x∗f as n→∞.

So the fixed point problem for f is well possed. �

Remark 3.4. Relative to the Theorem 3.6 and to the Remark 3.3 we have: If f is a conti-
nuous two-sided convex contraction operator which satisfies the condition (1) then f is a
c-PO with c = 1 + α+ a1 + αa2 and for c-POs we have (see [24])

d(x∗g, x
∗
f ) ≤ d(x∗g, f(x∗f )) = cd(g(x∗g), f(x

∗
g)) ≤ cη1,

therefore we have data dependence without the condition (c).

Remark 3.5. An operator f that is a continuous two-sided convex contraction, in gene-
rally, isn’t a Bessaga operator. But, because we have {x∗f} = Ff ⊂ Ff2 , if there exists
another fixed point of f2, say y∗f 6= x∗f , then the following estimation holds:

d(x∗f , y
∗
f ) ≤ (b1 + b2)d(y

∗
f , f(y

∗
f )).

Example 3.3. Let f : [0, 1]→ [0, 1] be, given by

f(x) =

{
1
7x, x ∈ [0, 12 ]
1
14 , x ∈ ( 12 , 1]

.

It results that f2(x) = 1
7f(x).

The operator f is a two-sided convex contraction with a1 = 1
5 , a2 = 1

6 , b1 = 2
5 , b2 =

1
6 and we have Ff = Ff2 = {0}. Moreover, how fn(x) = ( 17 )

nf(x), this f is a Picard
operator, a Bessaga operator and a Janos operator with x∗f = 0.

Remark 3.6. The operator f in the previous example is a graphic contraction, that is, with
α = 6

35 , we have
d(f(x), f2(x)) ≤ αd(x, f(x)), (∀) x ∈ [0, 1].

Remark 3.7. There exist operators f that are two-sided convex contractions, but they
aren’t continuous operators. As an example we consider the operator f : [0, 1] → [0, 1],
given by

f(x) =

{
x
7 , x ∈ [0, 12 ]
1
7 , x ∈ ( 12 , 1]

.

This operator isn’t continuous on [0, 1] but it is a two-sided convex contraction with a1 =
1
9 , a2 = 1

6 , b1 = 2
9 , b2 = 1

6 . Moreover, how fn(x) = ( 17 )
nf(x), f is a Picard operator, a

Bessaga operator and a Janos operator with x∗f = 0. This operator is a graphic contraction,
too, with α = 3

7 .
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Theorem 3.9. Let f : X → X be a continuous two-sided convex contraction operator. We
suppose that:

(i) the operator f is a graphic contraction;
(ii) the sequence (zn)n≥0 is convergent in X and d(zn+1, f(zn)) → 0 as n → ∞. Then the

limit of the sequence (zn)n≥0 is the unique fixed point of f .

Proof. Let (zn)n≥0 be a sequence such that d(zn+1, f(zn)) → 0 as n → ∞ and let xz be its
limit, i.e. xz = limn→∞ zn.

We can prove that xz = x∗f , where x∗f is the unique fixed point of f . �

Remark 3.8. If, for an operator f , the conclusion of the previous theorem remains true
without asking ”the sequence (zn)n≥0 is convergent in X” then this operator f has the
limit shadowing property, where x is any element of X .

We have

Theorem 3.10. Let f : X → X be a continuous two-sided convex contraction opera-tor. We
suppose that X is a compact space. Then the operator f has the limit shadowing property, i.e. for
each sequence (zn)n∈N, zn ∈ X, n ∈ N, such that d(zn+1, f(zn)) → 0 as n → ∞ there exists
x ∈ X such that d(zn, fn(x))→ 0, as n→∞.

Proof. We have that Ff = {x∗f}, and for each element x ∈ X, limn→∞ fn(x) = x∗f .
Because the space X is compact and zn ∈ X, n ∈ N, it results that there exists a subse-

quence (znk
)k∈N which is convergent. Let xz be its limit, i.e. limk→∞ znk

= xz.
How f is a continuous operator we get that limk→∞ f(znk

) = f(xz). But, from
limn→∞ d(zn+1, f(zn)) = 0 it results that limk→∞ d(znk+1, f(znk

)) =
= d(xz, f(xz)) = 0, that is f(xz) = xz, therefore xz is a fixed point of f. How Ff = {x∗f},
we have that xz = x∗f .

Let x ∈ X be. We have

d(zn, f
n(x)) ≤ d(zn, x∗f ) + d(x∗f , f

n(x))→ 0 as n→∞.
The theorem is proved. �

Theorem 3.11. If f is a continuous two-sided convex contraction operator which satisfies the
condition (1), then the fixed point equation x = f(x) is Ulam-Hyers stable.

Proof. Indeed, let ε > 0 and y∗ a solution of the inequation d(y, f(y)) ≤ ε. Since f is a c
-weakly Picard operator with c = 1 + α+ a1 + αa2, we have that

d(x, f∞(x)) ≤ c d(x, f(x)), for all x ∈ X.
If we take x := y∗ and f∞(x) := x∗, then we have that d(y∗, x∗) ≤ c ε. �

Remark 3.9. Some similar results can be obtained for the convex contractive operators of
order 2 and for the convex contraction operators of type 2.

REFERENCES
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[7] Edelstein, M., On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79
[8] Filip, A. D., Fixed point theorems in Kasahara spaces with respect to an operator and applications, Fixed Point

Theory, 12 (2011), No. 2, 329–340
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