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Fixed point theorems for correspondences with properties
weaker than lower semicontinuity

MONICA PATRICHE

ABSTRACT. In this paper, we study existence of fixed points for correspondences having weak continuity
properties. The obtained results extend or improve the corresponding results present in literature. We use con-
tinuous selection technique and also well-known KKM principle in order to establish our fixed point theorems.

1. INTRODUCTION

In order to find the particularities of some recent results concerning the existence of the
fixed points, the reader is referred to [1]-[3], [5]-[22].

Systematic studies apply analytical methods and approaches that attempt to give ad-
vantages in expressing simple and general statements. A reader can be overwhelmed by
the many techniques out here. This paper tries to be innovative in our approach, which
involves two essential steps. The first one is a sustainable development of known the-
orems, by providing conditions which imply the existence of the fixed points for corre-
spondences for which it is already proved that they have almost fixed points. In this way,
we show, for instance, that under our assumptions, the almost lower semicontinuous cor-
respondences enjoy the beautiful property of having fixed points. The second step of our
research is distinguished by the way how we embed the KKM principle to obtain relevant
and new applications in the domain. Our three last theorems have been built upon this
well-known principle. This fact allows us to remain open to the challenge of exploiting
further this method to get other possible results.

The rest of the paper is organized as follows. In the following section, some notational
and terminological conventions are given. The fixed point theorems for correspondences
with weak continuity properties are stated in Section 3. Section 4 contains fixed point
results obtained by using the KKM principle. Section 5 presents the conclusions of our
research.

2. PRELIMINARIES

Throughout this paper, we shall use the following notation:
2D denotes the set of all non-empty subsets of the set D. If D ⊂ X , where X is a

topological space, clD denotes the closure of D. We also denote C(X) the family of all non-
empty and closed subsets of X. A paracompact space is a Hausdorff topological space in
which every open cover admits an open locally finite refinement. Metrizable and compact
topological spaces are paracompact.
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Let X , Y be topological spaces and T : X → 2Y be a correspondence. T is said to be
upper semicontinuous if, for each x ∈ X and each open set V in Y with T (x) ⊂ V , there
exists an open neighborhood U of x in X such that T (y) ⊂ V for each y ∈ U . T is said to
be lower semicontinuous if, for each x ∈ X and each open set V in Y with T (x) ∩ V 6= ∅,
there exists an open neighborhood U of x in X such that T (y) ∩ V 6= ∅ for each y ∈ U .
T : X → 2Y has open lower sections if T−1(y) := {x ∈ X : y ∈ T (x)} is open in X for each
y ∈ Y.

Let X be a subset of a topological vector space and D a nonempty subset of X such
that coD ⊂ X.

T : D → 2X is called a KKM correspondence if coN ⊂ T (N) for each N ∈ 〈D〉, where
〈D〉 denotes the class of all nonempty finite subsets of D.

Many modern essential results in different areas of mathematical sciences can be de-
rived from the KKM principle. We recall it here. We note that its open version is due to
Kim [9] and Shih and Tan [22].

KKM principle Let D be a set of vertices of a simplex S and T : D → 2S a correspon-
dence with closed (respectively open) values such that

coN ⊂ T (N) for each N ⊂ D.
Then,

⋂
z∈D T (z) 6= ∅.

The following lemma is a consequence of the KKM principle. It will be used to obtain
new fixed point theorems in Section 4.

Lemma 2.1. Let X be a subset of a topological vector space, D a nonempty subset of X such that
coD ⊂ X and T : D → 2X a KKM correspondence with closed (respectively open) values. Then
{T (z)}z∈D has the finite intersection property.

Remark 2.1. In [14], the author proved that the KKM principle is equivalent to the Fan-
Browder fixed point property.

The Fan-Browder fixed point property [14]. Let R : X → 2D and T : X → 2X be
correspondences satisfying:

1) for each x ∈ X, coR(x) ⊂ T (x);
2) R−1(z) is open (resp. closed) for each z ∈ D;
3) X = ∪z∈MR−1(z) for some M ∈ 〈D〉.
Then, T has a fixed point x0 ∈ X.

Let (X, d) be a metric space, C be a non-empty subset of X and T : C → 2X be a
correspondence. We denote by B(x, r) = {y ∈ C : d(y, x) < r}. If B0 is a subset of X,
then, we will denote B(B0, r) = {y ∈ C : d(y,B0) < r}, where d(y,B0) = infx∈B0

d(y, x).

3. NEW FIXED POINT THEOREMS

In this section we focus on establishing new fixed point theorems concerning mainly
the almost lower semicontinuous correspondences. Other types of correspondences hav-
ing weak continuity properties are also condidered. We provide new conditions which
assure the existence of the fixed points for a correspondence for which it is easy to prove
that it has almost fixed points.

We are starting by presenting the almost lower semicontinuous correspondences.
Let X be a topological space and Y be a normed linear space. The correspondence

T : X → 2Y is said to be almost lower semicontinuous (a.l.s.c.) at x ∈ X (see [4]), if, for any
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ε > 0, there exists a neighborhood U(x) of x such that
⋂

z∈U(x) B(T (z), ε) 6= ∅. T is almost
lower semicontinuous if it is a.l.s.c. at each x ∈ X .

Deutsch and Kenderov [4] established the following characterization of a.l.s.c. corre-
spondences.

Lemma 3.2. (see [4]) Let X be a paracompact topological space, Y be a normed vector space and
T : X → 2Y be a correspondence having convex values. Then, T is a.l.s.c. if and only if, for each
ε > 0, T admits a continuous ε−approximate selection f; that is, f : X → Y is a continuous
single-valued function such that f(x) ∈ B(T (x), ε) for each x ∈ X.

The main result of this section is the following theorem. It concerns the existence of
the fixed points for the almost lower semicontinuous correspondences defined on Banach
spaces.

Theorem 3.1. Let C be a compact convex subset of a Banach space X and let T : C → 2C be a
correspondence such that there exists n0 ∈ N∗ with the property that B(T (C), 1

n0
) ⊆ C. Suppose

that T is almost lower semicontinuous with non-empty convex closed values and T−1 : C → 2C

is closed valued.

Then, T has a fixed point.

Proof. Firstly, let us define Tn : C → 2C by Tn(x) = B(T (x); 1/(n+n0−1)) for each x ∈ C
and n ∈ N∗. Since T is almost lower semicontinuous, according to Lemma 3.2, for each
n ∈ N, there exists a continuous function fn : C → C such that fn(x) ∈ Tn(x) for each
x ∈ C. Brouwer-Schauder fixed point theorem assures that, for each n ∈ N, there exists
xn ∈ C such that xn = fn(xn) and then, xn ∈ Tn(xn).

Then, d(xn, T (xn)) → 0 when n → ∞ and since C is compact, {xn} has a convergent
subsequence {xnk

}. Let x0 = limnk→∞ xnk
. It follows that d(x0, T (xnk

)) → 0 when nk →
∞.

Let us assume that x0 /∈ T (x0). Since {x0}∩T−1(x0) = ∅ and X is a regular space, there
exists r1 > 0 such that B(x0, r1) ∩ T−1(x0) = ∅. Consequently, for each z ∈ B(x0, r1),
we have that z /∈ T−1(x0), which is equivalent with x0 /∈ T (z) or {x0} ∩ T (z) = ∅. The
closedness of each T (z) and the regularity of X imply the existence of a real number r2 > 0
such that B(x0, r2) ∩ T (z) = ∅ for each z ∈ B(x0, r1), which implies x0 /∈ B(T (z); r2) for
each z ∈ B(x0, r1). Let r = min{r1, r2}. Hence, x0 /∈ B(T (z); r) for each z ∈ B(x0, r), and
then, there exists N∗ ∈ N such that for each nk > N∗, x0 /∈ B(T (xnk

); r) which contradicts
d(x0, T (xnk

))→ 0 as n→∞. It follows that our assumption is false.
Hence, x0 ∈ T (x0). �

Corollary 3.1. Let C be a compact convex subset of a Banach space X and let T : C → 2C be
a correspondence. Suppose that T is lower semicontinuous with non-empty convex closed values
and T−1 : C → 2C is closed valued.

Then, T has a fixed point.

We will obtain some results related to Theorem 3.1 in cases when the correspondences
are sub-lower semicontinuous or transfer open-valued. The first property differs very
slightly from the one we presented in the beginning of this section. The definitions are
given below.

The sub-lower semicontinuous correspondences were defined by Zheng in [25].
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Let X be a topological space and Y be a topological vector space. A correspondence
T : X → 2Y is called sub-lower semicontinuous [25] if, for each x ∈ X and for each neigh-
borhood V of 0 in Y, there exist z ∈ T (x) and a neighborhood U(x) of x in X such that,
for each y ∈ U(x), z ∈ T (y) + V.

Zheng proved in [25] a continuous selection result for the sub-lower semicontinuous
correspondences, which can be used in order to obtain Theorem 3.2 Here is his result.

Lemma 3.3. [25] Let X be a paracompact topological space, Y be a locally convex topological
vector space and let T : X → 2Y be a correspondence with convex values. Then, T is sub-lower
semicontinuous if and only if, for each neighborhood V of 0 in Y, there exists a continuous function
f : X → Y such that, for each x ∈ X, f(x) ∈ T (x) + V.

The existence of the fixed points for the sub-lower semicontinuous correspondences is
stated now.

Theorem 3.2. Let C be a compact convex subset of a locally convex regular topological vector
space X, and let T : C → 2C be a correspondence. Suppose that T is sub-lower semicontinuous
with non-empty convex closed values and T−1 : C → 2C is closed valued.

Then, T has a fixed point.
The proof of Theorem 3.2 is similar to the one of Theorem 3.1, but it relies on Lemma

3.3

Corollary 3.2. Let C be a compact convex subset of a locally convex regular topological vector
space X, and let T : C → 2C be a correspondence. Suppose that T is lower semicontinuous with
non-empty convex closed values and T−1 : C → 2C is closed valued.

Then, T has a fixed point.

Theorem 3.3 concerns the transfer open-valued correspondences. Lemma 3.4 is crucial
for the proof.

Let X and Y be two topological spaces. The correspondence T : X → 2Y is said to be
transfer open-valued (see [1]) if, for any x ∈ X and y ∈ T (x), there exists an z ∈ X such that
y ∈intY T (z).

The proof of the next lemma is included in the proof of Theorem 3.1 in [1], in the par-
ticular case when I = {1}, S = T and K is compact.

Lemma 3.4. Let K be a non-empty compact convex subset of a Hausdorff topological vector
space E and let T : K → 2K be a correspondence with non-empty convex values. If K =⋃
{intKT−1(y) : y ∈ K} (or T−1 is transfer open-valued), then, T has a continuous selection.

Theorem 3.3. Let C be a compact convex subset of a regular topological vector space X and let
T : C → 2C be a correspondence with non-empty closed convex values, such that T−1 : C → 2C

is closed valued. Suppose that, for each open neighborhood V of the origin, the correspondence
(SV )−1 : C → 2C is transfer open-valued, where SV (x) = (T (x) + V ) ∩ C for each x ∈ C.

Then, T has a fixed point.

Proof. By using Lemma 3.4, we prove that for each open neighborhood V of the origin,
there exists a continuous function fV : C → C such that fV (x) ∈ SV (x) = (T (x) + V ) ∩C
for each x ∈ C. The proof in similar to the proof of Theorem 3.1. �
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In [13], Park established the following result. Further, we will use it to derive Theorem
3.5.

Theorem 3.4. (see [13]) Let X be a convex subset of a topological vector space E. Let T :
X → 2X be an upper semicontinuous (respectively a lower semicontinuous) correspondence with
nonempty convex values such that the following holds:.

(Z) for each neighborhood U of 0 in E, there exists a neighborhood V of the origin in E such
that

co(V ∩ (T (X)− T (X)) ⊂ U.
If T (X) is totally bounded, then, for each neighborhood U of 0 in E, there exists a point xU ∈ X

such that T (xU ) ∩ (xU + V ) 6= ∅.

We state Theorem 3.5, by using Park’s theorem enunciated above. We note that the
regularity of the space X is essential in the proof.

Theorem 3.5. Let X be a compact convex subset of a regular topological vector space E. Let
T : X → 2X be a lower semicontinuous correspondence with nonempty closed convex values such
that the following holds:.

i) (Z) for each neighborhood U of 0 in E, there exists a neighborhood V of the origin in E such
that

co(V ∩ (T (X)− T (X)) ⊂ U and
ii) T−1 : X → 2X is closed valued.
Then, T has fixed points.

Proof. For each symmetric open neighborhood W of 0 in E, there exists a symmetric open
neighborhood U of 0 in E such that U + U ⊂ W. According to Theorem 3.4, for each
such a neighborhood U, there exists points xU , yU ∈ X such that xU ∈ T (xU ) + U and
xU ∈ yU + U.

Since X is compact, {xU} has a convergent subsequence {xU ′}. Let x0 be the limit of
{xU ′}. It follows that x0 ∈ T (xU ′) + W ′ for each symmetric open neighborhood U ′ of 0
with the property that U ′ + U ′ ⊂W ′.

Let us assume that x0 /∈ T (x0). Since {x0}∩T−1(x0) = ∅ and X is a regular space, there
exists V1 an open neighborhood of 0 such that (x0 + V1) ∩ T−1(x0) = ∅. Consequently,
for each z ∈ (x0 + V1), we have that z /∈ T−1(x0), which is equivalent with x0 /∈ T (z) or
{x0} ∩ T (z) = ∅. The closedness of each T (z) and the regularity of X imply the existence
of V2, an open neighborhood of 0, such that (x0 + V2) ∩ T (z) = ∅ for each z ∈ x0 + V1,
which implies x0 /∈ T (z) + V2 for each z ∈ x0 + V1. Let V = V1 ∩ V2. Hence, x0 /∈ T (z) + V
for each z ∈ x0 + V, and then, there exists U∗, an open neighborhood of 0 such that for
each symmetric open neighborhood of 0, U ′, with the property that U ′ ⊂ U∗, it is true that
x0 /∈ T (xU ′) + V and therefore, x0 /∈ T (xU ′∩V ) + W ′ ∩ V. The last assertion contradicts
x0 ∈ T (xU ′) +W ′ for each symmetric open neighborhood U ′ of 0 with the property that
U ′ + U ′ ⊂W ′. It follows that our assumption is false.

Hence, x0 ∈ T (x0). �

Remark 3.2. The case of the upper semicontinuous correspondences is treated by Park in
[13].

Corollary 3.3 is obtained easily from Theorem 3.4, if we take into consideration that
any convex subset of a locally convex topological vector space is of the Zima type (Z). For
a discussion of this fact, the reader is referred to [5] and [6].
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Corollary 3.3. Let X be a compact convex subset of a locally convex regular topological vector
space E. Let T : X → 2X be a lower semicontinuous correspondence with nonempty closed convex
values such that T−1 : X → 2X is closed valued.

Then, T has fixed points.

4. APPLICATIONS OF THE KKM PRINCIPLE

This section is mainly dedicated to establishing some new fixed point theorems for
correspondences, by using the KKM principle and Lemma 2.1 derived from it. For other
results obtained in this way, the reader is referred, for instance, to [7], [8], [12], [13].

Our first result in this section is stated now. It concerns the existence of the fixed points
and its particularity is given by the transfer open-valuedness of the involved correspon-
dences.

Theorem 4.6. Let X be a subset of a topological vector space E, D a nonempty subset of X such
that coD ⊂ X and S : D → 2X , T : X → 2X be correspondences.

Assume that S and T satisfy the following conditions:
i) S is transfer-open valued;
ii) there exists M ∈ 〈D〉 and for each x ∈M and y ∈ S(x), there exists zx,y ∈ X such that

y ∈intXS(zx,y) ∩ S(x) and
⋃

x∈M (
⋃

y∈S(x)intXS(zx,y)) = X;

iii)
⋃

y∈S(x)intXS(zx,y) ⊂ T (x) for each x ∈ D;

iv) T−1 is convex valued.
Then, T has fixed points.

Proof. Let us define F : D → 2X by F (x) := X\
⋃

y∈S(x)intXS(zx,y) for each x ∈ D.

Then, F is closed valued and⋂
x∈M F (x) = X\

⋃
x∈M (

⋃
y∈S(x)intXS(zx,y)) = ∅.

According to Lemma 1, we can conclude that F is not a KKM correspondence. Thus,
there exists N ∈ 〈D〉 such that coN  F (N) =

⋃
x∈N (X\

⋃
y∈S(x)intXS(zx,y)).

Hence, there exists x0 ∈coN with the property that x0 ∈
⋃

y∈S(x)intXS(zx,y) for each
x ∈ N. Therefore, there exists x0 ∈coN such that x0 ∈ T (x) for each x ∈ N, which
implies N ⊂ T−1(x0). Further, it is true that coN ⊂coT−1(x0) = T−1(x0). Consequently,
x0 ∈coN ⊂coT−1(x0) = T−1(x0), which means that x0 ∈ T (x0), that is, x0 is a fixed point
for T. �

The second theorem established in this section is also based on the application of the
KKM principle. It asserts the existence of the fixed points in case when the correspon-
dences have the local intersection property.

The correspondences which satisfy the local intersection property are defined below.
Let X , Y be topological spaces. The correspondence T : X → 2Y has the local intersec-

tion property (see [23]) if x ∈ X with T (x) 6= ∅ implies the existence of an open neighbor-
hood U(x) of x such that ∩z∈U(x)T (z) 6= ∅.

Theorem 4.7. Let X be a subset of a topological vector space E, D a nonempty subset of X such
that coD ⊂ X and S : D → 2X , T : X → 2X be correspondences.

Assume that S and T satisfy the following conditions:
i) S is closed valued;
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ii) there exists W, an open neighborhood of 0 in X, such that R(x) =
⋂

z∈x+W S(z) is
nonempty for each x ∈ X with the property that S(x) 6= ∅;

iii) there exists M ∈ 〈D〉 such that
⋃

x∈M R(x) = X;

iv) coR−1(y) ⊂ T−1(y) for each y ∈ X.
Then, T has fixed points.

Proof. Let us define F : D → 2X by F (x) := X\
⋂

z∈x+W S(z) for each x ∈ D.
Then, F is open valued and assumption iii) implies⋂

x∈M F (x) =
⋂

x∈M (X\
⋂

z∈x+W S(z))) = X\
⋃

x∈M (
⋂

z∈x+W S(z)) =
= X\

⋃
x∈M R(x) = ∅.

According to Lemma 2.1, we can conclude that F is not a KKM correspondence. Thus,
there exists N ∈ 〈D〉 such that coN  F (N) =

⋃
x∈N (X\

⋂
z∈x+W S(z)).

Hence, there exists x0 ∈coN with the property that x0 ∈
⋂

z∈x+W S(z) for each x ∈ N.

Therefore, R(x) is nonempty for each x ∈ N and N ⊂ R−1(x0) ⊂coR−1(x0). Conse-
quently, it is true that x0 ∈coN ⊂coR−1(x0) ⊂ T−1(x0), which means that x0 ∈ T (x0),
that is, x0 is a fixed point for T. �

In a similar way, we establish Theorem 4.8, which concerns the existence of the fixed
points for the sub-lower semicontinuous correspondences.

Theorem 4.8. Let X be a subset of a topological vector space E, D a nonempty subset of X such
that coD ⊂ X and S : D → 2X , T : X → 2X be correspondences.

Assume that S and T satisfy the following conditions:
i) S is closed valued;
ii) there exist W and V, open neighborhoods of O in X, such that R(x) =

⋂
z∈x+W (S(z)+V )

is nonempty for each x ∈ X with the property that S(x) 6= ∅;
iii) there exists M ∈ 〈D〉 such that

⋃
x∈M R(x) = X;

iv) coR−1(y) ⊂ T−1(y) for each y ∈ X.
Then, T has fixed points.

Remark 4.3. Since the proofs of Theorems 4.7 and Theorem 4.8 are based on the KKM
principle, in view of Remark 1, we can conclude that the specified results are conse-
quences of the Fan-Browder fixed point property.

5. CONCLUDING REMARKS

In this paper, we have firstly proved the existence of fixed points for almost lower
semicontinuous correspondences and correspondences with weak continuity properties.
Our research extends on some results which exist in literature. Secondly, we obtained new
fixed point theorems by applying the KKM principle. It is an interesting problem to find
new applications of this well-known principle in the fixed point theory. This study will
be continued by considering abstract convex spaces and generalized KKM theorems.

REFERENCES

[1] Ansari, Q. H. and Yao, J.-C., A Fixed point theorem and its applications to a system of variational inequalities, Bull.
Austral. Math. Soc., 59 (1999), 433–442
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