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Systems of knowledge representation based on stratified
graphs. Application in Natural Language Generation

DANIELA DĂNCIULESCU and MIHAELA COLHON

ABSTRACT. The concept of stratified graph introduces some method of knowledge representation
(see [Ţăndăreanu, N., Knowledge representation by labeled stratified graphs, Proc. 8th World Multi-Conference on
Systemics, Cybernetics and Informatics, 5 (2004), 345–350; Ţăndăreanu, N., Proving the Existence of Labelled Strat-
ified Graphs, An. Univ. Craiova Ser. Mat. Inform., 27 (2000), 81–92]) The inference process developed for this
method uses the paths of the stratified graphs, an order between the elementary arcs of a path and some results
of universal algebras. The order is defined by considering a structured path instead of a regular path. In this pa-
per we define the concept of system of knowledge representation as a tuple of the following components: a stratified
graph G, a partial algebra Y of real objects, an embedding mapping (an injective mapping that embeds the nodes
of G into objects of Y ) and a set of algorithms such that each of them can combine two objects of Y to get some
other object of Y . We define also the concept of inference process performed by a system of knowledge processing
in which the interpretation of the symbolic elements is defined by means of natural language constructions. In
this manner we obtained a mechanism for texts generation in a natural language (for this approach, Romanian).

1. INTRODUCTION

The graph theory has many applications in computer science. The interconnection net-
work of a distributed system or of a supercomputer based on large scale parallel pro-
cessing can be modeled as a graph. Good network topologies can be defined and studies
using algebraic models. A number of interconnection network topologies as hypercubes,
star-graphs [1], cube-connected cycles, pancake graphs [12], Fibonacci cubes [4, 13, 14, 15]
are Cayley graphs and their properties are studies using Cayley groups properties.

The concept of stratified graph provides a method of knowledge representation. This
concept was introduced in [8], where the intuitive aspect is presented. The mathematical
proof of the existence of this structure was given in [10]. The subject as well as the appli-
cations of this concept were developed in a sequence of papers: the algebra of all stratified
graphs over a given labeled graph is a join lattice [7], semantics of communication [8], ge-
ometrical image generation [8], reconstruction of geometrical image by extracting the se-
mantics of a linguistic spatial description given in a natural language [9], the construction
of a stratified graph over an attribute graph in order to find the paths satisfying several
restrictions [7], problem solving [5], the use of stratified graphs to model a cooperation
between two or more companies [6, 7], etc.

The method of knowledge representation based on stratified graphs uses:
• concepts from graph theory redefined in the new framework (especially the con-

cepts of labeled path);
• elements of universal algebra (Peano algebra, partial algebra, morphism of partial

algebras).
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Intuitively, a stratified graph is built over a labeled graph G0, placing on top a subset of a
Peano algebra generated by the label set of G0.

The main goal is to define the concept of knowledge processing system based on stratified
graphs and its corresponding inference process. The inference is based on the concept of
accepted structured path and its decomposition into other accepted structured paths. The
theoretical results used to define the inference process are completely presented in this
paper.

The paper is organized as follows: Section 2 contains the basic concepts of labeled graph
and stratified graph; in Section 3 we define the concept of structured path in a labeled graph
and the concept of accepted structured path in a stratified graph. We establish an useful
result concerning the existence of some morphism of universal algebras obtained from the
label set of the structured paths to the Peano algebra generated by the elementary labels
of the structured graph; We organize the set ASP (G) of the accepted structured paths
of G as a partial algebra with respect a certain partial operation �; Section 4 treats two
decomposition properties: one for structured paths (with respect to a certain partial binary
operation) and the other for accepted structured paths (with respect to �), used later to
obtain the inference process; in Section 5 we show what we mean by a system of knowledge
representation based on stratified graphs and we give the formalism of the corresponding
inference process. We prove that this process is a morphism of partial algebras by means of
which for each accepted structured path we can associate an object of a real world. Last
section includes conclusions of our study.

2. BASIC CONCEPTS

We consider a symbol σ of arity 2 and take the sets defined recursively as follows:{
B0 =M0

Bn+1 = Bn ∪ {σ(x1, x2) | (x1, x2) ∈ Bn ×Bn}, n ≥ 0

where M0 is a finite set that the description of an element of M0 does not contain the
symbol σ. Thus the set M0 = {σab, c, d} can not be taken into consideration. The set

B =
⋃
n≥0

Bn

is the Peano σ -algebra ([2]) generated byM0. We can suppose that σ(x, y) is the word σxy
over the alphabet M0 ∪ {σ}. Often this algebra is denoted by M0.

By Initial(M0) we denote the collection of all subsets of B satisfying the following
conditions: K ∈ Initial(M0) if

• M0 ⊆ K ⊆ B
• if σ(u, v) ∈ K, u ∈M0, v ∈M0 then u ∈ K and v ∈ K

We consider a finite set S and denote by 2S×S the collection of all subsets of S × S. We
define the mapping prodS : dom(prodS) −→ 2S×S as follows:

dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}
prodS(ρ1, ρ2) = ρ1 ◦ ρ2

where ◦ is the usual operation between the binary relations:

ρ1 ◦ ρ2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ ρ1, (z, y) ∈ ρ2}
We denote by R(prodS) the set of all the restrictions of the mapping prodS :

R(prodS) = {u | u ≺ prodS}
where u ≺ prodS means that dom(u) ⊆ prodS and u(ρ1, ρ2) = prodS(ρ1, ρ2) for (ρ1, ρ2) ∈
dom(u).
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Let us consider a nonempty set T0 ⊆ S × S. If u is an element of R(prodS) then we
denote by Clu(T0) the closure of T0 in the partial algebra (2S×S , {u}). This is the smallest
subset Q of 2S×S such that T0 ⊆ Q and Q is closed under u. It is known that this is the
union

⋃
n≥0Xn, where{

X0 = T0
Xn+1 = Xn ∪ {u(ρ1, ρ2) | (ρ1, ρ2) ∈ dom(u) ∩ (Xn ×Xn)}, n ≥ 0

If L ∈ Initial(M0) then the pair (L, {σL}), where
• dom(σL) = {(x, y) ∈ L× L | σ(x, y) ∈ L}
• σL(x, y) = σ(x, y) for every (x, y) ∈ dom(σL)

is a partial algebra.
In the remainder of this section we give a short presentation of two following concepts:

labeled graph and stratified graph. In what follows we summarize these concepts.
By alabeled graph we understand a tuple G = (S0, L0, T0, f0), where S0 is a finite set

of nodes, L0 is a set of elements named labels, T0 is a set of binary relations on S0 and
f0 : L0 −→ T0 is a surjective function. Because the empty set is not used in knowledge
representation we suppose that the empty set is not an element of T0. Such a structure
admits a graphical representation. Each element of S0 is represented by a rectangle spec-
ifying the corresponding node. We draw an arc from x1 ∈ S0 to x2 ∈ S0 and this arc is
labeled by a ∈ L0 if (x1, x2) ∈ f0(a). This case is shown in Figure 1.

x1 x2-
a

FIGURE 1. A labeled arc

Consider a labeled graph G0 = (S,L0, T0, f0). A stratified graph ([10]) G over G0 is a
tuple (G0, L, T, u, f) where

• L ∈ Initial(L0)
• u ∈ R(prodS) and T = Clu(T0)
• f : (L, {σL}) −→ (2S×S , {u}) is a morphism of partial algebras such that f0 ≺ f ,
f(L) = T and if (f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL)

The existence of this structure, as well as the uniqueness is proved in [10]:

Proposition 2.1. For every labeled graph G0 = (S0, L0, T0, f0) and every u ∈ R(prodS) there
is just one stratified graph (G0, L, T, u, f) over G0.

3. ACCEPTED STRUCTURED PATHS

We consider a labeled graph G0 = (S,L0, T0, f0). A regular path over G0 is a pair
([x1, . . . , xn+1], [a1, . . . , an]) such that (xi, xi+1) ∈ f0(ai) for every i ∈ {1, . . . , n}.

Definition 3.1. We denote by STR(G0) the smallest set satisfying the following condi-
tions:

• For every a ∈ L0 and (x, y) ∈ f0(a) we have ([x, y], a) ∈ STR(G0).
• If ([x1, . . . , xk], u) ∈ STR(G0) and ([xk, . . . , xn], v) ∈ STR(G0) then ([x1, . . . , xk,
. . . , xn], [u, v]) ∈ STR(G0).
An element of the set STR(G0) is a structured path of G0.
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The concept of structured path introduces some order between the arcs taken into con-
sideration for a regular path. A structured path can be represented as in Figure 2.

x1 -a
x2 -b

x3 -c
x4 -d

x5

6

[a,b]

6

[c,d]

?

[[a,b],[c,d]]

FIGURE 2. Intuitive representation of structured paths

Thus in Figure 2 we represented three structured paths:
([x1, x2, x3], [a, b])
([x3, x4, x5], [c, d])
([x1, x2, x3, x4, x5], [[a, b], [c, d]])

Let us consider the set

L(X) = {[x1, . . . , xn] | n ≥ 1, xi ∈ X, i = 1, . . . , n}

This is the set of all nonempty lists over X . We denote first([x1, . . . , xn]) = x1 and
last([x1, . . . , xn]) = xn.

We define the mapping

⊗ : STR(G0)× STR(G0) −→ STR(G0)

as follows:
• dom(⊗) = {((α1, u1), (α2, u2)) | (α1, u1) ∈ STR(G0), (α2, u2) ∈ STR(G0),

last(α1) = first(α2)}
• If ([x1, . . . , xk], u) ∈ STR(G0) and ([xk, . . . , xn], v) ∈ STR(G0) then

([x1, . . . , xk], u)⊗ ([xk, . . . , xn], v) = ([x1, . . . , xn], [u, v])

Proposition 3.2. Consider a labeled graph G0 = (S,L0, T0, f0) and the set

(3.1) K(G0) = {([x, y], a) | a ∈ L0, (x, y) ∈ f0(a)}

The set STR(G0) is the ⊗-Peano algebra generated by K(G0).

Proof. From Definition 3.1 we deduce that STR(G0) is the smallest set containing K(G0)
and closed under ⊗ operation. It follows that STR(G0) is the ⊗-Peano algebra generated
by K(G0). �

We define
STR2(G0) = {w | ∃(α,w) ∈ STR(G0)}

In fact, STR2(G0) represents the projection of the set STR(G0) on the second axis: in a
classical notation we write STR2(G0) = pr2(STR(G0)).

Proposition 3.3.
pr2K(G0) = L0
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Proof. Take a ∈ pr2K(G0). There is ([x, y], a) ∈ K(G0). From (3.1) we have a ∈ L0. Thus we
have pr2K(G0) ⊆ L0. Conversely, take an arbitrary element a ∈ L0. We have f0(a) ∈ T0
and ∅ /∈ T0. Take (x, y) ∈ f0(a). From (refp01) we have ([x, y], a) ∈ K(G0), therefore
a ∈ pr2K(G0). It follows that L0 ⊆ pr2K(G0). �

We define the mapping ∗ : STR2(G0)× STR2(G0) −→ STR2(G0) as follows:
• dom(∗) = {(β1, β2) | ∃α1, α2 : (α1, β1) ∈ STR(G0), (α2, β2) ∈ STR(G0),

last(α1) = first(α2)}
• If (β1, β2) ∈ dom(∗) then β1 ∗ β2 = [β1, β2]

Remark 3.1. The pair (STR2(G0), ∗) becomes a partial algebra.

Proposition 3.4. STR2(G0) is the ∗-Peano algebra generated by L0.

Proof. The set STR(G0) is the ⊗-Peano algebra generated by K(G0). This means that
STR(G0) =

⋃
n≥0Mn, where

(3.2)
{
M0 = K(G0)
Mn+1 =Mn ∪ {γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β}

It follows that

STR2(G0) = pr2STR(G0) = pr2(
⋃
n≥0

Mn) =
⋃
n≥0

pr2Mn =

pr2M0 ∪
⋃
n≥0

pr2Mn+1 = pr2K(G0) ∪
⋃
n≥0

pr2Mn+1

therefore by Proposition 3.3 we have

(3.3) STR2(G0) = L0 ∪
⋃
n≥0

pr2Mn+1

Based on (3.2) we obtain

(3.4) pr2Mn+1 = pr2Mn ∪ pr2Xn

where Xn = {γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β}.
From (3.4) we find that

(3.5) pr2Mn+1 = pr2Mn ∪ {pr2γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β}
We intend to evaluate the item pr2γ for γ ∈ Xn. Consider an arbitrary element γ ∈ Xn.
There are (α, β) ∈ dom(⊗) ∩ (Mn × Mn) such that γ = α ⊗ β. This means that α =
([x1, . . . , xk], u1), β = ([xk, . . . , xm], v1) and γ = ([x1, . . . , xk, . . . , xm], [u1, v1]). It follows
that pr2γ = [u1, v1] and by the definition of the operation ∗ we have [u1, v1] = u1 ∗ v1.
Thus, if γ = α⊗β, where (α, β) ∈Mn×Mn then pr2γ = pr2α∗pr2β. This property allows
to rewrite (3.5) as follows

(3.6) pr2Mn+1 = pr2Mn ∪ {w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β}
Let us denote Yn = pr2Mn for every n ≥ 0. We prove now the following property

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} =

{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}(3.7)

Take w = pr2α ∗ pr2β for some (α, β) ∈ dom(⊗) ∩ (Mn ×Mn). Consider u = pr2α and
v = pr2β. Obviously u, v ∈ Yn and w = u ∗ v. Thus we proved the inclusion

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} ⊆
{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}(3.8)
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(L0)σ × (L0)σ -
σ

(L0)σ

STR2(G0)× STR2(G0) -
∗

STR2(G0)

? ?

h× h h

FIGURE 3. Commutative diagram

We prove now the converse inclusion. To prove this property we consider an element
ω = u ∗ v for some (u, v) ∈ (Yn × Yn) ∩ dom(∗). But Yn = pr2Mn and u ∈ Yn. It follows
that there is α = ([x1, . . . , xk], u) ∈ Mn and β ∈ ([y1, . . . , ym], v) ∈ Mn such that xk = y1.
We deduce that (α, β) ∈ dom(⊗) ∩ (Mn ×Mn) such that ω = pr2α ∗ pr2β. This shows that

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} ⊇
{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}(3.9)

Now, from (3.8) and (3.9) we obtain (3.7).
From (3.6) and (3.7) we obtain

pr2Mn+1 = pr2Mn ∪ {ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}
Equivalently we can write that

(3.10) Yn+1 = Yn ∪ {ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}

From Y0 = L0 and (3.10) we obtain that
⋃
n≥0 Yn = L0, where L0 is taken under opera-

tion ∗. From (3.3) we obtain STR2(G0) =
⋃
n≥0 Yn, therefore STR2(G0) = (L0)∗ and the

proposition is proved. �

Proposition 3.5. The mapping h : (STR2(G0), ∗) −→ ((L0)σ, σ) defined by

h(p) =

 p if p ∈ L0

σ(h(u), h(v)) if p = [u, v], u ∈ STR2(G0), v ∈ STR2(G0)

is a morphism of partial algebras. In other words, the diagram from Figure 3 is commutative.

Proof. Consider (u, v) ∈ dom(∗). There are ([x1, . . . , xk], u) ∈ STR(G0) and ([xk, . . . , xn],
v) ∈ STR(G0). If this is the case then u∗v = [u, v] ∈ STR2(G0) and h([u, v]) = σ(h(u), h(v)).
Thus the diagram is commutative. �

Definition 3.2. We define the set ASP (G) as follows: ([x1, . . . , xn+1], c) ∈ ASP (G) if and
only if ([x1, . . . , xn+1], c) ∈ STR(G0) and h(c) ∈ L.
An element of ASP (G) is named accepted structured path over G.

We remark that we can consider the binary operation � for the case of accepted struc-
tured paths, defined on the subset ASP (G) ⊆ STR(G0)

� : ASP (G)×ASP (G) −→ ASP (G)
as follows:

• dom(�) = {((p1, u1), (p2, u2)) | (p1, u1) ∈ ASP (G), (p2, u2) ∈ ASP (G),
last(p1) = first(p2), h([u1, u2]) ∈ L}



Systems of knowledge representation 55

• If ([x1, . . . , xk], u) ∈ ASP (G) and ([xk, . . . , xn], v) ∈ ASP (G) then

([x1, . . . , xk], u)� ([xk, . . . , xn], v) = ([x1, . . . , xn], [u, v])

Remark 3.2. Suppose that d1 = ([x1, . . . , xk], u) ∈ ASP (G), d2 = ([y1, . . . , yr], v) ∈ ASP (G)
and (d1, d2) ∈ dom(⊗). By the above definition we have xk = y1 and h([u, v]) ∈ L. We ob-
tain d1 � d2 = ([x1, . . . , xk, y2, . . . , yr], [u, v]) ∈ ASP (G) because h([u, v]) ∈ L. Thus the
mapping � is well defined.

Proposition 3.6. The set ASP (G) is the �-Peano algebra generated by K(G0).

Proof. Consider the sets

(3.11)
{
M0 = K(G0)
Mn+1 =Mn ∪ {d | ∃d1, d2 ∈Mn : d = d1 � d2}

Let us prove the following property:

(3.12) ASP (G) =
⋃
n≥0

Mn

By induction on n ≥ 0 we can verify that Mn ⊆ ASP (G), therefore

(3.13)
⋃
n≥0

Mn ⊆ ASP (G)

We prove now by induction on n ≥ 2 that for every ([x1, . . . , xn], c) ∈ ASP (G there is
k ≥ 0 such that ([x1, . . . , xn], c) ∈Mk.
For n = 2 we have ([x1, x2], c) ∈ ASP (G), therefore ([x1, x2], c) ∈ STR(G0) and h(c) ∈ L.
But length(c) = 1 and thus h(c) = c ∈ L0. It follows that ([x1, x2], c) ∈ K(G0) = M0 and
the property is true for n = 2.
Suppose that the property is true for every k ≤ m and take an element ([x1, . . . , xm+1], c) ∈
ASP (G). By Proposition 4.8 we deduce that there is s ∈ {2, . . . ,m} and there are u, v ∈
STR2(G0) such that ([x1, . . . , xs], u) ∈ ASP (G) and ([xs, . . . , xm+1], v) ∈ ASP (G). Apply-
ing the inductive assumption we deduce that there are r, q such that ([x1, . . . , xs], u) ∈Mr

and ([xs, . . . , xm+1], v) ∈Mq . It follows that ([x1, . . . , xm+1], c) ∈Mmax{r,q}+1.
It follows that

(3.14) ASP (G) ⊆
⋃
n≥0

Mn

Now from (3.13) and (3.14) we obtain (3.12) and the proposition is proved. �

4. SPLITTING PROPERTIES

In this section we obtain two splitting properties: one of them refers to the decompo-
sition of a structured path; the other gives the decomposition of an accepted structured
path. The first splitting property is used to prove the second property.

Proposition 4.7. (splitting property I)
If ([x1, . . . , xn+1], c) ∈ STR(G0) and n ≥ 2 then there are u, v ∈ STR2(G0) and k ∈
{2, . . . , n}, uniquely determined, such that
c = [u, v]
([x1, . . . , xk], u) ∈ STR(G0)
([xk, . . . , xn+1], v) ∈ STR(G0)
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Proof. We denote by (L0)∗ the *-Peano algebra generated by L0. By Proposition 3.4 we
have STR2(G0) = (L0)∗. In a similar manner we consider the ⊗-Peano algebra generated
by K(G0), denoted by (K(G0))⊗. By Proposition 3.2 we have STR(G0) = (K(G0))⊗.
Take ([x1, . . . , xn+1], c) ∈ STR(G0), n ≥ 2. This implies that c ∈ STR2(G0) = (L0)∗,
therefore there are u, v ∈ STR2(G0), uniquely determined, such that c = [u, v]. Thus
([x1, . . . , xn+1], [u, v]) ∈ STR(G0) = (K(G0))⊗. It follows that there are the elements,
uniquely determined, d1 = ([y1, . . . , ys], γ1) ∈ STR(G0), d2 = ([z1, . . . , zp], γ2) ∈ STR(G0)
such that (d1, d2) ∈ dom(⊗) and

(4.15) ([x1, . . . , xn+1], [u, v]) = d1 ⊗ d2
Take k = s. Obviously k is uniquely determined.
From (d1, d2) ∈ dom(⊗) we deduce that ys = z1 and

(4.16) d1 ⊗ d2 = ([y1, . . . , ys, z2, . . . , zp], [γ1, γ2])

From (4.15) and (4.16) we deduce that

(4.17) [x1, . . . , xn+1] = [y1, . . . , ys, z2, . . . , zp]

[u, v] = [γ1, γ2]

We have u, v, γ1, γ2 ∈ STR2(G0)), STR2(G0) is a ∗ -Peano algebra and from [u, v] =
[γ1, γ2] we deduce u = γ1 and v = γ2. From (4.17) we deduce that n+1 = s+p−1 and x1 =
y1, . . ., xs = ys, xs+1 = z2, . . ., xn+1 = zp. It follows that d1 = ([x1, . . . , xs], u) and d2 =
([xs, . . . , xn+1], v). But d1 ∈ STR(G0) and d2 ∈ STR(G0). Thus we have ([x1, . . . , xk], u) ∈
STR(G0) and ([xk, . . . , xn+1], v) ∈ STR(G0). The proposition is proved. �

Proposition 4.8. (splitting property II)
If ([x1, . . . , xn+1], c) ∈ ASP (G) \K(G0) then there are u, v ∈ STR2(G0) and k ∈ {2, . . . , n},
uniquely determined, such that
c = [u, v]
([x1, . . . , xk], u) ∈ ASP (G)
([xk, . . . , xn+1], v) ∈ ASP (G)

Proof. Consider ([x1, . . . , xn+1], c) ∈ ASP (G) and n ≥ 2. Because ASP (G) ⊆ STR(G0) we
can apply Proposition 4.7. Thus, there are u, v ∈ STR2(G0) and k ∈ {2, . . . , n}, uniquely
determined, such that
c = [u, v]
([x1, . . . , xk], u) ∈ STR(G0)
([xk, . . . , xn+1], v) ∈ STR(G0)

But h(c) ∈ L, therefore from the definition of the mapping h we deduce that σ(h(u),
h(v)) ∈ L. We have h(u) ∈ (L0)σ and h(v) ∈ (L0)σ . From L ∈ Initial((L0)σ) we deduce
that h(u) ∈ L and h(v) ∈ L. This shows that ([x1, . . . , xk], u) ∈ ASP (G) and ([xk, . . . , xn+1], v) ∈
STR(G0). �

Corollary 4.1. For every d ∈ ASP (G) one and only one of the following conditions is satisfied:
(1) d ∈ K(G0)
(2) there are d1 ∈ ASP (G) and d2 ∈ ASP (G), uniquely determined, such that d = d1 � d2.

Proof. Suppose that d = ([x1, . . . , xn+1], c) ∈ ASP (G) \K(G0). We apply Proposition 4.8.
There are u, v ∈ STR2(G0) and k ∈ {2, . . . , n}, uniquely determined, such that c = [u, v],
([x1, . . . , xk], u) ∈ ASP (G) and ([xk, . . . , xn+1], v) ∈ ASP (G). From d ∈ ASP (G) we know
that h(c) ∈ L. We have

(4.18) h([u, v]) ∈ L
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K(G0) - ASP (G)

Y

?

Q
Q
Q
Q
QQs

id

IPSKP
T0

FIGURE 4. The extension IPSKP of T0

(4.19) d1 = ([x1, . . . , xk], u) ∈ ASP (G)

(4.20) d2 = ([xk, . . . , xn+1], v) ∈ ASP (G)

From (4.18), (4.19) and (4.20) we deduce that (d1, d2) ∈ dom(�). Moreover, d = d1 � d2.
Let us suppose that d = ([y1, . . . , ys], u1) � ([z1, . . . , zr], u2), u1 ∈ STR2(G0) and u2 ∈
STR2(u2). Denote p1 = ([y1, . . . , ys], u1) and p2 = ([z1, . . . , zr], u2). We have ys = z1 and
h([u1, u2])∈ L. It follows that d = ([y1, . . . , ys, z2, . . . , zr], [u1, u2]). But d = ([x1, . . . , xn+1], c),
therefore s+r−1 = n+1, y1 = x1, . . ., ys = xs = z1, z2 = xs+1, . . ., zr = xn+1. In conclusion
we have

(4.21) p1 = ([x1, . . . , xs], u1)

(4.22) p2 = ([xs, . . . , xn+1], u2)

From (d1, d2) ∈ dom(�) we deduce also h([u1, u2]) ∈ L. But h([u1, u2]) = σ(h(u1), h(u2))
and h(u1) ∈ (L0)σ , h(u2) ∈ (L0)σ . We have L ∈ Initial((L0)σ) and σ(h(u1), h(u2)) ∈ L,
therefore h(u1) ∈ L and h(u2) ∈ L. If we use now (4.21) and (4.22) then we deduce that
p1 ∈ ASP (G) and p2 ∈ ASP (G). �

5. INFERENCE PROCESS BASED ON ACCEPTED STRUCTURED PATHS

We consider a stratified graph G = (G0, L, T, u, f) over G0 = (S0, L0, T0, f0). Let Y =
(Y,�) be a binary algebra and an injective mapping ob : S −→ Y . We suppose that for
each u ∈ L we have an algorithm Algu : Y × Y −→ Y . This means that Algu is a partial
mapping. In other words dom(Algu) ⊆ Y ×Y and for every pair (x, y) ∈ dom(Algu) given
as input for Algu this algorithm gives as output some element of Y .

Definition 5.3. A system of knowledge based on stratified graphs is a tuple

SKP = (G, (Y,�), ob, {Algu}u∈L)

where
• G = (G0, L, T, u, f) is a stratified graph over G0 = (S,L0, T0, f0);
• (Y,�) is a binary partial algebra;
• ob : S −→ Y is an injective mapping;
• For each u ∈ L the entity Algu is an algorithm that defines a mapping

Algu : dom(Algu) −→ Y

where dom(Algu) ⊆ Y × Y .
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Y × Y -
� Y

ASP (G)×ASP (G) -
�

ASP (G)

? ?

IPSKP × IPSKP IPSKP

FIGURE 5. Commutative diagram

For a knowledge processing system based on stratified graphs we can define the infer-
ence process as in the next definition.

Definition 5.4. The inference process IPSKP generated by the system of knowledge rep-
resentation SKP is the mapping

IPSKP : ASP (G) −→ Y

defined as follows:
d ∈ K(G0) =⇒ IPSKP (d) = T0(d)

d ∈Mn+1 =⇒ IPSKP (d) =

 IPSKP (d) if d ∈Mn

IPSKP (d1)� IPSKP (d2) if d1, d2 ∈Mn, d = d1 � d2
where the sequence {Mn}n≥0 is defined in (3.11).

Proposition 5.9. The mapping IPSKP is well defined.

Proof. Really, every element d ∈ ASP (G) containing at least three nodes can be uniquely
broken into two accepted structured paths d1 and d2, that is d = d1 ⊗ d2. �

Proposition 5.10. dom(IPSKP ) = ASP (G)

Proof. Really, dom(IPSKP ) =
⋃
n≥0Mn = ASP (G). �

Proposition 5.11. The inference process IPSKP : (ASP (G),�) −→ (Y,�) defined by the sys-
tem of knowledge processing SKP is a morphism of partial algebras.

Proof. The classical proof of such property in the domain of the partial algebra is graph-
ically represented in Figure 4 and Figure 5, where id is the identity mapping. In fact, we
have the following properties:

(1) If (d1, d2) ∈ dom(�) then d1 = ([x1, . . . , xk], u), d2 = ([y1, . . . , yr], v), xk = y1 and
h([u, v]) ∈ L.

(2) Using the previous notations based on the fact that d1, d2 ∈ ASP (G) =
⋃
n≥0Mn

we deduce that there are p ≥ 0 and q ≥ 0 such that d1 ∈ Mp and d2 ∈ Mq .
If r = max{p, q} then d = d1 � d2 ∈ Mr+1 and from Definition 5.4 we obtain
IPSKP (d) = IPSKP (d1)� IPSKP (d2). In other words, we have

IPSKP (d1 � d2) = IPSKP (d1)� IPSKP (d2)
This property shows that the diagram from Figure 5 is commutative.

�
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Based on the previous concepts and results we can propose the following algorithm of
the inference process.
Inference algorithm

Input:
SKP = (G, (Y,�), ob, {Algu}u∈L);
(x, y) ∈ S × S
Method:
Compute C(x,y) = {d ∈ ASP (G) | first(d) = x, last(d) = y};
Output:
IPSKP (C(x,y)) = {w ∈ Y | ∃d ∈ C(x,y) : IPSKP (d) = w}

End of algorithm

6. TEXT GENERATION WITH ACCEPTED STRUCTURED PATHS. A CASE STUDY

In order to demonstrate the role the structured paths can have in a Natural Language
Generation mechanism based on labeled graph representations, we consider the labeled
stratified graph given in [3] and shown in Figure 6:

G0 = (S,L0, T0, f0)

where S = {x1, x2, x3, x4}, L0 = {CAT Det, CAT Noun,CAT Adj}, T0 = {ρ1, ρ2} with
ρ1 = {(x1, x2)}, ρ2 = {(x2, x3)} and ρ3 = {(x3, x4)}, f0(CAT Det) = ρ1, f0(CAT Noun) =
ρ2 and f0(CAT Adj) = ρ3.

Consider the mapping u ∈ R(prodS). The set Clu(T0) is the following set:

Clu(T0) =
⋃
n≥0

Mn

M0 = T0 = {ρ1, ρ2, ρ3}
M1 =M0 ∪ {ρ4} = u(ρ2, ρ3)
M2 =M1 ∪ {ρ5} = u(ρ1, ρ4)
M3 =M2

We obtain Clu(T0) = {ρ1, ρ2, ρ3, ρ4, ρ5}.
We have the stratified graph G = (G0, L, T, u, f) over G0 where L = {CAT Det, CAT

Noun,CAT Adj, σL(CAT Noun,CAT Adj), σL(CAT Det, σL(CAT Noun,CAT Adj))}
and T = Clu(T0), where:
- (f0(CAT Noun), f0(CAT Adj)) ∈ dom(u), therefore σL(CAT Noun,CAT Adj) ∈ L and
f(σL(CAT Noun,CAT Adj)) = u(f(CAT Noun), f(CAT Adj)) = u(ρ2, ρ3) = ρ4.
- (f(CAT Det), f(σL(CAT Noun,CAT Adj))) ∈ dom(u) therefore σL(CAT Det, σL(CAT
Noun,CAT Adj)) ∈ L and f(σL(CAT Det, σL(CAT Noun,CAT Adj))) = u(f(CAT Det),
f(σL(CAT Noun,CAT Adj))) = u(ρ1, ρ4) = ρ5.

The labeled stratified graph G is shown in Figure 6, where the accepted maximal struc-
tured path ([x1, x2, x3, x4], [CAT Det, [CAT Noun,CAT Adj]]) is represented.

Let us suppose we have a set of algorithms for Natural Language Generation (shortly
NLG). We are not interested here what is the method used for generation but we suppose
that it contains at least two elements: non-terminals (denoting the syntactic classes of the
text components) and terminals (i.e. word forms).

Alg CAT syn−cat(x, y)
take word−form← pick a word from lexicon with the specified syn−cat
Output: word−form

end algorithm
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x1 -
CAT Det

x2 -
CAT Noun

x3 -
CAT Adj

x4
?

[CAT Noun,CAT Adj]

?

[CAT Det, [CAT Noun,CAT Adj]]

FIGURE 6. Labeled stratified graph for Natural Language Generation

Algσ(CAT syn−cat1,CAT syn−cat2)(o1, o2)
load the agreement rules between the syntactic categories syn−cat1, syn−cat2

generate inflected forms of o1 and o2
Output: inflected form(o1) + “ ” + inflected form(o2)

end algorithm

Algσ(u,v)(o1, o2)
take n the number of words of o1 sequence, n ≥ 1
take m the number of words of o2 sequence, m ≥ 1
IF (n > 1) ∨ (m > 1) THEN

take head(o1)← the head word of o1 sequence
take head(o2)← the head word of o2 sequence
load the agreement rules between the syntactic categories of head(o1) and head(o2)

generate inflected forms of o1 and o2
Output: inflected form(o1) + “ ” + inflected form(o2)

ENDIF
end algorithm

Algσ(CAT syn−cat,u)(o1, o2)
take n the number of words of o2 sequence, n ≥ 1
IF (n > 1) THEN

take head(o2)← the head word of o2 sequence
load the agreement rules between syn−cat and the syntactic category of head(o2)

generate inflected forms of o1 and o2
Output: inflected form(o1) + “ ” + inflected form(o2)

ENDIF
end algorithm

In what follows all Romanian constructions are marked in quotes and the English equiv-
alents follow the Romanian examples in brackets. Let us consider:

AlgCAT Noun(x1, x2) = “un” (“a”),
AlgCAT Noun (x2, x3) = “fată” (“the girl”),
AlgCAT Adj(x2, x3) = “frumos” (“beautiful”).

With these interpretations, we can obtain:
Algσ(CAT Noun,CAT Adj)(o1, o2) = “fată frumoasă” (in English“the beautiful girl”) with
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o1 = AlgCAT Noun (x2, x3) = “fată” (“the girl”), o2 = AlgCAT Adj (x3, x4) = “frumos”
(“beautiful”). The sequence “fată frumoasă” (“the beautiful girl”) obey the agreement in
gender realization between o1 and o2 (“fata”: number=sg., gender=fem., case = direct,
“frumosă”: number=sg., gender=fem).

Algσ(CAT Det,σ(CAT Noun,CAT Adj))(o1, o2)= ”o fată frumoasă” (“the beautiful girl”) with
o1 = ‘un” (“a”) , o2 = “fată frumoasă” (“the beautiful girl”). In ”o fată frumoasă” (“the
beautiful girl”) the sequence of o1 takes the gender of the head word of o2, that is “fată”
(“fată”: number=sg., gender=fem., case=direct).

The inference process for the considered study case is exemplified in what follows:
Input:
SKP = (G, (Y,�), ob, {Algu}u∈L); (x1, x4) ∈ S × S
Method:
Compute C(x1,x4) = {([x1, x2, x3, x4], [CAT Det, [CAT Noun,CAT Adj]])};
Output:
IPSKP (C(x1,x4)) = {“o fată frumoasă” }

7. CONCLUSIONS

In this paper we treat from the mathematical point of view the concept of inference
based on stratified graphs. We define the concept of knowledge processing system with
stratified graphs and the concept of inference of such systems. We exemplify the infer-
ence process in such system by means of a new mechanism for interpreting the relations
encoded in stratified graphs that was defined in [3]. This interpretation can be used to
generate natural language constructions.
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