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A new approach to α-ψ-contractive mappings and
generalized Ulam-Hyers stability, well-posedness and limit
shadowing results

WUTIPHOL SINTUNAVARAT

ABSTRACT. In this paper, we introduce the new concept of weakly α-admissible mapping and give example
to show that our concept is different from the concept corresponding existing in the literature. We also estab-
lish fixed point theorems by using such concept along with α-ψ-contractive condition and give some example
which support our main result while previous results in literature are not applicable. Moreover, we study the
generalized Ulam-Hyers stability, the well-posedness and the limit shadowing for fixed point problems satisfy
our conditions.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we denote by N, R+ and R the sets of positive integers, non-
negative real numbers and real numbers, respectively. Also, we denote Ψ by the class of
all nondecreasing functions ψ : [0,∞) → [0,∞) satisfying

∑∞
n=1 ψ

n(t) < ∞ for all t > 0,
where ψn is the nth iterate of ψ. For each ψ ∈ Ψ, we can easily to see that the following
assertions holds:

• ψ(t) < t for each t > 0;
• ψ(0) = 0
• ψ is continuous at t = 0.

In 2012, Samet et al. [16] introduced the concepts of α-ψ-contractive mapping and α-
admissible mapping as follows:

Definition 1.1 ([16]). Let (X, d) be a metric space and T : X → X be a given mapping.
We say that T is an α-ψ-contractive mapping if there exist two functions α : X×X → [0,∞)
and ψ ∈ Ψ such that

(1.1) α(x, y)d(Tx, Ty) ≤ ψ(d(x, y))

for all x, y ∈ X .

Definition 1.2 ([16]). Let T be a self mapping on a nonempty setX and α : X×X → [0,∞)
be a mapping. We say that T is α-admissible if the following condition holds:

for x, y ∈ X with α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

They studied the fixed point results for such mappings in metric spaces and also showed
that these results can be utilized to derive fixed point theorems in partially ordered met-
ric spaces. Since concept of α-admissible mapping has many usefulness for fixed point
analysis in various problems such as fixed point problems in metric spaces endowed with
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arbitrary relation, fixed point problems in metric spaces endowed with graph, fixed point
problems for cyclic mappings etc., so several fixed point results via the concepts of α-
admissible mappings occupies a prominent place in many aspects.

In this work, inspired by the concept of α-admissible mapping, we introduce the con-
cept of weakly α-admissible mapping and show that such mapping is a real generaliza-
tion of α-admissible mapping by given some example. The fixed point results for weakly
α-admissible mapping along with α-ψ-contractive condition are established. We furnish
some interesting examples which support our main theorems while results of Samet et al.
[16] are not applicable. Further, we study the generalized Ulam-Hyers stability, the well-
posedness and the limit shadowing of the fixed point problem satisfy our conditions.

2. FIXED POINT RESULTS

In this section, we introduce concept of weakly α-admissible mapping and prove fixed
point results for such mapping along with α-ψ-contractive condition.

Definition 2.3. Let T be a self mapping on a nonempty set X and α : X ×X → [0,∞) be
a mapping. We say that T is weakly α-admissible if the following condition holds:

for x ∈ X with α(x, Tx) ≥ 1 =⇒ α(Tx, TTx) ≥ 1.

Remark 2.1. If T is an α-admissible mapping, then T is also a weakly α-admissible map-
ping. In general, the converse of the previous statement is not true.

Next, we give some example to show the real generalization of concept of weakly α-
admissible mapping.

Example 2.1. Let X = {1, 2, 3, ...}. Define T : X → X and α : X ×X → [0,∞) by

Tx =


3 if x = 1,
2 if x = 2,
1 if x = 3,
x− 1 if x = 4, 5, 6, ...,

and

α(x, y) =


x+ y if x, y ∈ {1, 2},
|x− y|
x+ y

otherwise .

It is easy to see that T is not an α-admissible mapping. Indeed, for x = 1, y = 2, we see
that

α(x, y) = α(1, 2) = 3

but
α(Tx, Ty) = α(T1, T2) = α(3, 2) =

1

5
< 1.

Next, we show that T is a weaklyα-admissible. Suppose that x ∈ X such thatα(x, Tx) ≥
1 and so x = 2. Now we obtain that

α(Tx, TTx) = α(T2, TT2) = α(2, 2) = 4.

Now we give the first our result in this paper.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be an α-ψ-contractive
mapping satisfying the following conditions:

(i) T is weakly α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
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(iii) T is continuous.
Then the fixed point problem of T has a solution, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Starting from x0 in (ii), we have α(x0, Tx0) ≥ 1. Define the sequence {xn} in X by
xn = Txn−1 for all n ∈ N. If xn? = xn?−1 for some n? ∈ N, then xn? is a fixed point for
T . We have nothing to prove. So we may assume that xn 6= xn−1 for all n ∈ N. Since T is
weakly α-admissible, we have α(Tx0, TTx0) = α(x1, x2) ≥ 1. By induction, we get

(2.2) α(xn−1, xn) ≥ 1

for all n ∈ N. By α-ψ-contractive condition of T , we get

d(xn, xn+1) = d(Txn−1, Txn) ≤ α(xn−1, xn)d(Txn−1, Txn) ≤ ψ(d(xn−1, xn))

for all n ∈ N. By induction, we have

d(xn, xn+1) ≤ ψn(d(x0, x1))

for all n ∈ N.
Next, we show that {xn} is a Cauchy sequence in X . Fix ε > 0 and let n(ε) ∈ N such

that
∑
n≥n(ε) ψ

n(d(x0, x1)) < ε. Let n,m ∈ N with m > n > n(ε). By using the triangular
inequality, we obtain that

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

ψk(d(x0, x1))

≤
∑

n≥n(ε)

ψn(d(x0, x1))

< ε.

This shows that {xn} is a Cauchy sequence in (X, d). By the completeness of X , there
exists x∗ ∈ X such that xn → x∗ as n→∞. From the continuity of T , it follows that

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = T
(

lim
n→∞

xn
)

= Tx∗,

that is, x∗ is a fixed point of T . This completes the proof. �

In next theorem, we will replace the continuity hypothesis of T by condition of α-
regularity of metric space X .

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X be an α-ψ-contractive
mapping satisfying the following conditions:

(i) T is weakly α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) X is α-regular, i.e., if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N
and xn → x ∈ X as n→∞, then α(xn, x) ≥ 1 for all n ∈ N.

Then the fixed point problem of T has a solution, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Following the proof of Theorem 2.1, we know that {xn} is a Cauchy sequence in
the complete metric space (X, d). Then, there exists x∗ ∈ X such that xn → x∗ as n→∞.
From (2.2) and (iii), we get

(2.3) α(xn, x
∗) ≥ 1
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for all n ∈ N. By (2.3), α-ψ-contractive condition of T and the triangle inequality, we get

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx
∗)

= d(x∗, xn+1) + d(Txn, Tx
∗)

≤ d(x∗, xn+1) + α(xn, x
∗)d(Txn, Tx

∗)

≤ d(x∗, xn+1) + ψ(d(xn, x
∗))

for all n ∈ N. Letting n→∞ in above inequality, since ψ is continuous at t = 0, we obtain
that d(x∗, Tx∗) = 0, that is, Tx∗ = x∗. Therefore, x∗ is a fixed point of T . This completes
the proof. �

Remark 2.2. From Remark 2.1, Theorem 2.1 and Theorem 2.2 are generalize and comple-
mentary of Theorem 2.1 and Theorem 2.2 of Samet et al. [16].

Next, we give some interesting examples which support our main theorems while re-
sults of Samet et al. [16] are not applicable.

Example 2.2. LetX = [0,∞) with the usual metric d. Define T : X → X and α : X×X →
[0,∞) by

Tx =

 1.9 if x = 1,
2 if x = 2,
x2 if x 6∈ {1, 2},

and

α(x, y) =

{
x+ y if x, y ∈ {1, 2},
0 otherwise .

It is easy to see that T is not an α-admissible mapping. Therefore, main results of Samet et
al. [16] is not applicable here.

Next, we show that Theorem 2.2 can be guarantee the existence of fixed point of T .
First, we can easily to see that T is weakly α-admissible. Clearly T is an α-ψ-contractive
mapping with ψ(t) = t

2 for all t ≥ 0. Moreover, there exists x0 ∈ X such that α(x0, Tx0) ≥
1. Finally, let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x ∈ X as n → ∞. Since α(xn, xn+1) ≥ 1 for all n ∈ N, we get xn ∈ {1, 2} for all
n ∈ N and x ∈ {1, 2}. Then α(xn, x) ≥ 1 for all n ∈ N.

Therefore, all the required hypotheses of Theorem 2.2 are satisfied, and so T has a fixed
point. Here, 0 and 2 are fixed points of T .

We obtain that Theorem 2.1 and 2.2 don’t claim the uniqueness of fixed point. To assure
the uniqueness of the fixed point, we will add the following properties:

(H0) : α(a, b) ≥ 1 for all a, b ∈ X, where a, b are fixed points of T.

Theorem 2.3. Adding condition (H0) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2) we
obtain the uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . From (1.1), we can conclude that
d(x∗, y∗) = 0. So we get uniqueness of the fixed point of T . �

3. GENERALIZED ULAM-HYERS STABILITY, WELL-POSEDNESS AND LIMIT SHADOWING
RESULTS

In 1940, the stability problem for functional equations first initial from a question of
Ulam at the University of Wisconsin in which he discussed a number of important un-
solved problems. In next year, Hyers [7] first give some partial answer of Ulam’s question
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for Banach spaces and then this type of stability is called the Ulam-Hyers stability. This
opened an avenue for further study and development of analysis in this field. Subse-
quently, several mathematicians have been studied and extended Ulam-Hyers stability in
many ways, for example, Bota-Boriceanu and Petruşel [2], Brzdek et al. [3], Cǎdariu and
Radu [4, 5], Rus [11, 12, 13, 14], Tişe-Tişe [18] and references therein. In particular, there
are a number of results studied and extended Ulam-Hyers stability for fixed point prob-
lems such as Bota et al. [1], Kutbi and Sintunavarat [8], Rus and Şerban [15], Sintunavarat
[17]. On the other hand, the notion of well-posedness and limit shadowing property of
a fixed point problem have evoked much interest to many researchers, for example, De
Blassi and Myjak [6], Lahiri and Das [9], Popa [10].

Here, we give the definitions of generalized Ulam-Hyers stability, well-posedness and
limit shadowing property in sense of a fixed point problem.

Definition 3.4. Let (X, d) be a metric space and T : X → X be a mapping. The fixed point
problem

(3.4) Tx = x

is called generalized Ulam-Hyers stable if and only if there exists the function ξ : [0,∞)→
[0,∞) which is increasing, continuous at 0 and ξ(0) = 0 such that for each ε > 0 and for
each w∗ ∈ X which is an ε-solution of the fixed point equation (3.4), i.e. w∗ satisfies the
inequality

(3.5) d(w∗, Tw∗) ≤ ε,
there exists a solution x∗ ∈ X of the equation (3.4) such that

d(x∗, w∗) ≤ ξ(ε).
Remark 3.3. If the function ξ define by ξ(t) = ct for all t ≥ 0, where c > 0, then the fixed
point equation (3.4) is said to be Ulam-Hyers stable.

Definition 3.5 ([6]). Let (X, d) be a metric space and T : X → X be a mapping. The fixed
point problem of T is said to be well-posed if satisfies the following conditions:

• T has a unique fixed point x∗ in X ;
• for any sequence {xn} in X with lim

n→∞
d(xn, Txn) = 0, we have lim

n→∞
d(xn, x

∗) = 0.

Definition 3.6. Let (X, d) be a metric space and T : X → X be a mapping. We say that
the fixed point problem of T has the limit shadowing property in X if for any sequence
{xn} in X satisfying lim

n→∞
d(xn, Txn) = 0, it follows that there exists z ∈ X such that

lim
n→∞

d(Tnz, xn) = 0.

Concerning the generalized Ulam-Hyers stable, well-posedness and limit shadowing
property of the fixed point problem for a self-map of a complete metric space satisfying
the conditions of Theorem 2.3, we have the following results.

Theorem 3.4. Let (X, d) be a complete metric space. Suppose that all the hypotheses of Theorem
2.3 hold and additionally that the function ξ : [0,∞)→ [0,∞) which is define by ξ(t) := t−ψ(t)
is a strictly increasing and onto. Then the following assertions holds:

(a) if α(a, b) ≥ 1 for all a, b which are an ε-solution of the fixed point equation (3.4), then the
fixed point problem of T is generalized Ulam-Hyers stable.

(b) if ψ is continuous function and α(xn, x
∗) ≥ 1 for all n ∈ N, where xn ∈ X with

lim
n→∞

d(xn, Txn) = 0 and x∗ is a fixed point of T , then the fixed point problem of T is
well-posed.
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(c) if ψ is continuous function and α(xn, x
∗) ≥ 1 for all n ∈ N, where xn ∈ X with

lim
n→∞

d(xn, Txn) = 0 and x∗ is a fixed point of T , then the fixed point problem of T has
the limit shadowing property in X .

Proof. From the proof of Theorem 2.3, we obtain that T has a unique fixed point and so let
x∗ is a unique fixed point of T .

From the hypothesis in (a), we claim that the fixed point problem of T is generalized
Ulam-Hyers stable. Let ε > 0 and w∗ ∈ X be a solution of (3.5), i.e,

d(w∗, Tw∗) ≤ ε.
It is obvious that the fixed point x∗ of T satisfies inequality (3.5). From hypothesis in (a),
we get α(x∗, w∗) ≥ 1. Now we have

d(x∗, w∗) = d(Tx∗, w∗)

≤ d(Tx∗, Tw∗) + d(Tw∗, w∗)

≤ α(x∗, w∗)d(Tx∗, Tw∗) + d(Tw∗, w∗)

≤ ψ(d(x∗, w∗)) + ε.

This implies that d(x∗, w∗)− ψ(d(x∗, w∗)) ≤ ε, that is, ξ(d(x∗, w∗)) ≤ ε Therefore,

d(x∗, w∗) ≤ ξ−1(ε).

Since ξ−1 is increasing, continuous at 0 and ξ−1(0) = 0, the fixed point problem of T is
generalized Ulam-Hyers stable.

Next, we prove that the fixed point problem of T is well-posed under the assumption
in (b). Let {xn} be sequence in X such that lim

n→∞
d(xn, Txn) = 0. From assumption, we get

α(xn, x
∗) ≥ 1 for all n ∈ N. Now, we obtain that

d(xn, x
∗) ≤ d(xn, Txn) + d(Txn, Tx

∗)

≤ d(xn, Txn) + α(xn, x
∗)d(Txn, Tx

∗)

≤ d(xn, Txn) + ψ(d(xn, x
∗))

for all n ∈ N. Letting n → ∞ in above inequality, we get lim
n→∞

d(xn, x
∗) = 0 and so the

fixed point problem of T is well-posed.
Finally, we prove that T has a limit shadowing under the assumption (c). Let {xn} be

sequence in X such that lim
n→∞

d(xn, Txn) = 0. Similarly to case (b), we get lim
n→∞

d(xn, x
∗) =

0. Since x∗ is a fixed point of T , we have lim
n→∞

d(xn, T
nx∗) = lim

n→∞
d(xn, x

∗) = 0. Therefore,
T has the limit shadowing property. �
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[15] Rus, I. A. and Şerban, M. A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point

theorem, Carpathian J. Math., 29 (2013), No. 2, 239–258
[16] Samet, B., Vetro, C. and Vetro, P., Fixed-point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75

(2012), 2154–2165
[17] Sintunavarat, W., Generalized Ulam-Hyers stability, well-posedness and limit shadowing of fixed point problems for

α-β-contraction mapping in metric spaces, The Scientific World Journal, Volume 2014 (2014), Article ID 569174,
7 pp.
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