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A new type of contractions that characterize metric
completeness

OVIDIU POPESCU

ABSTRACT. We prove that a new type of contractions characterizes the metric completeness of the underlying
space. We also discuss the Meir-Keeler fixed point theorem.

1. INTRODUCTION

Let (X, d) be a complete metric space and T a selfmap of X . Then T is called a contrac-
tion if there exists r ∈ [0, 1) such that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X .
T is called Kannan if there exists α ∈ [0, 1/2) such that

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty)

for all x, y ∈ X .
The following famous theorem is referred to as the Banach contraction principle.

Theorem 1.1. (Banach [1]) Let (X, d) be a complete metric space and let T be a contraction on
X . Then T has a unique fixed point.

This theorem is a very forceful and simple, and it became a classical tool in nonlinear
analysis. It has many generalizations, see [4], [5], [6], [12], [17], [18], [21], [23], [31], [33].
Connel [9] gave an example of a noncomplete metric space X on which every contraction
on X has a fixed point. Thus, Theorem 1 cannot characterize the metric completeness of
X which means the notion of contraction is too strong from this point of view. Kannan
[13] proved that ifX is complete, then every Kannan mapping has a fixed point. Kannan’s
theorem is independent of the Banach contraction principle. Subrahmanyiam [32] proved
that Kannan’s theorem characterizes the metric completeness. That is, a metric space X
is complete if and only if every Kannan mapping on X has a fixed point. Also several
mathematicians have studied the metric completeness. For other results in this setting,
see [11], [24], [27], [34] and others.

In 2008 Suzuki [33] introduced a new type of mapping and presented a generalization
of the Banach contraction principle in which the completeness can also be characterized
by the existence of fixed point of these mappings.

Theorem 1.2. ([33]) Let (X, d) be a complete metric space and let T be a mapping on X . Define
a nonincreasing function θ from [0, 1) onto (1/2, 1] by
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(1.1) θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2,

(1− r)/r2 if (
√
5− 1)/2 ≤ r ≤ 1/

√
2,

1/(1 + r) if 1/
√
2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤
rd(x, y) for all x, y ∈ X . Then there exists a unique fixed point z of T . Moreover limn T

nx = z
for all x ∈ X .

Its further outcomes by Kikkawa and Suzuki [14], [15], Moţ and Petruşel [22], Dhom-
pongsa and Yingtaweesittikul [10], Popescu [25], Singh and Mishra [29], [30] are impor-
tant contributions to metric fixed point theory.

Suzuki [33] also generalized the Meir-Keeler fixed point theorem [21].

Theorem 1.3. ([33]) Let (X, d) be a complete metric space and let T be a mapping on X . Assume
that for each ε > 0, there exists δ > 0 such that
• (1/2)d(x, Tx) < d(x, y) and d(x, y) < ε+ δ imply d(Tx, Ty) ≤ ε and
• (1/2)d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y)
for all x, y ∈ X . Then there exists a unique fixed point z of T . Moreover limn T

nx = z for all
x ∈ X .

The Meir-Keeler fixed point theorem [21] is a generalization of the Banach contraction
principle(Theorem 1.1), but Theorem 1.3 is not a generalization of Theorem 1.2. However,
we note that limr→1−0 θ(r) = 1/2 and 1/2 is the best constant.

In this paper, we prove that a new type of contractions characterizes the metric com-
pleteness. The direction of our extension is new, very simple and inspired by Theorem
1.2. We also generalize the Meir-Keeler fixed point theorem [21] and Theorem 1.3.

2. (S, R)-CONTRACTIONS

Popescu [26] introduced a new type of contractive operator and proved the following
theorem.

Theorem 2.4. ([26]) Let (X, d) be a complete metric space and T : X → X be a (s, r)-contractive
singlevalued operator:
there exist r ∈ [0, 1) and s > r such that

x, y ∈ X with d(y, Tx) ≤ sd(y, x) implies d(Tx, Ty) ≤ rMT (x, y)

where

MT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Then T has a fixed point. Moreover, if s ≥ 1 then T has a unique fixed point.

The quantity MT (x, y) appearing in Theorem 2.4 is due to Ćirić [8] and is involved in
Rhoades classification [28] as condition number (21). For more bibliografic details regard-
ing this condition, see Berinde [2] for self mape case and Berinde and Pǎcurar [3]. As a
direct consequences of Theorem 2.4, we obtain the following result.

Corollary 2.1. Let (X, d) be a complete metric space and let T be a mapping on X . Assume that
there exist r ∈ [0, 1) and s > r such that

(2.2) d(y, Tx) ≤ sd(y, x) implies d(Tx, Ty) ≤ rd(x, y),
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for all x, y ∈ X . Then there exists a fixed point z of T . Further, if s ≥ 1, then there exists a unique
fixed point of T .

It is obvious that the set of our contractions in Corollary 2.1 includes that of the usual
contractios. However, our contractions and Kannan mappings are independent. We next
show it.

Example 2.1. Define a complete metric spaceX byX = {(0, 3), (0, 2)}∪{(a, 0) : a ∈ [0, 6]}
and let d be the euclidian metric. Define a mapping T on X by

(2.3) T (x1, x2) =

 (0, 0) if (x1, x2) = (6, 0),
(0, 3) if (x1, x2) = (a, 0) : a ∈ (0, 6),
(0, 2) if x1 = 0.

Then T is a Kannan mapping, but T does not satisfy the assumption in Corollary 2.1.

Proof. LetA = d(Tx, Ty) andB = (1/3)[d(x, Tx)+d(y, Ty)]. We have the following cases:
1) x = (6, 0). If y = (a, 0), a ∈ (0, 6), then A = 3 and B ≥ (1/3)(6 + 3) = 3. If y = (0, 3),
then A = 2 and B = 7/3. If y = (0, 2), then A = 2 and B = 2. If y = (0, 0), then A = 2 and
B = 8/3.
2) x = (a, 0), a ∈ (0, 6). If y = (b, 0), b ∈ (0, 6), then A = 0. If y = (0, 0), then
A = 1, B ≥ 5/3. If y = (0, 3), then A = 1, B ≥ 4/3. If y = (0, 2), then A = 1, B ≥ 1.
If y = (6, 0), then A = 3, B ≥ 3.
3) x = (0, 0). If y = (0, 3) or y = (0, 2), then A = 0. If y = (6, 0), then A = 2, B = 8/3. If
y = (a, 0), a ∈ (0, 6), then A = 1, B ≥ 5/3.
4) x = (0, 3). If y = (6, 0), then A = 2 and B = 7/3. If y = (a, 0), a ∈ (0, 6), then
A = 1, B ≥ 4/3. If y = (0, 0) or y = (0, 2), then A = 0.
5) x = (0, 2). If y = (6, 0), thenA = 2 andB = 2. If y = (a, 0), a ∈ (0, 6), thenA = 1, B ≥ 1.
If y = (0, 0) or y = (0, 3), then A = 0.
6) x = y. Then A = 0.
In all cases we have A ≤ B. Therefore T is a Kannan mapping with α = 1/3.

Now we show that for every r ∈ [0, 1) there exist xr, yr ∈ X such that

d(yr, Txr) ≤ rd(xr, yr) and d(Txr, T yr) > rd(xr, yr).

We fix r ∈ (0, 1). Let xr = (6, 0), yr = (a, 0), a = 6r
1+r ∈ (0, 6). Then we have d(yr, Txr) =

a, d(xr, yr) = 6 − a = 6
1+r , d(Txr, T yr) = 3, so d(yr, Txr) = rd(xr, yr). Since r < 1 we

get 6r
1+r < 3, hence d(Txr, Tyr) > rd(xr, yr). If r = 0 we can take xr = (6, 0), yr = (0, 3).

Therefore T does not satisfy the assumption in Corollary 2.1. �

Example 2.2. Define a complete metric space X by X = {−1, 0, 1, 2} and a mapping T
on X by Tx = 0 if x ∈ {0, 1, 2} and Tx = 1 if x = −1. Then T satisfy the assumption in
Corollary 2.1, but T is not a Kannan mapping.

Proof. We show that T satisfy the assumption in Corollary 2.1 with r = 1/2 and s = 2/3.
We have the following cases:
1) x = y. Then d(Tx, Ty) = 0 ≤ rd(x, y).
2) x = −1. If y = 0, then d(y, Tx) = 1 > (2/3)d(x, y). If y ∈ {1, 2}, then d(Tx, Ty) = 1 ≤
(1/2)d(x, y).
3) x = 0. If y ∈ {−1, 1}, then d(y, Tx) = 1 > (2/3)d(x, y) = 2/3. If y = 2, then d(y, Tx) =
2 > (2/3)d(x, y) = 4/3.
4) x = 1. If y = −1, then d(Tx, Ty) = 1 ≤ (1/2)d(x, y) = 1. If y ∈ {0, 2}, then d(Tx, Ty) =
0 ≤ rd(x, y).
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5) x = 2. If y = −1, then d(Tx, Ty) = 1 ≤ (1/2)d(x, y) = 3/2. If y ∈ {0, 1, 2}, then
d(Tx, Ty) = 0 ≤ (1/2)d(x, y).
Since d(T − 1, T0) = 1 ≥ (1/2)[d(−1, T − 1) + d(0, T0)] = 1, T is not a Kannan mapping.
We note that θ(r)d(0, T0) = 0 ≤ d(0,−1) and d(T0, T − 1) = 1 > r = rd(−1, 0), so T does
not satisfy the assumption in Theorem 1.2. �

3. METRIC COMPLETENESS

In this section, we discuss the metric completnes.

Theorem 3.5. For a metric space (X, d), the following are equivalent:
(i) X is complete.
(ii) There exist r ∈ (0, 1), s > r such that every mapping T on X satisfying the following has a
fixed point:

d(y, Tx) ≤ sd(y, x) implies d(Tx, Ty) ≤ rd(x, y)
for all x, y ∈ X .

Proof. By Corollary 2.1, (i) implies (ii). Let us prove (ii) implies (i). We assume (ii). Ar-
guing by contradiction, we also assume that X is not complete. That is, there exists a
Cauchy sequence {un} which does not converge. Define a function from X to [0,∞) by
f(x) = limn d(x, un) for every x ∈ X . We also note that:
(a) f(x)− f(y) ≤ d(x, y) ≤ f(x) + f(y) for x, y ∈ X ,
(b) f(x) > 0 for all x ∈ X ,
(c) limn f(un) = 0.
Define a mapping T on X as follows: for each x ∈ X since (b) and (c) hold, there exists
an integer ν ≥ 1 such that f(uν) ≤ r

3+3sf(x). We put Tx = uν . Then it is obvious that
f(Tx) ≤ r

3+3sf(x) and Tx ∈ {un : n ≥ 1} for all x ∈ X . Since r
3+3s < 1, by (b) we have

f(Tx) < f(x), so Tx 6= x for all x ∈ X . Hence T does not have a fixed point. Fix x, y ∈ X
with d(y, Tx) ≤ sd(y, x). Then d(x, y) ≥ (1/s)d(y, Tx). In the case where f(x) > 2f(y),
we have

d(Tx, Ty) ≤ f(Tx) + f(Ty) < (r/3)[f(x) + f(y)]

< (r/3)[f(x) + f(y)] + (2r/3)[f(x)− 2f(y)]

= r[f(x)− f(y)] ≤ rd(x, y).

In the other case, where f(x) ≤ 2f(y), we have

d(x, y) ≥ (1/s)d(y, Tx) ≥ (1/s)[f(y)− f(Tx)] ≥ (1/s)[f(y)− r

3 + 3s
f(x)]

≥ (1/s)[f(y)− 2r

3 + 3s
f(y)] = (1/s)

3 + 3s− 2r

3 + 3s
f(y) >

3

3 + 3s
f(y).

and hence

d(Tx, Ty) ≤ f(Tx) + f(Ty) <
r

3 + 3s
[f(x) + f(y)]

≤ 3r

3 + 3s
f(y) ≤ rd(x, y).

By (ii), we get that T has a fixed point. This is a contradiction. Hence we obtain that X is
complete. �
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4. THE MEIR-KEELER THEOREM

In this section, we prove a generalization of the Meir-Keeler fixed point theorem [21]
and Theorem 1.3. See also [7], [19], [20].

Theorem 4.6. Let (X, d) be a complete metric space and let T be a mapping on X . Assume that
for each ε > 0, there exists δ > 0 such that
• d(y, x) ≥ d(y, Tx) and d(y, x) 6= (1/2)d(x, Tx) imply d(Tx, Ty) < d(x, y)
• d(y, x) ≥ d(y, Tx), d(y, x) 6= (1/2)d(x, Tx) and d(x, y) < ε+ δ imply d(Tx, Ty) ≤ ε,
for all x, y ∈ X . Then there exists a unique fixed point z of T . Moreover limn T

nx = z for all
x ∈ X .

Proof. If Tx 6= x, then it is obvious that d(Tx, x) ≥ d(Tx, x) > 0 and d(Tx, x) 6= (1/2)d(Tx, x).
So, by hypothesis,

d(Tx, T 2x) < d(x, Tx),

for all x ∈ X with Tx 6= x. Hence for all x ∈ X we have

d(Tx, T 2x) ≤ d(x, Tx).
Fix u ∈ X and define a sequence {un} in X by un = Tnu for n ∈ N. Since {d(un, un+1)}
is a nonincreasing sequence, then {d(un, un+1)} converges to some α ≥ 0. Arguing
by contradiction, we assume α > 0. Then {d(un, un+1)} is strictly decreasing. Hence
d(un, un+1) > α for every n ∈ N. By hypothesis, there exists δ > 0 such that
• d(y, x) ≥ d(y, Tx), d(y, x) 6= (1/2)d(x, Tx) and d(x, y) < α+ δ imply d(Tx, Ty) ≤ α.
From the definition of α, there exists j ∈ N such that d(uj , uj+1) < α + δ. So we have
d(uj+1, uj+2) ≤ α. This is a contradiction. Therefore α = 0. That is, lim d(un, un+1) = 0
holds.

Now let ε > 0. Then there exists δ ∈ (0, ε) such that
• d(y, x) ≥ d(y, Tx), d(y, x) 6= (1/2)d(x, Tx) and d(x, y) < ε+ δ imply d(Tx, Ty) ≤ ε.
Let ν ∈ N such that d(un, un+1) < δ/4 for all n ∈ N with n ≥ ν. We shall show by
induction that

(4.4) d(un, un+m) ≤ ε+ δ/2

for all n ∈ N with n ≥ ν,m ≥ 1. It is obvious that (4) holds when m = 1. We as-
sume (4) holds for all n ∈ N with n ≥ ν, and some m ∈ N,m ≥ 1. In the case where
d(un+m+1, un) < d(un+m+1, un+1), we have

d(un+m+1, un+1) ≤ ε+ δ/2,

so
d(un+m+1, un) < ε+ δ/2.

In the other case, where d(un+m+1, un) ≥ d(un+m+1, un+1), we have two subcases:
d(un+m+1, un) = (1/2)d(un, un+1) or d(un+m+1, un) 6= (1/2)d(un, un+1). In the first sub-
case

d(un+m+1, un) ≤ d(un+m+1, un+1) + d(un, un+1) < δ/8 + δ/4 < ε+ δ/2.

In the second subcase, taking y = un+m+1, x = un in the hyphotesis, we get

d(un+m+2, un+1) < d(un+m+1, un).

But

d(un+m+1, un) ≤ d(un+m, un) + d(un+m+1, un+m) < ε+ δ/2 + δ/4 < ε+ δ.

By hypothesis, we obtain
d(un+m+2, un+1) ≤ ε.
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Hence

d(un+m+1, un) ≤ d(un+m+1, un+m+2)+d(un+m+2, un+1)+d(un+1, un) < ε+δ/4+δ/4 = ε+δ/2.

So, by induction, (9) holds for every n ∈ N with n ≥ ν,m ≥ 1. Therefore we have shown

lim
n→∞

sup
m>n

d(un, un+1) = 0.

This implies that {un} is Cauchy. Since X is complete, {un} converges to some point
z ∈ X .

We shall show that z is a fixed point of T , dividing the following two cases:
• There exists ν ∈ N such that uν = uν+1.
• un 6= un+1 for all n ∈ N.
In the first case, un = uν for all n ∈ N with n ≥ ν. Since {un} converges to z, we have
un = z for all n ∈ N. This implies Tz = z. In the second case, we note un 6= Tun, for
n ∈ N, so {d(un, un+1)} is strictly decreasing. If we assume that there exists a subsequence{
un(k)

}
such that

d(z, un(k)+1) ≤ d(z, un(k)) and d(z, un(k)) 6= (1/2)d(un(k), un(k)+1),
then by hypothesis

d(Tz, un(k)+1) < d(z, un(k))

for all k ∈ N. Letting k tend to ∞ we get d(Tz, z) ≤ 0, that is, Tz = z. In other case,
there exists ν ∈ N such that d(z, un+1) > d(z, un) or d(z, un) = (1/2)d(un, un+1) for every
n ≥ ν. But d(z, un) = (1/2)d(un, un+1) implies

d(z, un+1) ≥ d(un, un+1)− d(z, un) = (1/2)d(un, un+1) = d(z, un).

So, for every n ≥ ν we have
d(z, un+1) ≥ d(z, un).

Hence {d(z, un)} is an increasing sequence. This is a contradiction, because limn d(z, un) =
0, and d(z, un) > 0 for every n ∈ N. Therefore, we have shown that z is a fixed point of T .

Finally, arguing by contradiction, suppose that y is another fixed point of T . We have
d(y, Tz) = d(y, z) and d(y, z) 6= (1/2)d(z, Tz) = 0,
so, by hypothesis

d(y, z) = d(Ty, Tz) < d(y, z),

which is a contradiction. Therefore, the fixed point of T is unique. This completes the
proof. �

We note that d(y, Tx) ≤ d(y, x), implies

d(y, x) ≥ d(x, Tx)− d(y, Tx) ≥ d(x, Tx)− d(y, x),

so
d(y, x) ≥ (1/2)d(x, Tx).

If additionally, d(y, x) 6= (1/2)d(x, Tx), we get

d(y, x) > (1/2)d(x, Tx).

Therefore our conditions from Theorem 4.6 are weaker than the conditions from Theorem
1.3.
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