
CARPATHIAN J. MATH.
32 (2016), No. 1, 37 - 47

Online version at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

On contour representation of two dimensional patterns

I. T. BANU-DEMERGIAN and G. STEFANESCU

ABSTRACT. Two-dimensional patterns are used in many research areas in computer science, ranging from
image processing to specification and verification of complex software systems (via scenarios). The contribution
of this paper is twofold. First, we present the basis of a new formal representation of two-dimensional patterns
based on contours and their compositions. Then, we present efficient algorithms to verify correctness of the
contour-representation. Finally, we briefly discuss possible applications, in particular using them as a basic
instrument in developing software tools for handling two dimensional words.

1. INTRODUCTION

The study of two-dimensional shapes is of wide interest. Applicability in pattern recog-
nition, image processing, computer graphics and, more recently, in interactive computa-
tion demonstrates the need of a compact and steady model to handle two-dimensional
objects. Contours-based representations are often used as they fit efficiency and simplicity
requirements. Among them, chain-codes allow compression, without losing any informa-
tion. The general idea is to encode the border of an image by a list of line-segments char-
acterized by length and direction. The first chain-code representation is due to Freeman,
1961 [7]. It describes a curve by linking adjacent points by one of eight possible moves,
corresponding to an i ∗ 45◦ angle, i = 0..7. Others encoding schemes, based on Freeman
codification, have been proposed in [14, 13, 4]. Kaneko and Okudaira [13] obtained a
high compression rate in coding geographic maps, using the property that a curve with
gentle curvature is divided into long curve segments, each of which being represented
by a sequence of two adjacent chain codes. E. Biribiesca [4] presented a formal language
approach, specifying some algebraic properties of chain codes representing 3D curves.

We propose a chain code based on four directions, over rectangular grids. Each line
segment in the boundary of a two-dimensional image is identified with a letter in the set
{u, d, r, l} (u stands for “up”, d for “down”, r for “right”, and l for “left”), followed by a
number, denoting its length. Roughly speaking, a contour is a closed line formed by a list
of connecting segments, starting at a particular point, surrounding a finite internal area;
a contour is associated to a bi-dimensional shape by a left-handed traversal. A general
2-dimensional word is specified by filling the area delimited by a contour with letters form
a given alphabet.

For (1-dimensional) words, a powerful representation is provided by finite automata,
regular expressions, and Kleene algebras. The connection between Kleene algebras and
finite automata [5] is well known and it provides a rich support for many others semantic
models of computation, including models of parallel systems as: tile systems [9], Petri
nets [8], timed automata [1], etc. A formalism for interactive parallel computation rv-
IS (register-voice interactive systems) and a core programming language Agapia have

Received: 18.12.2013. In revised form: 10.12.2014. Accepted: 17.12.2014
2010 Mathematics Subject Classification. 68Q10, 68Q45, 68R01.
Key words and phrases. Regular expressions, two-dimensional patterns, contours, structured interactive program-

ming, formal methods.
Corresponding author: I. T. Banu-Demergian; th iulia84@yahoo.com

37

38 I. T. Banu-Demergian and G. Stefanescu

been recently introduced in [16, 6]. They are based on finite interactive systems, a 2-
dimensional version of finite automata. Using register machines and space-time dual-
ity, the formalism responds to the growing need of programming and reasoning about
interactive systems. Its semantics is given in terms of scenarios, built up on top of 2-
dimensional words.

The set of contours is enriched with a collection of composition operators. The ob-
tained formalism allows defining a new type of regular expressions over 2-dimensional
words n2RE [2], similar to 1-dimensional Kleene formalism. Many interesting open prob-
lems naturally occurs in this new formalism n2RE. Here, we are dealing with the formal
representation of contours and efficient algorithms for contour representation correctness.

The contribution of this paper is twofold. First, we describe a formal representation of
two-dimensional patterns based on contours and their compositions. Then, we present
efficient algorithms to verify correctness of the contour-representation.

2. ARBITRARY SHAPES IN THE 2-DIMENSIONAL PLANE

2.1. Contours. A (pointed) contour is a closed, non-overlapping line on a rectangular grid,
Z × Z, with a chosen start point, surrounding a finite internal area. Each of its segments
will be represented using a letter from the set {u, d, r, l} (u stands for “up”, d for “down”,
r for “right”, and l for “left”), followed by a number denoting its length. A few examples
of contours are shown in Fig. 1.

A contour encloses disjoint interior components, linked via empty shapes as rrudll; the
(sub)contours surrounding empty shapes and travelling into the internal area are named
tunnels, while those in external areas are called bridges. A clockwise traversal determines
the 2-dimensional area associated to a contour. The area on the east side of a u move is
internal, while the one on the west is external. Similar conventions hold for r, d and l.
Multiple surrounding of the same zone as well as infinite internal areas are forbidden.

Two contours are equivalent iff they enclose the same internal area, modulo transla-
tions. For instance, a different placement of the start point determines an equivalent
circularly shifted representation. Two equivalent contours are rrdddllurulldrdlluuurr
(shortly written as r2d3l2urul2drdl2u3r2) and d2l2urul2drdl2u3r4d - they are presented
in Fig. 1(a),(b).

(a) (b) (c)
FIGURE 1. Contours

By filling the interior area of a contour with letters from a given alphabet one gets a
general 2-dimensional word.

In preparation for the forthcoming formal definition of a contour, some more notations
are needed.

Line segments: For a vertical line segment l = ((x, y), (x, y + 1)) (simply denoted as
l = (x, y + 0.5)), we denote by lkC a predicate which is true if and only if the difference
between the ”up” and ”down” arrows of C passing over l is k; notice that k ∈ Z. A similar
notation is used for horizontal line segments l = ((x, y), (x+ 1, y)).

On contour representation of two dimensional patterns 39

Cells: For a cell {(x, y), (x+1, y), (x+1, y+1), (x, y+1)}, represented by its center point
c = (x+ 0.5, y + 0.5), we denote by ckC,w a predicate which is true if and only if lkC is true,
where l is the first line covered by C and situated on the west side of c; in this counting
bridges and tunnels (lines having equal up/down passings) are skipped. Formally, let

z = max{w ∈ Z : w ≤ x and (l = (w, y + 0.5) is such that lkC is true for a k 6= 0)};
then ckC,w = lzkC , where lz = (z, y + 0.5).

Internal points: A cell c is internal from a west perspective if ckC,w is true for a k > 0,
meaning there are more u than d passings of the first line segment found towards the
west, ignoring bridges and tunnels. The notations ckC,e, ckC,n, and ckC,s are similarly used
to define internal cells from the other perspectives, i.e., examining respectively the est, the
north, and the south neighbourhood. The set of cells which are internal to a contour C
from all directions is denoted by Int(C).

External points: A cell is external from a west perspective if, going towards west, there
is no segment with unbalanced u/d moves travelled by C or there is a first line segment
with unbalanced u/d passings via C and having more d than u moves. Formally, for all
k, either ckC,w is false or ckC,w is true for a k < 0. Out(C) denotes the set of cells which are
external from all directions.

A contour is well-defined if the set of interior cells Int(C) is finite and the intersection
Int(C) ∩Out(C) is empty. The precise definition is described below.

Definition 2.1. (a) A string over {u, d, l, r} represents a valid contour if it describes a closed
line and any cell is either internal from all directions or external from all directions; more-
over, for all internal cells C, all ckC,w, c

k
C,n are satisfied with k = 1 and all ckC,e, c

k
C,s are

satisfied with k = −1.
(b) Two contours C1 and C2 are considered equivalent if and only if Int(C1) = Int(C2).

In order to avoid overlapping, each internal cell is surrounded only once. For instance
rdlurdlu in not a valid contour, while rdlu is. This shows why in the above definition |k|
is restricted to be 1.

When deciding if a string represents a valid contour, it is useful to have a set of criteria
dealing with contour segments, not with the cells. Indeed, inspecting all cells in the grid
can be algorithmically inefficient. The equivalent definition in Prop. 2.1 below will be used
by the next section algorithms to check if a contour is well defined. Finiteness of Int(C) is
equivalent to conditions 2.1 and 2.2. Conditions 2.3 and 2.4 ensure that Int(C) ∩ Out(C)
is empty.

Proposition 2.1. Let lv (resp. lh) denote vertical (resp. horizontal) line segments of a string
C ∈ {u, d, r, l}∗ enriched with a start point. Then, C represents a valid contour if and only if the
following conditions are satisfied:

(closed line):

(2.1)
∑
lhk

C

k = 0 and
∑
lvk

C

k = 0

(closed shape):

∀x : let yx = min{y ∈ Z : ∃l = (x+ 0.5, y) such as lkC is satisfied for a k 6= 0};

if yx 6= nill then the corresponding lkC is true for a k < 0.
(2.2)

(no repetitions):

(2.3) ∀l : if (l = (x, y + 0.5) or l = (x+ 0.5, y)) and lkC is true for a k 6= 0, then k ∈ {1,−1}.

40 I. T. Banu-Demergian and G. Stefanescu

(alternation in-out):
for any pair l1 = (x+ 0.5, y1), l2 = (x+ 0.5, y2) of consecutive horizontal borders

(that is, ∀l = (x+ 0.5, y) : if y1 < y < y2, then (lkC true ⇒ (k = 0)))

we have: if(l1)k1

C and (l2)
k2

C are true, then k1 + k2 = 0.

(2.4)

Comments: Condition 2.1 says the number of left moves equals the number of right
moves; and similarly for the vertical direction.

By 2.2, the horizontal line segment with the lowest y coordinate (a line segment situ-
ated to the extreme south border) must be oriented left to right. This condition ensures
the internal area be finite. For instance drul is not a valid representation, violating this
condition. Equivalent presentations of this condition may be introduced using the other
directions.

Condition 2.3 has easy intuitive meaning: a contour has no repeated parsing on the
borders of a non-empty internal area.

Finally, 2.4 says a contour has no self-intersection, except for tangential contact of dis-
joint areas, namely tunnels. Horizontal segments with unequal r/l passing, situated at
the same x coordinate, must alternate r/l directions (i.e., the difference r− l is a sequence
−1, 1,−1, . . . or 1,−1, 1, . . .). This ensures each cell belongs either to Int(C) or to Out(C).

In Fig. 2 some examples of invalid contour representations are illustrated: (a) ldru, (b)
rdlururd3lulu, (c) r4d3l2ulur2dldl2u3, and (d) r2d3l3u2l2dlu2. The contour in (a) is not
representing a finite shape; the contour in (b) is passing the cell (1.5, 1.5) twice; the cells
(1.5, 1.5) and (2.5, 1.5) belong either to the interior or to the exterior area of the contour in
(c); finally, the contour in (d) is self-intersecting.

(a) (b) (c) (d)

FIGURE 2. Examples of invalid contours

2.2. A normal form representation of contours. A string C is called a simple contour if
it represents a contour and there are no proper substrings of C with this property. It
represents a finite area with no holes. The representation of a simple contour is unique
modulo the position of the start point.

Two edge-neighbouring cells are two cells which share a horizontal or a vertical edge. An
edge-connected component is a maximal set of cells such that any two cells are connected
with a path of edge-neighbouring cells, all from that component.

A (general) contour may be decomposed such that each of its edge-connected compo-
nents is represented by a simple contour (used for its external border) and zero, one or
more “inverses” of simple contours for its possible internal holes. This decomposition,
called the normal form representation of a contour, is unique up to connecting identities.
(Recall that identities are contours with empty interior area, e.g., tunnels or bridges.)

For instance the contour: r5dld5ru6rd7l9u7r3dl2d3ru2r3d3l2uruld2luld2r5u5l3u, depicted
in Fig. 1(c), may be decomposed into two connected components and has the following
normal form representation:

The inverse of a string C over the alphabet {u, d, l, r} is obtained by replacing u/d/l/r with d/u/r/l,
respectively.

On contour representation of two dimensional patterns 41

• the components: (a) {contour {r9d7l9u7} and holes {l5d5r5u5}, {ld5ru5}}; and (b)
{contour {r3d3l3u3} and holes {ldru}};
• the information on the relative position of the internal holes in the surrounding

contours given by connecting identities (not shown here).

As illustrated by the example above, the normal form of a contour alternates the traver-
sals of exterior and interior shapes. The only variation are the bridges/tunnels connecting
simple contours.

2.3. 2-dimensional regular expressions. The set of well-defined contours is enriched with
a binary composition operator ”.”: the result of composing C1 and C2 is the string C1 C2,
provided this is a valid contour. This means, the contours are glueing together via the
starting points used in their representations.

For a graphical example, notice that C1 . C2 below shows a valid composition, while
C2 . C3 shows an example of composition leading to an invalid result (the result has
overlapping areas).

C1 C2 C3 C1 . C3 (valid) C2 . C3 (not valid)

Generic definition for restricted composition operators: Restricted composition operators are
obtained from the following generic format. Suppose we are given:

(1) 2 words v, w; a subset Y of elements of the contour of v (the yellow elements in
the figure below); a subset G of elements of the contour of w (the green ones); the
subset B of actual contact elements after composing, as above, v with w via the
points indicated by a little arrow (the blue elements).

v w v R(Y,G,B) w
(2) a relation R(Y,G,B) between the above 3 subsets.

The resulted restricted composition is denotes by v R(Y,G,B) w.
In the given example, a relation R making the restricted composition valid may be:

G ⊆ Y ∧ G ⊆ B (after composition, all the elements in the green set are on the common
border and included in the yellow set).

A set of particular restricted composition operators n2RE: A line l = (x, y + 0.5) is on the
east border of a contour C if lkC holds for k = −1; equivalently, the cell (x − 0.5, y + 0.5) is
internal, while (x+0.5, y+0.5) is in the exterior area. Similarly, a point p = (x, y) is on the
south-east border of C if the cell c = (x− 0.5, y+0.5) is in the internal area of C, while the
other 3 cells around are in the external area of C. Bridges or tunnels are not be counted as
borders.

Let us use the following notation: w for “west border”, e for “east border”, n for “north
border”, s for “south border”, nw for “north-west point”, ne for “north-east point”, sw
for “south-west point”, and se for “south-east point”. We denote by Connect their set
{w, e, n, s, nw, ne, sw, se}.

42 I. T. Banu-Demergian and G. Stefanescu

On each of the above eligible glueing combination (x, y) ∈ Connect we put a constrain
consisting of a propositional logic formula F ∈ PL(φ1, φ2, φ3, φ4) , i.e., a boolean formula
built up starting with the following atomic formulas:

φ1(x, y) = “x < y”, φ2(x, y) = “x = y”, φ3(x, y) = “x > y”, and φ4(x, y) = “x # y”.
The meaning of the connectors is the following: “<” - left is included into the right; “=” -
left is equal to the right; “>” - left includes the right; “x # y” - left and right overlaps, but
none is included in the other.

For instance: f(e = w)g means “restrict the general composition of f and g such that
the east border of f is identified to the west border of g”; f(e > w)g - the east border of f
includes all the west border of g, but some east borders of f may still be not covered by
west borders of g; etc.

We also use the notation
φ0(x, y) = “x O y”, where “O” means empty intersection.

Actually, this is a derived formula ¬(φ1(x, y) ∨ φ2(x, y) ∨ φ3(x, y) ∨ φ4(x, y)).

Definition 2.2. (restricted compositions) A restriction formula φ is a boolean combination
in PL(F1, . . . , Fn), where Fi are constricting formulas involving certain eligible glueing
combinations (xi, yi) ∈ Connect. A restricted composition operation (F) is the restriction
of the general composition to composite words satisfying F . A word h ∈ f . g belongs to
f (F) g if for all glueing combinations (xi, yi) occurring in F the contact of the xi border
of f and yi border of g satisfies Fi. Iterated composition operators are denoted by ∗(F), for a
restriction formula F . �

The class of new regular expressions for 2-dimensional in [2], denoted n2RE, consists of
all expressions obtained using the operators introduced in this paragraph.

Example: An example of n2RE expression (for spiral words x 2aa
2x1
bb1

2aaaa
22aa1
22x11
bbbb1

. . .) is:

x(e<w & w<e & n<s & s<n)
{[R(se>ne)D](nw<ne & sw>se)[L(nw>sw)U]}*_(e<w & w<e & n<s & s<n)
where R = a*_(e.w), D = 1*_(s.n), L = b*_(e.w), U = 2*_(s.n).

3. ALGORITHMS FOR TESTING CORRECT REPRESENTATIONS OF SHAPES

In this section we presents two procedures for verifying the correctness of contour rep-
resentations.

Dealing with cell criteria stated in Def. 2.1 may lead to inefficient algorithms. Basically,
in order to decide if a given sting C ∈ {u, d, r, l}∗ is a valid contour, one has to deter-
mine the membership of each cell either to Int(C) orOut(C) by calculating the predicates
ckC,w, c

k
C,n, c

k
C,e, c

k
C,s. Thus, the advantage of having a 1-dimensional string representation

is not exploit, as the analysis deals with the full 2-dimensional plane.
The following algorithms are based on the equivalent conditions in Prop. 2.1, dealing

with contour segments. Testing if a contour is a closed line can be easily done in linear
time; the main difficulty remains to verify conditions 2.2, 2.3, and 2.4.

3.1. The 1st algorithm for valid contours. The first algorithm is based on sorting, achiev-
ing O(n log n) complexity, where n is the contour length. The list l[1 . . . n] of lines associ-
ated with the letters of the contour is sorted according to (x, y) coordinates. The values
k that satisfy the predicates l[i]kC are calculated in one traversal of the sorted list, as the
informations to be added for each segment are situated on consecutive positions. Further

PL(Atom) denotes the set of propositional logic formulas built up with atomic formulas in Atom. For
typing reasons, the boolean operations “not”, “and”, and “or” are denoted by “!”, “&”, and “V”, respectively.

On contour representation of two dimensional patterns 43

checking of requirements 2.2, 2.3, and 2.4 is immediate. The full description of this 1st
algorithm is shown in Fig. 3 and an example in Example 3.1. It takes as input the string
denoting the moves along the contour to be verified; the stating point is set to (0, 0) (the
contours are invariant to translations, so the starting point position does not matter).

1: function TESTCONTOUR(char C[1 ...n])
2: int x, y, m; float aux[1 ...n][1 ...3], int k, prec; boolean valid;
3: x := 0, y := 0;
4: for k:=1 to n
5: switch C[k]
6: case ’r’: aux[k][1] := x + 0.5; aux[k][2] := y; x := x+1;
7: case ’d’: aux[k][1] := x; aux[k][2] := y - 0.5; y := y-1;
8: case ’l’: aux[k][1] := x - 0.5; aux[k][2] := y; x := x-1;
9: case ’u’: aux[k][1] := x; aux[k][2] := y + 0.5; y := y+1;
10: Sort(aux);
11: k:= 1; m:=0; valid:= true; prec := 0;
12: while k ≤ n
13: x := aux[k][1]; y := aux[k][2]; m:= m+1;
14: l[m][1]:=x; l[m][2]:=y; l[m][3]:=0;
15: while k ≤ n ∧ x = aux[k][1] ∧ y = aux[k][2]
16: switch C[aux[k][3]]
17: case ’r’: l[m][3] := l[m][3] + 1;
18: case ’d’: l[m][3] := l[m][3] - 1;
19: case ’l’: l[m][3] := l[m][3] - 1;
20: case ’u’: l[m][3] := l[m][3] + 1;
21: k := k+1 ;
22: If l[m][3] < -1 ∨ l[m][3] > 1
23: valid := false;
24: If l[m][3] <> 0 ∧ prec <> 0 ∧ x = l[prec][1]
25: If l[prec][3] + l[m][3] <> 0
26: valid := false;
27: prec:=m;
28: If (prec = 0 ∧ round(x) <> x) ∨
29: (prec <> 0 ∧ x <> l[prec][1] ∧ round(x) <> x)
30: If l[m][3] > 0
31: valid := false;
32: If l[m][3] <> 0
33: prec := m;
34: return valid;
35: end function

FIGURE 3. Algorithm for checking the correctness of contour representations

Example 3.1. Taking as input the contour C = rrrrdluurdlldluuld

the algorithm described in Fig. 3 runs as follows.

1. First it calculates the segments reached by C and stores the result in aux (lines 4-9 in
Algoritm 3).

44 I. T. Banu-Demergian and G. Stefanescu

(0, 0)
1:r−−−−→

(0.5,0)
(1, 0)

2:r−−−−→
(1.5,0)

(2, 0)
3:r−−−−→

(2.5,0)
(3, 0)

4:r−−−−→
(3.5,0)

(4, 0)
5:d−−−−−→

(4,−0.5)
(4,−1) 6:l−−−−−→

(3.5,−1)

(3,−1) 7:u−−−−−→
(3,−0.5)

(3, 0)
8:u−−−−→

(3,0.5)
(3, 1)

9:r−−−−→
(3.5,1)

(4, 1)
10:d−−−−→

(4,0.5)
(4, 0)

11:l−−−−→
(3.5,0)

(3, 0)
12:l−−−−→

(2.5,0)

(2, 0)
13:d−−−−−→

(2,−0.5)
(2,−1) 14:l−−−−−→

(1.5,−1)
(1,−1) 15:u−−−−−→

(1,−0.5)
(1, 0)

16:u−−−−→
(1,0.5)

(1, 1)
17:l−−−−→

(0.5,1)
(0, 1)

18:d−−−−→
(0,0.5)

(0, 0)

2. The second step is to sort the list above, according to (x, y) coordinates:

(0, 0.5,
18

d) (0.5, 0,
1
r) (0.5, 1,

17

l) (1,−0.5, 15u) (1, 0.5,
16
u) (1.5,−1,

14

l) (1.5, 0,
2
r) (2, 0.5,

13

d

) (2.5, 0,
3
r) (2.5, 0,

12

l) (3,−0.5, 7u) (3, 0.5,
8
u) (3.5,−1,

6

l) (3.5, 0,
4
r) (3.5, 0,

11

l) (3.5, 1,
9
r)

(4,−0.5,
5

d) (4, 0.5,
10

d)

3. The final loop (lines 17-20) calculates how many times each segment is passed by the
contour (i.e., the value k for which the predicate lkC is true is calculate for each line l[m]).
For example, the line l = (2.5, 0) = ((2, 0), (3, 0)) is a bridge, being crossed by an equal
number of left and right moves; this information is calculated adding positions 9 and 10
in the sorted list.

4. Conditions 2.2, 2.3 and 2.4 are checked at lines 28-31, 22-23 and 24-27 respectively. �

With minor adjustments, the procedure above may generate a normal form of the input
contour.

3.2. The 2nd algorithm - an optimized version. This version is an optimized version of
the 1st algorithm. It applies a computational geometry technique (line sweeping) adapted
to the set of segments composing a contour. Each letter repetition denotes a longer vertical
or horizontal segment with a given orientation and length. The time complexity of the
algorithm reduces to O(nr log (max y)), where nr is the number of segments and max(y)
is the difference between the greatest and the lowest y coordinate reached.

Sweep line or sweep surface is a common concept in geometric algorithms. Usually, it con-
sists in a vertical imaginary line that moves across the plane and stops in certain points,
where its state is changed. The solution is found after all the stop points (events) are
processed, gathering informations from all the neighboring objects.

In the case of a contour, stop points, sorted in increasing order, are all x-coordinates of
the composing segments. Hence there are three possible events:

• left margin (x1, y) of a horizontal segment (l or r)⇒ Update(y,+1);
• right margin (x2, y) of a horizontal segment⇒ Update(y,−1);
• vertical segment (x, y1, y2) (u or d)⇒ Query(y1, y2).

A balanced binary tree may store the line state. Each node corresponds to an inter-
val [y1, y2] with offspring [y1, (y1 + y2)/2] and [(y1 + y2)/2 + 1, y2]. The information
AUX[y1, y2], memorized as a heap, indicates the number of horizontal arrows intersected
by the sweep line between y1 and y2, meaning how many (x1, y), y ∈ [y1, y2] were swept
without the corresponding (x2, y) to by reached. Events of first and second type update
the interval tree, adding or subtracting 1 to a certain leaf AUX[k], where k is the heap in-
dex corresponding to an interval of size 0, [y, y]. AUX[k][0], AUX[k][1] counts the number
of segments oriented left and right, respectively, reaching the coordinate y. All nodes on
the path from root (corresponding to the interval [0,max(y)]), to the leaf k are updated.

The algorithm detects possible self-intersections when reaching a vertical segment [y1, y2].
By questioning the line state it verifies that no horizontal segments lies between [y1 +
1, y2− 1]. Query(y1, y2) is a divide and conquer procedure that sums informations found

On contour representation of two dimensional patterns 45

in the set of vertices composing a minimal partition of the segment [y1, y2]. If a query
returns at least 1 then the contour is self intersecting.

The length of the root interval of the balanced tree, determines the complexity of each
update and query operation: O(log (max(y)). As the number of events can’t exceed twice
the number of segments, the overall complexity is O(nr log (max(y)).

1: function QUERY(int index, int rootLeft, int rootRight, int qLeft, int
qRight)

2: If rootLeft ≥ qLeft and rootRight ≤ qRight
3: return abs(AUX[index][0] - AUX[index][1]);
4: int resultLeft = 0, resultRight = 0, m = (rootLeft+rootRight)/2
5: If leftQ ≤ m
6: resultLeft = Query(index*2,rootLeft,m,qLeft,qRight);
7: If rightQ > m
8: resultRight = Query(index*2+1,m+1,rootRight,qLeft,qRight) ;
9: return (resultLeft + resultRight) ;
10: end function

FIGURE 4. An optimized version of the Algorithm in Fig. 3 - the key function

Example 3.2. The contour C = r4dlu2rdl2d2lu3ld

generates the list of events

U(2,+l), U(3,+r), U(0,+l), Q(1, 2) = 1, U(3,−l) , U(2,+l), Q(1, 1) = 0, U(0,−l),
U(1,+l), U(3,+r), Q(2, 2) = 0, U(1,−l), U(3,−l).

The first query event corresponds to the first vertical segment, considering that segments
are ordered according to x coordinate. At this point, the state of the sweep-line memo-
rize one horizontal segment oriented to right, with y in the query interval [1, 2]. Hence
Q(1, 2) = 1. �

3.3. Comparison of the algorithms. For the comparison of the the two algorithms pre-
sented above, we have performed tests on nine sets of randomly generated contours, of
various length and shapes.

We first analyse the performance on dense contours, consisting in one edge-connected
component. The average execution time, in seconds, for each set of valid dense contours
is presented in Table 1. The last column shows, in percent, the time of the 2nd algorithm
compared to the 1st (the smallest the numbers, the better the 2nd algorithm performance).

The results obtained for sparse contours is summarized in Table 2. Sparse contours
are valid composites of small rectangular contours with identities of various length. It
may be seen that better execution times are obtained with the 2nd algorithm in case of
contours with large distances between components or with components represented with
large segments.

Finally, results for composed contours mixing the above two sets are shown in Table 3.
The notation DENSEi/SPARSEi refers to the i-th line in the DENSE/SPARSE table above.

46 I. T. Banu-Demergian and G. Stefanescu

DENSE Average execution time time T2 / time T1 (%)
contour length first algorithm T1 second algorithm T2 T2*100/T1

< 10000 0, 3572 0, 1049 29, 8947
> 10000 2, 0573 0, 4015 20, 1360
< 500 0, 0688 0, 0667 94, 3219

TABLE 1. Comparison of the algorithms on dense contours

SPARSE Average execution time time T2 / time T1 (%)
cells distance first algorithm T1 second algorithm T2 T2*100/T1

[100, 200] [25, 50] 2, 6484 1, 2521 47, 3936
[200, 300] [25, 50] 3, 7114 1, 7215 46, 4073
[100, 200] [50, 100] 7, 1069 2, 5222 35, 5811

TABLE 2. Comparison of the algorithms on sparse contours

COMPOSED Average execution time on c1.c2 time T2 / time T1 (%)
c1 c2 first algorithm T1 second algorithm T2 T2*100/T1

DENSE1 SPARSE1 2, 9360 0, 9170 31, 3385
DENSE2 SPARSE2 6, 9120 1, 7882 26, 2817
DENSE3 SPARSE3 5, 8749 1, 6525 28, 2066

TABLE 3. Comparison of the algorithms on composed contours

We mention that in both implementations, we stop when one of the conditions 2.2, 2.3
or 2.4 is not checked. Hence, for invalid contours, the performance my also depend on
the start point, the place where the first self-intersection is placed, etc.

4. CONCLUSIONS AND FUTURE WORKS

The known approach [8] to get regular expressions for 2-dimensional patterns uses
intersection and renaming - see [12, 2] for some critics on using these operators. One
of the benefits of our approach here and of the new type of regular expressions n2RE
introduced in [2] is that renaming and intersection are avoided, the setting being closer in
spirit with classical 1-dimensional regular expressions.

Current hardware and software development, mainly driven by multi-core architec-
tures and distributed computing technologies, bring forward the necessity to adapt se-
quential machine models to interactive computation. The results in this paper are steps of
a program extending sequential computation models in this direction.

As future work we intend to prove a Kleene theorem for finite interactive systems and
also to develop an associated algebraic theory, similar to automata theory. Possible appli-
cations of the model are: image processing and image recognition procedures, study of
parallel, interactive OO-programs, modelling discrete physical or biological systems etc.

REFERENCES

[1] Asarin, E., Caspi, P., and Maler, O., Timed regular expressions, Journal of the ACM, 49 (2002), 172–206
[2] Banu-Demergian, I. T., Paduraru, C. I., and Stefanescu, G., A new representation of two-dimensional pat-

terns and applications to interactive programming, in Proceedings FSEN 2013, LNCS 8161, Springer, 2013,
183–198

[3] Bentley, J. and Ottmann, T. A., Algorithms for reporting and counting geometric intersections, IEEE Transactions
on Computers, 100 (1979), 643–647

On contour representation of two dimensional patterns 47

[4] Bribiesca, E. and Verlade, C., A formal language approach for a 3D curve representation, Computers & Mathe-
matics with Applications, 42 (2001), 1571–1584

[5] Conway, J. H., Regular Algebra and Finite Machines, Chapman and Hall, 1971
[6] Dragoi, C. and Stefanescu, G., AGAPIA v0.1: A programming language for interactive systems and its typing

systems, ENTCS, 203 (2008), 69–94
[7] Freeman, H., On the encoding of arbitrary geometric configurations, IRE Transactions on Electronic Computers,

2 (1961), 260–268
[8] Garg, V. and Ragunath, M. T., Concurrent regular expressions and their relationship to Petri nets, Theoretical

Computer Science, 96(1992), 285–304
[9] Giammarresi, D. and Restivo, A., Two-dimensional languages, in Handbook of Formal Languages. Vol. 3: Be-

yond Words, Springer-Verlag, 1997, 215–265
[10] Goldin, D., Smolka, S., and Wegner, P., Eds., Interactive Computation: The New Paradigm, Springer, 2006
[11] Kleene, S. C., Representation of events in nerve nets and finite automata, in Automata Studies, Princeton

University Press, 1956, 3–41
[12] Kozen, D., A completeness theorem for Kleene algebras and the algebra of regular events, in Proceedings

LICS 1991, 214-225
[13] Kaneko, T. and Okudaira M., Encoding of arbitrary curves based on the chain code representation, IEEE

Transactions on Communications, 33 (1985), 697–707
[14] Liu, Y. K. and Zalik, B., An efficient chain code with Huffman coding, Pattern Recognition, 38 (2005), 553–557
[15] Stefanescu, G., Algebra of networks: Modeling simple networks as well as complex interactive systems, in

Proof and System Reliability, Kluwer, 2002, 49–78
[16] Stefanescu, G., Interactive systems with registers and voices, Fundamenta Informaticae, 73 (2006), 285–306

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF BUCHAREST, ROMANIA

E-mail address: iulia.banu@fmi.unibuc.ro
E-mail address: gheorghe.stefanescu@fmi.unibuc.ro

