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Common fixed points of multivalued F-contractions on
metric spaces with a directed graph

MUJAHID ABBAS 1,2, MONTHER R. ALFURAIDAN 3 and TALAT NAZIR 4,5

ABSTRACT. In this paper, we establish the existence of common fixed points of multivalued F -contraction
mappings on a metric space endowed with a graph. An example is presented to support the results proved
herein. Our results unify, generalize and complement various known comparable results in the literature.

1. INTRODUCTION AND PRELIMINARIES

Order oriented fixed point theory is studied in an environment created by a class of
partially ordered sets with appropriate mappings satisfying certain order condition like
monotonicity, expansivity or order continuity. Existence of fixed points in partially or-
dered metric spaces was first investigated in 2004 by Ran and Reurings [27], and then by
Nieto and Lopez [25]. Further results in this direction under different contractive condi-
tions were proved in [3, 5, 9, 10].

Jachymski [20] introduced a new approach in metric fixed point theory by replacing
order structure with a graph structure on a metric space. In this way, the results obtained
in ordered metric spaces are generalized (see also [19] and the reference therein); in fact,
Gwodzdz-lukawska and Jachymski [18] developed the Hutchinson-Barnsley theory for
finite families of mappings on a metric space endowed with a directed graph.

Abbas and Nazir [4] obtained some fixed point results for power graphic contraction
pair on a metric space equipped with a graph. Recently, Bojor [16] proved fixed point
results for Reich type contractions on such spaces. For more results in this direction, we
refer to [8, 15, 17, 26] and reference mentioned therein.

The study of fixed points for multivalued contractions and nonexpansive maps using
the Pompeiu-Hausdorff metric was initiated by Markin [23]. Theory of multivalued maps
has rich applications in control theory, convex optimization, differential equations and
economics. Recently, Wardowski [30] introduced a new contraction called F -contraction
and proved a fixed point result as a generalization of the Banach contraction princi-
ple. Abbas et al. [1] obtained common fixed point results introducing the concept of
F -contraction mapping with respect to a self mapping on a metric space. Further in this
direction, Abbas et al. [2] introduced a notion of generalized F -contraction mapping and
employed this concept to obtain a fixed point of a generalized nonexpansive mappings on
star shaped subsets of normed linear spaces. Minak et al. [24] proved some fixed point re-
sults for Ciric type generalized F -contractions on complete metric spaces. Recently, Sgroi
and Vetro [29] obtained some fixed point results for F -contraction multivalued maps in
metric spaces (see also [7]).

The aim of this paper is to prove some common fixed point results for multivalued
generalized graphic F -contraction mappings on a metric space endowed with a graph.
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Our results extend and unify various comparable results in the existing literature ([21],
[22], [28], and [29]).

In the sequel the letters N, R+, R will denote the set of natural numbers, the set of
positive real numbers and the set of real numbers, respectively.

Consistent with Jachymski [19], let (X, d) be a metric space and ∆ denotes the diagonal
of X × X . Let G be a directed graph such that the set V (G) of its vertices coincides with
X and E(G) be the set of edges of the graph which contains all loops, that is, ∆ ⊆ E(G).
Let E∗(G) denotes the set of all edges ofG that are not loops i.e., E∗(G) = E(G)−∆. Also
assume that the graph G has no parallel edges and, thus one can identify G with the pair
(V (G), E(G)).

Definition 1.1. [19] An operator f : X → X is called a Banach G-contraction or simply a
G-contraction if

(a) f preserves edges ofG; for each x, y ∈ X with (x, y) ∈ E(G),we have (f(x), f(y)) ∈
E(G),

(b) f decreases weights of edges of G ; there exists α ∈ (0, 1) such that for all x, y ∈ X
with (x, y) ∈ E(G), we have d(f(x), f(y)) ≤ αd(x, y).

If x and y are vertices of G, then a (directed) path in G from x to y of length k ∈ N
is a finite sequence {xn} ( n ∈ {0, 1, 2, ..., k} ) of vertices such that x0 = x, xk = y and
(xi−1, xi) ∈ E(G) for i ∈ {1, 2, ..., k}.

Notice that a graph G is connected if there is a (directed) path between any two ver-
tices and it is weakly connected if G̃ is connected, where G̃ denotes the undirected graph
obtained from G by ignoring the direction of edges. Denote by G−1 the graph obtained
from G by reversing the direction of edges. Thus,

E
(
G−1

)
= {(x, y) ∈ X ×X : (y, x) ∈ E (G)} .

It is more convenient to treat G̃ as a directed graph for which the set of its edges is sym-
metric, under this convention; we have that

E(G̃) = E(G) ∪ E(G−1).

If G is such that E(G) is symmetric, then for x ∈ V (G), [x]G denotes the equivalence class
of the relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

If f : X → X is an operator. Set

Xf := {x ∈ X : (x, f(x)) ∈ E(G)}.

Jachymski [20] used the following property:
(P) : for any sequence {xn} in X , if xn → x as n → ∞ and (xn, xn+1) ∈ E(G), then

(xn, x) ∈ E(G).

Theorem 1.1. [20] Let (X, d) be a complete metric space and let G be a directed graph such that
V (G) = X . Let E(G) and the triplet (X, d,G) has property (P) and f : X → X aG-contraction.
Then the following statements hold:

(1) f has a fixed point if and only if Xf 6= ∅;
(2) if Xf 6= ∅ and G is weakly connected, then f is a Picard operator;
(3) for any x ∈ Xf , f |[x]G̃ is a Picard operator;
(4) if Xf ⊆ E(G), then f is a weakly Picard operator.
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For detailed discussion on Picard operators, we refer to Berinde [13, 11, 12, 14].
Let z be the collection of all mappings F : R+ → R that satisfy the following condi-

tions:
(F1) F is strictly increasing, that is, for all α, β ∈ R+ such that α < β implies that

F (α) < F (β).
(F2) For every sequence {αn} of positive real numbers, lim

n→∞
αn = 0 and lim

n→∞
F (αn) =

−∞ are equivalent.
(F3) There exists h ∈ (0, 1) such that lim

α→0+
αhF (α) = 0.

Latif and Beg [22] introduced a notion of K-multivalued mapping as an extension of
Kannan mapping to multivalued mappings. Rus [28] coined the term R-multivalued
mapping which is a generalization of a K-multivalued mapping. Abbas and Rhoades [6]
introduced the notion of a generalizedR-multivalued mappings, which in turn generalize
R-multivalued mappings, and obtained common fixed point results for such mappings.
Let (X, d) be a metric space. Denote by P (X) the family of all nonempty subsets of X , by
Pcl (X) the family of all nonempty closed subset of X .
A point x in X is a fixed point of a multivalued mapping T : X → P (X) iff x ∈ Tx. The
set of all fixed points of multivalued mapping T is denoted by Fix(T ).

Suppose that T1, T2 : X → Pcl (X) . Set

XT1,T2 := {x ∈ X : (x, ux) ∈ E(G) where ux ∈ T1(x) ∩ T2(x)}.
Now we give the following definition:

Definition 1.2. Let T1, T2 : X → Pcl(X) be two multivalued mappings. Suppose that for
every vertex x in G and for every ux ∈ Ti (x) , i ∈ {1, 2} we have (x, ux) ∈ E(G). A pair
(T1, T2) is said to form:

(I). a graphic F1-contraction if for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x),
there exists uy ∈ Tj(y) for i, j ∈ {1, 2}with i 6= j such that (ux, uy) ∈ E∗ (G) and

(1.1) τ + F (d(ux, uy)) ≤ F (M1(x, y;ux, uy)),

hold, where τ is a positive real number and

M1(x, y;ux, uy) = max

{
d(x, y), d(x, ux), d(y, uy),

d (x, uy) + d (y, ux)

2

}
.

(II). a graphic F2-contraction if for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x),
there exists uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and
we have

(1.2) τ + F (d(ux, uy)) ≤ F (M2(x, y;ux, uy)),

where τ is a positive real number and

M2(x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d (x, uy) + δ2d (y, ux) ,

and α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.

Note that for different choices of mappings F, one obtains different contractivity con-
ditions.

Recall that, a map T : X → Pcl (X) is said to be upper semicontinuous, if for xn ∈ X
and yn ∈ Txn with xn → x0 and yn → y0, implies y0 ∈ Tx0.

A clique in an undirected graph G = (V,E) is a subset of the vertex set W ⊂ V ,
such that for every two vertices in W , there exists an edge connecting the two. This is
equivalent to saying that the subgraph induced by W is complete i.e., for every x, y ∈
W (G), we have (x, y) ∈ E(G).
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2. COMMON FIXED POINT RESULTS

In this section, we obtain several common fixed point results for two multivalued map-
pings on a metric space endowed with a directed graph. We start with the following
result.

Theorem 2.2. Let (X, d) be a complete metric space endowed with a directed graph G such that
V (G) = X and E(G) ⊇ ∆. If mappings T1, T2 : X → Pcl(X) form a graphic F1-contraction
pair, then following statement hold:

(i) Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii) XT1,T2

6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii) If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅ provided that

either (a) either T1 or T2 is upper semicontinuous, or (b) F is continuous, either T1 or T2
is bounded and G has property (P).

(iv) Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a singleton.

Proof. To prove (i), let x∗ ∈ T1(x∗).Assume x∗ /∈ T2 (x∗), then since (T1, T2) form a graphic
F1-contraction pair, there exists an x ∈ T2 (x∗) with (x∗, x) ∈ E∗ (G) such that

τ + F (d(x∗, x)) ≤ F (M1(x∗, x∗;x∗, x)),

where

M1(x∗, x∗;x∗, x) = max

{
d(x∗, x∗), d(x∗, x∗), d(x, x∗),

d(x∗, x) + d(x∗, x∗)

2

}
= d(x, x∗).

Thus we have
τ + F (d(x∗, x)) ≤ F (d(x∗, x)),

a contradiction as τ > 0. Hence x∗ ∈ T2 (x∗) and so Fix(T1) ⊆ Fix(T2). Similarly,
Fix(T2) ⊆ Fix(T1) and therefore Fix(T1) = Fix(T2). Also, if x∗ ∈ T2(x∗), then we
have x∗ ∈ T1(x∗). The converse is straightforward.

To prove (ii), let Fix (T1) ∩ Fix (T2) 6= ∅. Then there exists x ∈ X such that x ∈ T1(x) ∩
T2(x). As ∆ ⊆ E(G), we conclude that XT1,T2

6= ∅.

To prove (iii), Suppose that x0 is an arbitrary point of X. If x0 ∈ T1 (x0) or x0 ∈ T2 (x0),
then the proof is finished. So we assume that x0 /∈ Ti (x0) for i ∈ {1, 2}. Now for
i, j ∈ {1, 2} with i 6= j, if x1 ∈ Ti(x0), then there exists x2 ∈ Tj(x1) with (x1, x2) ∈ E∗(G)
such that

τ + F (d(x1, x2)) ≤ F (M1(x0, x1;x1, x2)),

where

M1(x0, x1;x1, x2) = max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x2) + d(x1, x1)

2

}
= max

{
d(x0, x1), d(x1, x2),

d(x0, x2)

2

}
= max{d(x0, x1), d(x1, x2)}.

If M1(x0, x1;x1, x2) = d(x1, x2), then

τ + F (d(x1, x2)) ≤ F (d(x1, x2)),

gives a contradiction as τ > 0. Therefore M1(x0, x1;x1, x2) = d(x0, x1) and we have

τ + F (d(x1, x2)) ≤ F (d(x0, x1)) .
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Similarly, for the point x2 in Tj (x1) , there exists x3 ∈ Ti(x2) with (x2, x3) ∈ E∗ (G) such
that

τ + F (d(x2, x3)) ≤ F (M1(x1, x2;x2, x3)),

where

M1(x1, x2;x2, x3) = max

{
d(x1, x2), d(x1, x2), d(x2, x3),

d(x1, x3) + d(x2, x2)

2

}
= max{d(x1, x2), d(x2, x3)}.

In case M1(x1, x2;x2, x3) = d(x2, x3), then

τ + F (d(x2, x3)) ≤ F (d(x2, x3)),

gives a contradiction as τ > 0. Therefore M1(x1, x2;x2, x3) = d(x1, x2) and we have

τ + F (d(x2, x3)) ≤ F (d(x1, x2)) .

Continuing this way, for x2n ∈ Tj(x2n−1), there exist x2n+1 ∈ Ti (x2n) with (x2n, x2n+1) ∈
E∗ (G) such that

τ + F (d(x2n, x2n+1)) ≤ F (M1(x2n−1, x2n;x2n, x2n+1)) ,

that is,
τ + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

In a similar manner, for x2n+1 ∈ Tj(x2n), there exist x2n+2 ∈ Ti (x2n+1) such that for
(x2n+1, x2n+2) ∈ E∗ (G) implies

τ + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1)) .

Hence, we obtain a sequence {xn} in X such that for xn ∈ Tj(xn−1), there exist xn+1 ∈
Ti (xn) with (xn, xn+1) ∈ E∗ (G) and it satisfies

τ + F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) .

Therefore

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ ≤ F (d(xn−2, xn−1))− 2τ

≤ ... ≤ F (d(x0, x1))− nτ.(2.3)

From (2.3), we obtain lim
n→∞

F (d(xn, xn+1)) = −∞ that together with (F2) gives

lim
n→∞

d(xn, xn+1) = 0.

Now by (F3), there exists h ∈ (0, 1) such that

lim
n→∞

[d(xn, xn+1)]hF (d(xn, xn+1)) = 0.

From (2.3) we have

[d(xn, xn+1)]hF (d(xn, xn+1))− [d(xn, xn+1)]hF (d(x0, xn+1))

≤ −nτ [d(xn, xn+1)]h ≤ 0.

On taking limit as n→∞we obtain

lim
n→∞

n[d(xn, xn+1)]h = 0.

Hence lim
n→∞

n
1
h d(xn, xn+1) = 0 and there exists n1 ∈ N such that n

1
h d(xn, xn+1) ≤ 1 for all

n ≥ n1. So we have

d(xn, xn+1) ≤ 1

n1/h
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for all n ≥ n1. Now consider m,n ∈ N such that m > n ≥ n1, we have

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ...+ d (xm−1, xm)

≤
∞∑
i=n

1

i1/h
.

By the convergence of the series
∑∞
i=1

1
i1/h

, we get d (xn, xm)→ 0 as n,m→∞. Therefore
{xn} is a Cauchy sequence in X. Since X is complete, there exists an element x∗ ∈ X such
that xn → x∗ as n→∞.

Now, if Ti is upper semicontinuous, then as x2n ∈ X, x2n+1 ∈ Ti (x2n) with x2n → x∗ and
x2n+1 → x∗ as n → ∞ implies that x∗ ∈ Ti (x∗) . Using (i), we get x∗ ∈ Ti (x∗) = Tj (x∗) .
Similarly the result hold when Tj is upper semicontinuous.

Suppose that F is continuous. Since x2n converges to x∗ as n → ∞ and (x2n, x2n+1) ∈
E (G) , we have (x2n, x

∗) ∈ E (G) . For x2n ∈ Tj (x2n−1) , there exists un ∈ Ti (x∗) such
that (x2n, un) ∈ E∗ (G) . As {un} is bounded, lim sup

n→∞
un = u∗, and lim inf

n→∞
un = u∗ both

exist. Assume that u∗ 6= x∗. Since (T1, T2) form a graphic F1-contraction,

τ + F (d(x2n, un)) ≤ F (M1(x2n−1, x
∗;x2n, un)),

where

M1(x2n−1, x
∗;x2n, un) = max

{
d(x2n−1, x

∗), d(x2n−1, x2n), d(x∗, un),

d(x2n−1, un) + d(x∗, x2n)

2

}
.

On taking lim sup implies

τ + F (d(x∗, u∗)) ≤ F (d(x∗, u∗)),

a contradiction. Hence u∗ = x∗. Similarly, taking the lim inf gives u∗ = x∗. Since un ∈
Ti (x∗) for all n ≥ 1 and Ti (x∗) is a closed set, it follows that x∗ ∈ Ti (x∗) . Now from (i),
we get x∗ ∈ Ti(x∗) and hence Fix(T1) = Fix(T2).

Finally to prove (iv), suppose the set Fix (T1) ∩ Fix (T2) is a clique of G̃. We are to show
that Fix (T1) ∩ Fix (T2) is singleton. Assume on contrary that there exist u and v such
that u, v ∈ Fix (T1) ∩ Fix (T2) but u 6= v. As (u, v) ∈ E∗(G) and (T1, T2) form a graphic
F1-contraction, so for (ux, vy) ∈ E∗ (G) implies

τ + F (d(u, v)) ≤ F (M1(u, v;u, v))

= F

({
max{d(u, v), d(u, u), d(v, v),

d (u, v) + d (v, u)

2

})
= F (d (u, v)) ,

a contradiction as τ > 0. Hence u = v. Conversely, if Fix(T1) ∩ Fix(T2) is singleton, then
it follows that Fix(T1) ∩ Fix(T2) is a clique of G̃.

�

Example 2.1. Let X = {xn = n(n+1)
2 : n ∈ N} = V (G),

E (G) = {(x, y) : x ≤ y where x, y ∈ V (G)} and
E∗ (G) = {(x, y) : x < y where x, y ∈ V (G)}.
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Let V (G) be endowed with usual metric. Define T1, T2 : X → Pcl(X) as follows:

T1 (x) = {x1} for x ∈ X, and

T2 (x) =

{
{x1} , x = x1
{x1, xn−1} , x = xn, for n > 1.

Take F (α) = lnα + α, α > 0 and τ = 1. For (ux, uy) ∈ E∗ (G) , we consider the
following cases:

(1) If x = x1, y = xm, for m > 1, then for ux = x1 ∈ T1 (x) , there exists uy = xm−1 ∈
T2 (y) , such that

d(ux, uy)ed(ux,uy)−M(x,y;ux,uy) ≤ d(ux, uy)ed(ux,uy)−d(x,y)

=
m2 −m− 2

2
e−m

<
m2 +m− 2

2
e−1

= e−1d (x, y)

≤ e−1M1 (x, y;ux, uy) .

(2) If x = xn, y = xn+1 with n > 1, then for ux = x1 ∈ T1 (x) , there exists uy = xn−1 ∈
T2 (y) , such that

d(ux, uy)ed(ux,uy)−M(x,y;ux,uy) ≤ d(ux, uy)ed(ux,uy)−[
d(x,uy)+d(y,ux)

2 ]

=
n2 − n− 2

2
e

−3n−2
2

<
n2 + 4n

2
e−1

= e−1
[
d (x, uy) + d (y, ux)

2

]
≤ e−1M1 (x, y;ux, uy) .

(3) When x = xn, y = xm with m > n > 1, then for ux = x1 ∈ T1 (x) , there exists
uy = xn−1 ∈ T2 (y) , such that

d(ux, uy)ed(ux,uy)−M(x,y;ux,uy) ≤ d(ux, uy)ed(ux,uy)−d(x,ux)

=
n2 − n− 2

2
e−n

<
n2 + n− 2

2
e−1

= e−1d (x, ux)

≤ e−1M1 (x, y;ux, uy) .

Now we show that for x, y ∈ X , ux ∈ T2 (x); there exists uy ∈ T1 (y) such that (ux, uy) ∈
E∗ (G) and (1.1) is satisfied. For this, we consider the following cases:
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(1) If x = xn, y = x1 with n > 1, we have for ux = xn−1 ∈ T2 (x) , there exists
uy = x1 ∈ T1 (y) , such that

d(ux, uy)ed(ux,uy)−M(x,y;ux,uy) ≤ d(ux, uy)ed(ux,uy)−d(x,y)

=
n2 − n− 2

2
e−n

<
n2 + n− 2

2
e−1

= e−1d (x, y)

≤ e−1M1 (x, y;ux, uy) .

(2) In case x = xn, y = xm with m > n > 1, then for ux = xn−1 ∈ T2 (x) , there exists
uy = x1 ∈ T2 (y) , such that

d(ux, uy)ed(ux,uy)−M(x,y;ux,uy) ≤ d(ux, uy)ed(ux,uy)−d(y,uy)

=
n2 − n− 2

2
en

2−n−m2−m

<
m2 +m− 2

2
e−1

= e−1d (y, uy)

≤ e−1M1 (x, y;ux, uy) .

Thus for all x, y in V (G), (1.1) is satisfied. Hence all the conditions of Theorem 2.1
are satisfied. Moreover, x1 = 1 is the common fixed point of T1 and T2 with Fix(T1) =
Fix(T2).

The following results generalizes Theorem 3.4 in [28].

Theorem 2.3. Let (X, d) be a complete metric space endowed with a directed graph G such that
V (G) = X and E(G) ⊇ ∆. If T1, T2 : X → Pcl(X) form a graphic F2-contraction pair, then
following statements hold:

(i) Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii) XT1,T2

6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii) If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅ provided that

either (a) either T1 or T2 is upper semicontinuous, or (b) F is continuous, either T1 or T2
is bounded and G has property (P).

(iv) Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a singleton.

Proof. To prove (i), let x∗ ∈ T1(x∗).Assume x∗ /∈ T2 (x∗), then since (T1, T2) form a graphic
F2-contraction pair, there exists an x ∈ T2 (x∗) with (x∗, x) ∈ E∗ (G) such that

τ + F (d(x∗, x)) ≤ F (M2(x∗, x∗;x∗, x)),

where

M2(x∗, x∗;x∗, x) = αd(x∗, x∗) + βd(x∗, x∗) + γd(x, x∗) + δ1d(x∗, x) + δ2d(x∗, x∗)

= (γ + δ1)d(x, x∗),

Thus we have

τ + F (d(x∗, x)) ≤ F ((γ + δ1)d(x∗, x))

≤ F (d(x∗, x)),

a contradiction as τ > 0. Hence x∗ ∈ T2 (x∗) and so Fix(T1) ⊆ Fix(T2). Similarly,
Fix(T2) ⊆ Fix(T1) and therefore Fix(T1) = Fix(T2). Also, if x∗ ∈ T2(x∗), then we
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have x∗ ∈ T1(x∗). The converse is straightforward.
To prove (ii), let Fix (T1) ∩ Fix (T2) 6= ∅. Then there exists x ∈ X such that x ∈ T1(x) ∩
T2(x). Since ∆ ⊆ E(G), we conclude that XT1,T2

6= ∅.

To prove (iii), suppose that x0 is an arbitrary point of X. For i, j ∈ {1, 2}, with i 6= j,
take x1 ∈ Ti(x0), there exists x2 ∈ Tj(x1) with (x1, x2) ∈ E∗ (G) such that

τ + F (d(x1, x2)) ≤ F (M2(x0, x1;x1, x2)),

where

M2(x0, x1;x1, x2) = αd(x0, x1) + βd(x0, x1) + γd(x1, x2)

+δ1d(x0, x2) + δ2d(x1, x1)

≤ (α+ β + δ1)d(x0, x1) + (γ + δ1)d(x1, x2).

If d(x0, x1) ≤ d(x1, x2), then we have

τ + F (d(x1, x2)) ≤ F ((α+ β + γ + 2δ1)d(x1, x2))

≤ F (d(x1, x2)),

gives a contradiction as τ > 0. Therefore

τ + F (d(x1, x2)) ≤ F (d(x0, x1)) .

Continuing this process, for x2n ∈ Tj(x2n−1), there exists x2n+1 ∈ Ti (x2n) such that for
(x2n, x2n+1) ∈ E∗ (G), we have

τ + F (d(x2n, x2n+1)) ≤ F (M2(x2n−1, x2n;x2n, x2n+1)) ,

where

M2(x2n−1, x2n;x2n, x2n+1) = αd(x2n−1, x2n) + βd(x2n−1, x2n) + γd(x2n, x2n+1)

+δ1d(x2n−1, x2n+1) + δ2d(x2n, x2n)

≤ (α+ β + δ1)d(x2n−1, x2n) + (γ + δ1)d(x2n, x2n+1).

If d(x2n−1, x2n) ≤ d(x2n, x2n+1), then

τ + F (d(x2n, x2n+1)) ≤ F ((α+ β + γ + 2δ1)d(x2n, x2n+1))

≤ F (d(x2n, x2n+1)) ,

gives a contradiction as τ > 0. Therefore

τ + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

In a similar way, for x2n+1 ∈ Tj(x2n), there exists x2n+2 ∈ Ti (x2n+1) with (x2n+1, x2n+2) ∈
E∗ (G) such that

τ + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1)) .

Hence, we obtain a sequence {xn} in X such that for xn ∈ Tj(xn−1), there exists xn+1 ∈
Ti (xn) with (xn, xn+1) ∈ E∗ (G) such that

τ + F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) .

Therefore

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ ≤ F (d(xn−2, xn−1))− 2τ

≤ ... ≤ F (d(x0, x1))− nτ.
Thus, lim

n→∞
F (d(xn, xn+1)) = −∞ together with (F2) gives lim

n→∞
d(xn, xn+1) = 0. Follo-

wing arguments similar to those in proof of Theorem 2.1, {xn} is a Cauchy sequence in
X. Since X is complete, there exists an element x∗ ∈ X such that xn → x∗ as n→∞.
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Now, if Ti is upper semicontinuous, then as x2n ∈ X, x2n+1 ∈ Ti (x2n) with x2n → x∗ and
x2n+1 → x∗ as n → ∞ implies that x∗ ∈ Ti (x∗) . Using (i), we get x∗ ∈ Ti (x∗) = Tj (x∗) .
Similarly the result hold when Tj is upper semicontinuous.

Suppose that F is continuous. Since x2n converges to x∗ as n → ∞ and (x2n, x2n+1) ∈
E (G) , we have (x2n, x

∗) ∈ E (G) . For x2n ∈ Tj (x2n−1) , there exists un ∈ Ti (x∗) such
that (x2n, un) ∈ E∗ (G) . As {un} is bounded, lim sup

n→∞
un = u∗, and lim inf

n→∞
un = u∗ both

exist. Assume that u∗ 6= x∗. Since (T1, T2) form a graphic F2−contraction,

τ + F (d(x2n, un)) ≤ F (M2(x2n−1, x
∗;x2n, un)),

where

M2(x2n−1, x
∗;x2n, un) = αd(x2n−1, x

∗) + βd(x2n−1, x2n) + γd(x∗, un)

+δ1d(x2n−1, un) + δ2d(x∗, x2n).

On taking lim sup implies

τ + F (d(x∗, u∗)) ≤ F ((γ + δ1)d(x∗, u∗))

≤ F (d(x∗, u∗)),

a contradiction. Hence u∗ = x∗. Similarly, taking the lim inf gives u∗ = x∗. Since un ∈
Ti (x∗) for all n ≥ 1 and Ti (x∗) is a closed set, it follows that x∗ ∈ Ti (x∗) . Now from (i),
we get x∗ ∈ Ti(x∗) and hence Fix(T1) = Fix(T2).

Finally to prove (iv), suppose the set Fix (T1) ∩ Fix (T2) is a clique of G̃. We are to show
that Fix (T1) ∩ Fix (T2) is singleton. Assume on contrary that there exist u and v such
that u, v ∈ Fix (T1) ∩ Fix (T2) but u 6= v. As (u, v) ∈ E∗(G) and (T1, T2) form a graphic
F2-contraction, so for (ux, vy) ∈ E∗ (G), we have

τ + F (d(u, v)) ≤ F (M2(u, v;u, v))

= F (αd(u, v) + βd(u, u) + γd(v, v) + δ1d (u, v) + δ2d (v, u)})
= F ((α+ δ1 + δ2)d (u, v))

≤ F (d (u, v)) ,

a contradiction as τ > 0. Hence u = v. Conversely, if Fix(T1) ∩ Fix(T2) is singleton, then
it follows that Fix(T1) ∩ Fix(T2) is a clique of G̃. �

Remark 2.1. Let (X, d) be a complete metric space endowed with a directed graph G. If
we replace (1.2) by either of the following three conditions:

(2.4) τ + F (d(ux, uy)) ≤ F (αd(x, y) + βd(x, ux) + γd(y, uy)),

where α, β, γ ≥ 0 and α+ β + γ ≤ 1, or

(2.5) τ + F (d(ux, uy)) ≤ F (h[d(x, ux) + d(y, uy)]),

where h ∈ [0, 12 ], or

(2.6) τ + F (d(ux, uy)) ≤ F (d(x, y)).

Then the conclusions obtained in Theorem 2.2 remain true.

Remark 2.2. (1) If E(G) := X × X , then clearly G is connected and our Theorem
2.1 improves and generalizes (i) Theorem 1.9 in [6], (ii) Theorem 4.1 in [22], (iii)
Theorem 3.4 of [28], and (iv) Theorem 3.1 of [29].
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(2) If E(G) := X × X , then Theorem 2.3 improves and extends Theorem 3.4 in [28],
and Theorem 3.4 in [29].

(3) If E(G) := X × X , then our Remark 2.4 extends and generalizes (i) Theorem 3.4
in [28] and (ii) Theorem 4.1 of [22].

(4) If E(G) := X ×X , then our Remark 2.4 improves and generalizes Theorem 4.1 in
[22].

(5) If we take T1 = T2 in graphic F1-contraction pair and graphic
F2-contraction pair, then we obtain the fixed point results for graphicF1-contraction
and graphic F2-contraction of a single map.
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