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A generalization of Nadler fixed point theorem

FRANCESCA VETRO

ABSTRACT. Jleli and Samet gave a new generalization of the Banach contraction principle in the setting of
Branciari metric spaces [Jleli, M. and Samet, B., A new generalization of the Banach contraction principle, J. In-
equal. Appl., 2014:38 (2014)]. The purpose of this paper is to study the existence of fixed points for multivalued
mappings, under a similar contractive condition, in the setting of complete metric spaces. Some examples are
provided to illustrate the new theory.

1. INTRODUCTION AND PRELIMINARIES

The following theorem of Nadler [13] was the first successful attempt to combine the
concepts of multivalued and contraction mappings for obtaining an existence result of
fixed point.

Theorem 1.1 ([13]). Let (X, d) be a complete metric space and let T : X → CB(X) be a
multivalued mapping satisfying H(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X , where k is a constant
such that k ∈]0, 1[ and CB(X) denotes the family of nonempty, closed and bounded subsets of X .
Then T has a fixed point, that is, there exists a point u ∈ X such that u ∈ Tu.

It is well-known that multivalued mappings play a crucial role in different branches of
mathematics; in particular, in view of their applications to optimal control problems. As
a matter of fact, optimization has undergone enormous theoretical and practical devel-
opments over the last decades. Thus, this field of research has increased its significance
in mathematical modelling of real processes and phenomena arising in many scientific
disciplines such as physics, biology and economics. Moreover, metric spaces and their
generalizations furnish an useful tool for the study of multivalued mappings and fixed
point theory. Finally, fixed point theorems provide useful tools to solve practical nonlin-
ear problems, expressed as fixed point problems [14, 15, 16, 17, 18, 19]. Consequently,
many generalizations, extensions and applications of Nadler’s theorem have appeared in
the literature, see for instance [1, 3, 4, 5, 6, 7, 8, 9, 12, 20, 21]. In [2], we have a generalization
of Nadler fixed point theorem in the non self case.

Here, we start from looking at the paper of Jleli and Samet [10], who introduced a new
concept of contraction. Then, we establish some results of fixed point for multivalued
mappings, under a new contractive condition, in the setting of complete metric spaces.
Clearly, the presented theorems extend well-known results of the existing literature on
metric spaces. Some examples are provided to illustrate the new theory.

We collect some basic definitions, lemmas and notations, which will be used through-
out the paper. Let R+ denote the set of all nonnegative real numbers and N denote the set
of positive integers. Let (X, d) be a metric space. For A,B ∈ CB(X), define the function
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H : CB(X)× CB(X)→ R+ by

H(A,B) = max{δ(A,B), δ(B,A)},
where

δ(A,B) = sup{d(a,B), a ∈ A}, δ(B,A) = sup{d(b, A), b ∈ B}
Whit

d(a,C) = inf{d(a, x), x ∈ C}.
Note thatH is called the Pompeiu-Hausdorff metric induced by the metric d, see [6]. Also,
we denote by , CL(X) be the family of nonempty and closed subsets of X and K(X) be
the family of nonempty and compact subsets of X .

Remark 1.1. The function H : CL(X) × CL(X) → [0,+∞[ is a generalized Pompeiu-
Hausdorff metric, that is, H(A,B) = +∞ if max{δ(A,B), δ(B,A)} does not exist.

By definition of generalized Pompeiu-Hausdorff metric, one deduces easily the follow-
ing lemma, see also [11].

Lemma 1.1. Let (X, d) be a metric space and A,B ∈ CL(X) with H(A,B) > 0. Then, for each
h > 1 and for each a ∈ A there exists b = b(a) ∈ B such that d(a, b) < hH(A,B).

By the properties of closed sets, one deduces the following lemma.

Lemma 1.2. Let (X, d) be a metric space. For A ∈ CL(X) and x ∈ X , we have

d(x,A) = 0⇐⇒ x ∈ A.

2. FIXED POINT FOR WEAK F -CONTRACTIONS

We study the existence of fixed points for multivalued mappings in a metric setting, by
adapting the ideas in [10]. First, we give the following definitions.

Definition 2.1. We denote by F the family of all functions F :]0,+∞[→]1,+∞[ with the
following properties:

(F1) F is non-decreasing;
(F2) for each sequence {tn} of positive numbers limn→+∞ tn = 0 if and only if

limn→+∞ F (tn) = 1;
(F3) for each sequence {tn} of positive numbers with limn→+∞ tn = 0 there exist α ∈

]0, 1[ and λ ∈]0,+∞] such that limn→+∞
F (tn)−1
(tn)α

= λ.

Example 2.1. Let F :]0,+∞[→]1,+∞[ be defined by F (t) = e
√
t or F (t) = e

√
tet . Clearly,

F satisfies (F1)− (F3).

Definition 2.2. Let (X, d) be a metric space. A multivalued mapping T : X → CL(X) is
called a weak F -contraction if there exist a function F ∈ F and a positive number k ∈]0, 1[
such that

(2.1) F (H(Tx, Ty)) ≤ [F (d(x, y))]k

for all x, y ∈ X with H(Tx, Ty) 6= 0.

Definition 2.3. Let (X, d) be a metric space. A multivalued mapping T : X → CL(X)
is called a generalized weak F -contraction if there exist a function F ∈ F and a positive
number k ∈]0, 1[ such that

F (H(Tx, Ty)) ≤ [F (M(x, y))]k
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for all x, y ∈ X with H(Tx, Ty) 6= 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2
[d(x, Ty) + d(y, Tx)]}.

Remark 2.2. Let (X, d) be a metric space and let T : X → CL(X) be a weak F -contraction.
From (2.1), we obtain

lnF (H(Tx, Ty)) ≤ k ln[F (d(x, y))] < lnF (d(x, y)).

As F is non-decreasing, we deduce

H(Tx, Ty) < d(x, y), for all x, y ∈ X, Tx 6= Ty.

This implies that every weak F -contraction is a nonexpansive multivalued mapping, that
is, H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X .

Example 2.2. Let (X, d) be a metric space and let T : X → CL(X) be a weak F -contraction
with respect to the function F (t) = e

√
t (see Example 2.1). Then

e
√
H(Tx,Ty) ≤

[
e
√
d(x,y)

]k
, for all x, y ∈ X, Tx 6= Ty.

This implies

(2.2) H(Tx, Ty) ≤ k2d(x, y), for all x, y ∈ X.

From (2.2), we get that every Nadler multivalued mapping T : X → CL(X), that is, a
multivalued mapping such that H(Tx, Ty) ≤ k d(x, y) for all x, y ∈ X for some k ∈]0, 1[,
is a weak F -contraction.

Example 2.3. Let (X, d) be a metric space and let T : X → CL(X) be a weak F -contraction
with respect to the function F (t) = e

√
tet . Then

e
√
H(Tx,Ty)eH(Tx,Ty) ≤

[
e
√
d(x,y)ed(x,y)

]k
, for all x, y ∈ X, Tx 6= Ty.

This implies

(2.3)
H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ k2, for all x, y ∈ X, Tx 6= Ty.

First, we give a result of existence of a fixed point for multivalued weak F -contractions
with compact values.

Theorem 2.2. Let (X, d) be a complete metric space and let T : X → K(X) be a weak F -
contraction. Then T has a fixed point.

Proof. Let x0 ∈ X be arbitrary and x1 ∈ Tx0. Clearly, if x0 = x1 or x1 ∈ Tx1, we deduce
that x1 is a fixed point of T and so we can conclude the proof. Now, we assume that
x0 6= x1 and x1 /∈ Tx1 and hence d(x1, Tx1) > 0. Since Tx1 is a compact set there exists
x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1). Now, from (2.1), we deduce

1 < F (d(x1, x2)) = F (d(x1, Tx1))

≤ F (H(Tx0, Tx1)) ≤ [F (d(x0, x1))]
k.
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If x2 ∈ Tx2, we deduce that x2 is a fixed point of T and so we can conclude the proof.
Now, we assume that x2 /∈ Tx2 and hence d(x2, Tx2) > 0. Since Tx2 is a compact set there
exists x3 ∈ Tx2 such that d(x2, x3) = d(x2, Tx2). Next, from (2.1), we deduce

1 < F (d(x2, x3)) = F (d(x2, Tx2))

≤ F (H(Tx1, Tx2)) ≤ [F (d(x1, x2))]
k.

Assume that x3 /∈ Tx3. Iterating this procedure, we construct a sequence {xn} ⊂ X
such that xn /∈ Txn, xn+1 ∈ Txn and

(2.4) 1 < F (d(xn, xn+1)) = F (d(xn, Txn)) ≤ F (H(Txn−1, Txn)) ≤ [F (d(xn−1, xn))]
k.

Now, from (2.4), we get

(2.5) 1 < F (d(xn, xn+1)) ≤ [F (d(x0, x1))]
kn .

This implies
lim

n→+∞
F (d(xn, xn+1)) = 1

and by (F-2) we have
lim

n→+∞
d(xn, xn+1) = 0.

We claim that {xn} is a Cauchy sequence; for this, we use condition (F-3). Let tn =
d(xn, xn+1) for all n ∈ N. From (F-3), there exist α ∈]0, 1[ and λ ∈]0,+∞] such that

lim
n→+∞

F (tn)− 1

(tn)α
= λ.

Let β ∈]0, λ[. From the definition of limit, there exists n0 ∈ N such that

[d(xn, xn+1)]
α = [tn]

α ≤ β−1[F (tn)− 1] = β−1[F (d(xn, xn+1))− 1], for all n > n0.

Using (2.5) and the above inequality, we obtain

(2.6) n[d(xn, xn+1)]
α ≤ β−1n([F (d(x0, x1))]k

n

− 1), for all n > n0.

Letting n→ +∞ in (2.6), we get

lim
n→+∞

n[d(xn, xn+1)]
α = 0.

Thus, there exists n1 ∈ N, n1 ≥ n0, such that

d(xn, xn+1) ≤
1

n1/α
, for all n > n1.

Let m > n > n1. Then

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

1

k1/α

and so {xn} is a Cauchy sequence in X . Hence, there exists z ∈ X such that xn → z, as
n→ +∞.

As T is nonexpansive, we deduce

d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z)

≤ d(z, xn+1) + H(Txn, T z)

≤ d(z, xn+1) + d(xn, z).
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Passing to limit as n→ +∞, we get

d(z, Tz) ≤ 0

which implies d(z, Tz) = 0. Finally, since Tz is closed we obtain that z ∈ Tz, that is, z is a
fixed point of T . �

Proceeding as in the proof of Theorem 2.2, we obtain the following result for multival-
ued mappings that satisfy a F -contractive condition of Ćirić type.

Theorem 2.3. Let (X, d) be a complete metric space and let T : X → K(X) be a generalized
weak F -contraction with respect to a continuous F ∈ F . Then T has a fixed point.

For a result of existence of fixed point for weak F -contraction with closed bounded
values, it is necessary a supplementary condition of regularity for the function F .

Theorem 2.4. Let (X, d) be a complete metric space and let T : X → CB(X). Assume that there
exist a right continuous function F ∈ F and a positive number k ∈]0, 1[ such that

(2.7) F (H(Tx, Ty)) < [F (d(x, y))]k

for all x, y ∈ X with H(Tx, Ty) 6= 0. Then T has a fixed point.

Proof. Let x0 ∈ X be arbitrary and x1 ∈ Tx0. Clearly, if x0 = x1 or x1 ∈ Tx1, we deduce
that x1 is a fixed point of T and so we can conclude the proof. Now, we assume that
x0 6= x1 and x1 /∈ Tx1 and hence d(x1, Tx1) > 0.

Then, from (2.7), we deduce

1 < F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1)) < [F (d(x0, x1))]
k.

Since F is right continuous there exists a number q1 > 1 such that

(2.8) F (q1H(Tx0, Tx1)) ≤ [F (d(x0, x1))]
k.

From
d(x1, Tx1) ≤ H(Tx0, Tx1) < q1H(Tx0, Tx1),

by Lemma 1.1, there exists x2 ∈ Tx1 such that d(x1, x2) ≤ q1H(Tx0, Tx1). Using (F-1)
and (2.8), from this inequality, we obtain

1 < F (d(x1, x2)) ≤ F (q1H(Tx0, Tx1)) ≤ [F (d(x0, x1))]
k.

If x2 ∈ Tx2, we deduce that x2 is a fixed point of T and so we can conclude the proof.
Assume that x2 /∈ Tx2. Since F is right continuous there exists a number q2 > 1 such that

(2.9) F (q2H(Tx1, Tx2)) ≤ [F (d(x1, x2))]
k.

Next, from
d(x2, Tx2) ≤ H(Tx1, Tx2) < q2H(Tx1, Tx2),

by Lemma 1.1, there exists x3 ∈ Tx2 such that d(x2, x3) ≤ q2H(Tx1, Tx2). Using (F-1)
and (2.9), from this inequality, we obtain

1 < F (d(x2, x3)) ≤ F (q2H(Tx1, Tx2)) ≤ [F (d(x1, x2))]
k ≤ [F (d(x0, x1))]

k2 .

Assume that x3 /∈ Tx3. Iterating this procedure, we construct a sequence {xn} ⊂ X
and a sequence {qn} ⊂]1,+∞[ such that xn /∈ Txn, xn+1 ∈ Txn and

1 < F (d(xn, xn+1)) ≤ F (qnH(Txn−1, Txn)) ≤ [F (d(xn−1, xn))]
k, for all n ∈ N.

Then
1 < F (d(xn, xn+1)) ≤ [F (d(x0, x1))]

kn , for all n ∈ N.
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This implies

lim
n→+∞

F (d(xn, xn+1)) = 1

and by (F-2) we have

lim
n→+∞

d(xn, xn+1) = 0.

Proceeding as in the proof of Theorem 2.2, we prove that {xn} is a Cauchy sequence.
Hence, there exists z ∈ X such that xn → z.

As T is nonexpansive, then

d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z)

≤ d(z, xn+1) + H(Txn, T z)

≤ d(z, xn+1) + d(xn, z).

Letting n→ +∞ in the above inequality, we get

d(z, Tz) ≤ 0

which implies d(z, Tz) = 0. Finally, since Tz is closed we obtain that z ∈ Tz, that is, z is a
fixed point of T . �

Proceeding as in the proof of Theorem 2.4, we obtain the following result for multival-
ued mappings that satisfy a F -contractive condition of Ćirić type.

Theorem 2.5. Let (X, d) be a complete metric space and let T : X → CB(X) be a generalized
weak F -contraction with respect to a continuous function F ∈ F such that

F (H(Tx, Ty)) < [F (M(x, y))]k

for all x, y ∈ X with H(Tx, Ty) 6= 0, where k ∈]0, 1[. Then T has a fixed point.

Example 2.4. Let X be the set defined by X = {xn : n ∈ N}, where xn = 2−1n(n+ 1) for
all n ∈ N. Let d : X×X → R be defined by d(x, y) = |x−y| for all x, y ∈ X . Clearly, (X, d)
is a complete metric space. Define the mapping T : X → K(X) by

Tx =

{
{x1} if x = x1,
{x1, . . . , xn−1} if x = xn and n > 1

and let F (t) = e
√
tet ∈ F for all t > 0. We claim that T is a multivalued weak F -contraction

with respect to above function F . At such end we check that (2.3) holds. First, we note
that H(Txm, Txn) > 0 if and only if (n = 1 and m > 2) or (m > n > 1). Then we consider
the two cases.

Case 1. For m > 2 and n = 1, we have

H(Txm, Tx1)

d(xm, x1)
eH(Txm,Tx1)−d(xm,x1)

=
xm−1 − x1
xm − x1

exm−1−xm

=
m2 −m− 2

m2 +m− 2
e−m < e−m < e−1.
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Case 2. For m > n > 1 we have

H(Txm, Txn)

d(xm, xn)
eH(Txm,Txn)−d(xm,xn)

=
xm−1 − xn−1
xm − xn

exm−1−xn−1−xm+xn

=
m+ n− 1

m+ n+ 1
en−m < en−m ≤ e−1.

This shows that (2.3) is satisfied with k = e−1/2. Thus T is a multivalued weak F -
contraction, therefore, all conditions of Theorem 2.2 are satisfied and so T has a fixed
point in X . On the other hand, since

lim
n→+∞

H(Txn, Tx1)

d(xn, x1)
= lim
n→+∞

xn−1 − 1

xn − 1
= 1,

then T is not a Nadler multivalued mapping.
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[15] Nieto, J. J. and Rodrı́guez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applica-

tions to ordinary differential equations, Acta Math. Sin. (English Ser.), 23 (2007), 2205–2212
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