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Second order differential equations with an irregular
singularity at the origin and a large parameter: convergent
and asymptotic expansions

CHELO FERREIRA, JOSÉ L. LÓPEZ and ESTER PÉREZ SINUSÍA

ABSTRACT. We consider the second order linear differential equation

y′′ =

[
Λ2

tα
+ g(t)

]
y,

where Λ is a large complex parameter and g is a continuous function. In previous works we have considered
the case α ∈ (−∞, 2] and designed a convergent and asymptotic method for the solution of the corresponding
initial value problem with data at t = 0. In this paper we complete the research initiated in those works and
analyze the remaining case α ∈ (2,∞). We use here the same fixed point technique; the main difference is that
for α ∈ (2,∞) the convergence of the method requires that the initial datum is given at a point different from
the origin; for convenience we choose the point at the infinity. We obtain a sequence of functions that converges
to the unique solution of the problem. This sequence has also the property of being an asymptotic expansion
for large Λ (not of Poincaré-type) of the solution of the problem. The generalization to non-linear problems is
straightforward. An application to a quantum mechanical problem is given as an illustration.

1. INTRODUCTION

The most famous asymptotic method for second order linear differential equations con-
taining a large parameter is, without any doubt, Olver’s method [6, Chaps. 10, 11, 12].
Olver’s theory considers the equation

(1.1) ÿ − Λ̃2

zα
y = f(z)y, Λ̃→∞, z ∈ C, α 6= 2,

with special attention to the cases α = 0, −1, 1 (x = 0 is a regular point, a transition point
or a regular singular point respectively). In [6, Chaps. 10, 11 and 12], Olver gives, for
α = 0, −1, 1 respectively, the Poincaré-type asymptotic expansion of two independent
solutions of (1.1) for large Λ̃, including error bounds, sectors of validity, etc. In [6, Chap.
12, Sec. 14] we can also find indications about the generalization of the study to any
integer value of α, except α = 2.

In summary, we have that for any α ∈ Z \ {2}, two independent solutions of (1.1) have
the form

(1.2) y(z) = Pα(z)

n−1∑
k=0

Ak(z)

Λ̃2k
+

1

Λ̃2
P ′α(z)

n−1∑
k=0

Bk(z)

Λ̃2k
+Rα,n(z),

whereRα,n(z) = O(Λ̃−2n) uniformly for z in a certain region in the complex plane. In this
formula, Pα(z) is one of the two following basic solutions of (1.1), that is, independent
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63
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solutions of (1.1) for g̃ = 0

(1.3) Pα(z) :=

{√
zIα̂(2α̂Λ̃z1/(2α̂)),
√
zKα̂(2α̂Λ̃z1/(2α̂)),

α̂ :=
1

2− α
,

where Iν(z) and Kν(z) are modified Bessel functions. For example, for α = 0, 1, 3, 4, 5, . . .,
the coefficients Ak and Bk are given by the following system of recurrence relations:
A0(z) = 1 and

(1.4)


Bn(z) =

zα/2

2

∫ z

zα/2[g̃(z)An(z)−A′′n(z)]dz,

An+1(z) = −1

2
B′n(z) +

1

2

∫ z

g̃(z)Bn(z)dz.
n = 0, 1, 2, . . .

Both families of coefficients An and Bn are analytic at z = 0 when g̃(z) is also analytic
there. Olver’s important contribution is the proof of the asymptotic character of the ex-
pansions (1.2) and the derivation of error bounds for the remainder Rα,n(z).

In [5] and [3] we gave an alternative approximation to Olver’s expansions (in the cases
α = 0, −1, 1) that are not only asymptotic, but also convergent. In [3] and [4] we general-
ized the method to α ∈ (−∞, 2], not necessary an integer. In this paper we complete the
theory initiated in [5], [2], [3] and [4] by considering the remaining cases: α ∈ (2,∞).

Following the methodology of [5], [2], [3] and [4], we formulate a convenient initial
value problem associated to equation (1.1). In those papers we have considered an initial
value problem with data given at z = 0. When α ∈ (−∞, 2], the degree of the singularity
at z = 0 is controllable by the iterated technique and the method converges, as it is shown
in [5], [2], [3] and [4]. But now, for α ∈ (2,∞), the singularity at z = 0 is too strong and
the iterated integrals involved in the fixed point technique are divergent. To overcome
this problem we must consider an initial value problem with datum given at a point z0

different from z = 0. The most interesting possibility from a practical point of view is
z0 =∞, that is a regular singular point for α = 3, 4, 5, . . ..

In the remaining of this section we introduce some definitions and considerations nec-
essary to develop our theory. The branch cut chosen for zα in (1.1) is the negative real
axis, that is, we choose the principal value for zα. In this paper we are going to analyze
equation (1.1) in rays emanating from the origin: z = teiθ with fixed θ ∈ R and positive
and unbounded t: t ∈ [t0,∞) with t0 > 0 fixed. Therefore, we may absorb the argument
of the independent variable z in a redefinition of Λ̃ and f(z): Λ̃ → Λ := eiθ(1−α/2)Λ̃ and
f(z)→ g̃(t) := e2iθf(teiθ) and consider the differential equation in the real variable t

(1.5) ÿ − Λ2

tα
y − g̃(t)y = 0, Λ ∈ C, α > 2.

We require for the function g̃ : [t0,∞)→ C to be continuous. For the later convenience,
we define the function

(1.6) Hα(z) := 1 +

∣∣∣∣I 1
2−α

(
2

α− 2
zα/2−1

)∣∣∣∣ , z ∈ C,

where Iν(z) and Kν(z) denote the principal values of the modified Bessel functions.
In the following section, we use the Banach fixed point theorem and the Green function

of an auxiliary initial value problem to obtain uniformly convergent expansions of a so-
lution of (1.5) in terms of iterated integrals of Bessel functions. In Section 3 we show that
this expansion is an asymptotic expansion, for large Λ̃, of the unique solution of the initial

In Olver’s analysis, the function g̃ is required to be analytic in a certain region of the complex plane and α
integer.
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value problem. As an application, an example extracted from atomic physics is presented.
Finally, in Section 4, we summarize and compare the problems so far analyzed in [5], [2],
[3] and [4] and in this paper.

2. THE ITERATIVE METHOD

The point t = ∞ is a regular singular point of the differential equation (1.5) for α =
3, 4, 5, . . . and, for any α ∈ (2,∞), the following initial value problem selects one of the
solutions of the equation

(2.7)

ÿ −
Λ2

tα
y − g̃(t)y = 0 in [t0,∞), t0 > 0,

lim
t→∞

y(t) = y0,

with y0, Λ ∈ C, y0 = O(1) as Λ→∞.
Equivalently, after the change of variable t→ 1/x, we may write (2.7) in the form

(2.8)

{
x4−αy′′ + 2x3−αy′ − Λ2y − g(x)y = 0 in [0, X],

y(0) = y0,

where g(x) := g̃(1/x), X := 1/t0. The function g is continuous in [0, X], but when α ∈
(2, 3), as it will be clear later, we require an extra condition for g

(2.9)
∥∥xα−3g(x)

∥∥
∞ ≤ L,

where L is a positive constant independent of x. Here, ‖·‖∞ is the supremum norm in
[0, X]

(2.10) ‖u‖∞ = sup
x∈[0,X]

|u(x)|.

We have the following theorem:

Theorem 2.1. Let g : [0, X]→ C be continuous and satisfy (2.9) when α ∈ (2, 3). Then, problem
(2.8) has a unique solution y(x). Moreover,

(i) For n = 0, 1, 2, . . ., the sequence
(2.11)

yn+1(x) = φ(x) +
2

α− 2

∫ x

0

tα−2

√
xt

[
I 1
2−α

(
2Λ

α− 2
xα/2−1

)
K 1

2−α

(
2Λ

α− 2
tα/2−1

)

−I 1
2−α

(
2Λ

α− 2
tα/2−1

)
K 1

2−α

(
2Λ

α− 2
xα/2−1

)]
g(t)yn(t)dt,

with

(2.12) y0(x) = φ(x) :=

(
1

α− 2

) 3−α
2−α

Γ

(
1

α− 2

)
Λ1/(2−α) y0√

x
I 1
α−2

(
2Λ

α− 2
xα/2−1

)
,

converges to y(x) uniformly for x ∈ [0, X].
(ii) The remainder

(2.13) Rn(x) := H−1
α

(
Λ

2
α−2x

)
[y(x)− yn(x)],

is bounded by

(2.14) |Rn(x)| ≤ An

n!

∣∣∣∣XΛ
∣∣∣∣n ∥∥∥H−1

α

(
Λ

2
α−2 ·

)
(y − φ)

∥∥∥
∞
,

where A is a constant independent of x and Λ and Hα is defined in (1.6).
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Proof. The function φ(x) defined in (2.11) is the unique solution of the auxiliary initial
value problem

(2.15)

{
x4−αφ′′ + 2x3−αφ′ − Λ2φ = 0 in [0, X],

φ(0) = y0.

Then, after the change of unknown y(x)→ u(x) := y(x)− φ(x), problem (2.8) reads

(2.16)

{
x4−αu′′ + 2x3−αu′ − Λ2u = F (x, u) := (u+ φ)g in [0, X],

u(0) = 0.

We seek solutions of the equation L[u] := x4−αu′′ + 2x3−αu′ − Λ2u − F (x, u) = 0 in
the Banach space B = {u : [0, X] → C, u ∈ C[0, X]} equipped with the norm (2.10).
Then, we solve the equation L[u] = 0 for u by using the Green function of the operator
M[u] := x4−αu′′ + 2x3−αu′ − Λ2u, accompanied by a homogeneous initial condition [8].
That is, G(x, t) is the unique solution of the initial value problem

(2.17)

{
x4−αGxx(x, t) + 2x3−αGx(x, t)− Λ2G(x, t) = δ(x− t) in (x, t) ∈ [0, X]2,

G(0, t) = 0.

After a straightforward computation we obtain

(2.18)

G(x, t) =
2tα−2

α− 2

1√
xt

[
I 1
2−α

(
2Λ

α− 2
xα/2−1

)
K 1

2−α

(
2Λ

α− 2
tα/2−1

)

−I 1
2−α

(
2Λ

α− 2
tα/2−1

)
K 1

2−α

(
2Λ

α− 2
xα/2−1

)]
χ[0,x](t),

where χ[0,x](t) is the characteristic function of the interval [0, x]. Then, any solution u(x)
of (2.16) is a solution of the Volterra integral equation of the second kind

u(x) =
2

α− 2

∫ x

0

tα−2

√
xt

[
I 1
2−α

(
2Λ

α− 2
xα/2−1

)
K 1

2−α

(
2Λ

α− 2
tα/2−1

)

−I 1
2−α

(
2Λ

α− 2
tα/2−1

)
K 1

2−α

(
2Λ

α− 2
xα/2−1

)]
g(t)[u(t) + φ(t)]dt.

Or equivalently, defining

(2.19) ũ(x) := H−1
α

(
Λ

2
α−2x

)
u(x) and φ̃(x) := H−1

α

(
Λ

2
α−2x

)
φ(x),

we have that for any solution u(x) = Hα

(
Λ

2
α−2x

)
ũ(x) of (2.16), ũ(x) is a solution of the

Volterra integral equation of the second kind

(2.20) ũ(x) = [Tũ](x),

where T is the integral operator

(2.21) [Tũ](x) :=
1

Λ

∫ x

0

KΛ(x, t)g(t)[ũ(t) + φ̃(t)]dt,
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with kernel
(2.22)

KΛ(x, t) :=
2Λtα−2

(α− 2)
√
xt

Hα

(
Λ

2
α−2 t

)
Hα

(
Λ

2
α−2x

) [I 1
2−α

(
2Λ

α− 2
xα/2−1

)
K 1

2−α

(
2Λ

α− 2
tα/2−1

)

−I 1
2−α

(
2Λ

α− 2
tα/2−1

)
K 1

2−α

(
2Λ

α− 2
xα/2−1

)]
.

Now we study separately the cases α ∈ (2, 3) and α ≥ 3.
When α ≥ 3, the Bessel functions Iν(z) and Kν(z) are continuous functions of z in

C \ (−∞, 0] and Hα(z) 6= 0 for all z ∈ C. Using in addition the asymptotic behavior of
these functions at z = 0 [7, Eqs. 10.25.2, 10.27.4 and 10.27.5] and at z =∞ [7, Sec. 10.40(i)],
we find that the kernel KΛ(x, t) of the operator T is uniformly bounded by a constant N
independent of x and Λ

(2.23) |KΛ(x, t)| ≤ N for 0 ≤ t ≤ x ≤ X and Λ ∈ C.

Using this bound, from [8, Chap 4. Eq. (4.13)] with M = N ‖g‖∞ /|Λ| and a = 0 we find
that, for any couple z, w ∈ B and x ∈ [0, X],

(2.24) |[Tnz](x)− [Tnw](x)| ≤
‖g‖n∞
n!

∣∣∣∣NxΛ

∣∣∣∣n ‖z − w‖∞
and then

(2.25) ‖Tnz −Tnw‖∞ ≤
‖g‖n∞
n!

∣∣∣∣NXΛ
∣∣∣∣n ‖z − w‖∞ .

This means that the operator Tn is contractive in B for large enough n and the successive
approximations ũn+1 = T(ũn), n = 0, 1, 2, . . ., ũ0(x) = 0, converge uniformly in x ∈ [0, X]

to ũ(x) [8, Chap 4. Sec. 4]. In other words, u(x) = Hα

(
Λ

2
α−2x

)
ũ(x) is the unique solution

of (2.16). Or equivalently, the sequence yn(x) = Hα

(
Λ

2
α−2x

)
[ũn(x)+ φ̃(x)] given in (2.11)

converges uniformly in x ∈ [0, X] to the unique solution of (2.8), and we have thesis (i)
with A = N ‖g‖∞.

When α ∈ (2, 3), the kernel (2.22) is not bounded at t = 0 and the previous argument is
not valid. In this case we rewrite the operator T in the form:

(2.26) [Tũ](x) :=
1

Λ

∫ x

0

K̃(x, t)tα−3g(t)[ũ(t) + φ̃(t)]dt,

with

(2.27) K̃Λ(x, t) = t3−αKΛ(x, t).

The factor t3−α makes the new kernel K̃Λ(x, t) bounded at t = 0 and we have the same
uniform bound for K̃Λ(x, t) when α ∈ (2, 3) as we had for KΛ(x, t) when α > 3:

(2.28) |K̃Λ(x, t)| ≤ N for 0 ≤ t ≤ x ≤ X and Λ ∈ C,

where N is a constant independent of x and Λ.
Using this bound, from [8, Chap 4. Eq. (4.13)] with M = NL/|Λ| and a = 0 we find that,
for any couple z, w ∈ B and x ∈ [0, X],

(2.29) |[Tnz](x)− [Tnw](x)| ≤ Ln

n!

∣∣∣∣NxΛ

∣∣∣∣n ‖z − w‖∞ ,
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and then

(2.30) ‖Tnz −Tnw‖∞ ≤
Ln

n!

∣∣∣∣NXΛ
∣∣∣∣n ‖z − w‖∞ .

From here, the proof is identical to the proof for α ≥ 3, and we have thesis (i) with A =
NL.

To prove thesis (ii) we set z = ũ and w = ũ0 = 0 in (2.24) and (2.29) for α ≥ 3 and
α ∈ (2, 3) respectively. Using that Tnũ = ũ and Tnũ0 = ũn we find

(2.31) |ũ(x)− ũn(x)| ≤ An

n!

∣∣∣∣XΛ
∣∣∣∣n ‖ũ‖∞ ,

with A = N ‖g‖∞ when α ≥ 3 and A = NL when α ∈ (2, 3). Using y(x) = Hα

(
Λ

2
α−2x

)
ũ(x) + φ(x) and yn(x) = Hα

(
Λ

2
α−2x

)
ũn(x) + φ(x) in (2.31) we find (2.14). �

3. ASYMPTOTIC PROPERTY OF THE EXPANSION

We have seen in the Theorem 2.1 that the unique solution y(x) of problem (2.8) may
be obtained from the limit y(x) = limn→∞ yn(x) uniformly in [0, X], where yn(x) is the
recurrence relation defined in (2.11). In other words, y(x) admits the series expansion

(3.32) y(x) = φ(x) +

∞∑
k=0

[yk+1(x)− yk(x)] = φ(x) + Hα

(
Λ

2
α−2x

) ∞∑
k=0

[ũk+1(x)− ũk(x)] ,

with

(3.33) ũn(x) := H−1
α

(
Λ

2
α−2x

)
[yn(x)− φ(x)] , n = 0, 1, 2, . . . .

and Hα(x) defined in (1.6). Then, from (2.13), we may write (3.32) in the form

y(x) = φ(x) +

n−1∑
k=0

[yk+1(x)− yk(x)] + Hα

(
Λ

2
α−2x

)
Rn(x)

= φ(x) + Hα

(
Λ

2
α−2x

)[n−1∑
k=0

[ũk+1(x)− ũk(x)] +Rn(x)

]
,

(3.34)

where Rn(x) is defined in (2.13).

Theorem 3.2. Under the conditions of Theorem 2.1, the expansion (3.34) is an asymptotic ex-
pansion for large Λ of the unique solution of (2.8), uniformly for x ∈ [0, X]. More precisely, for
n = 1, 2, 3, . . .,

(3.35) ũn(x)− ũn−1(x) = O(φ̃Λ−n) and Rn(x) = O(φ̃Λ−n−1)

as Λ→∞ uniformly for x ∈ [0, X].

Proof. We prove only the case α ≥ 3, the proof for α ∈ (2, 3) is similar. From definition
(2.21) we have

(3.36) ũn(x) = [Tũn−1](x) =
1

Λ

∫ x

0

KΛ(x, t)g(t)[ũn−1(t) + φ̃(t)]dt

and

(3.37) ũn+1(x) = [Tũn](x) =
1

Λ

∫ x

0

KΛ(x, t)g(t)[ũn(t) + φ̃(t)]dt,
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with KΛ(x, t) defined in (2.22). Subtracting (3.36) and (3.37) and using the bound (2.23)
we find that

(3.38) ‖ũn+1 − ũn‖∞ ≤
NX

|Λ|
‖g‖∞ ‖ũn − ũn−1‖∞ .

We have ũ0(x) = 0 and ũ1(x) = [Tũ0](x) = O(φ̃Λ−1) uniformly for x ∈ [0, X]. Using this
and (3.38), the first thesis in (3.35) follows by induction over n.

Observe that ũ = limn→∞ ũn =
∑∞
k=0[ũk+1− ũk] =

∑∞
k=0O(φ̃Λ−k−1) = O(φ̃Λ−1). This

and inequality (2.31) prove the second thesis in (3.35). �

Observe that the expansion (3.34) is not of Poincaré-type (in terms of pure negative
powers of Λ), however, this expansion is convergent.

Remark 3.1. We have considered in (2.8) a linear differential equation. It is straightfor-
ward to generalize the method of Section 2 to non-linear problems of the form

(3.39)

{
x4−αy′′ + 2x3−αy′ − Λ2y = f(x, y) in [0, X],

y(0) = y0, y0, Λ ∈ C, y0 = O(1) as Λ→∞,

where the function f : [0, X] × C → C is continuous in its two variables and satisfies a
Lipschitz condition in its second variable:

(3.40) |f(x, y)− f(x, z)| ≤M |y − z| α ≥ 3,

(3.41) |xα−3[f(x, y)− f(x, z)]| ≤M |y − z| α ∈ (2, 3),

∀y, z ∈ C and x ∈ [0, X], with M a positive constant independent of x, y, z. From here, it
is straightforward to derive, for problem (3.39), the same conclusions of Theorems 1 and
2, but replacing g(t)yn(t) by f(t, yn(t)) in the right hand side of (2.11); and replacing A, by
M in (2.14).

Example 3.1. The radial part of the Schrödinger equation with supersingular plus Coulomb
potential can be reduced to the following double confluent Heun equation [1]

(3.42) t2ÿ(t) +

(
−C
t2
− l(l + 1) + Zt+ Et2

)
y(t) = 0,

where l is the angular momentum, E is related to the energy of the particle, and C and Z
represent the intensities of the supersingular and the Coulomb parts respectively. Without
loss of generality, let us consider the l = 0 ground state. When we specify the behavior
of the wave function y(t) at the infinity and perform the change of variable t = 1/x, we
obtain the initial value problem

(3.43)

y′′ +
2

x
y′ + (E + Zx− C) y = 0 in [0, X],

y(0) = 1.

This is problem (2.8) with α = 4, Λ2 = C and g(x) = −E − Zx. Table 1 contains several
numerical experiments of the approximation supplied by (2.11) for several degrees of
approximation n, and different values of the parameters.

x = 1.5, Z = 1, E = −0.09
C R0(x) R1(x) R2(x) R3(x)

5 0.2 0.01 0.0003 7.e-6
10 0.1 0.006 1.6e-4 6.e-6
50 0.07 0.002 2.3e-5 8.e-6

x = 2, Z = 1, E = −0.09
C R0(x) R1(x) R2(x) R3(x)

5 0.4 0.05 0.003 1.3e-4
10 0.3 0.03 0.002 6.e-5
50 0.1 0.007 2.3e-4 1.3e-5
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x = 1.5, Z = 2, E = −0.09
C R0(x) R1(x) R2(x) R3(x)

5 0.4 0.05 0.003 1.2e-4
10 0.3 0.03 0.002 6.7e-5
50 0.1 0.01 3.e-4 1.5e-5

x = 2, Z = 1, E = −0.14
C R0(x) R1(x) R2(x) R3(x)

5 0.36 0.04 0.003 1.e-4
10 0.26 0.025 0.001 5.e-5
50 0.1 0.006 2.e-4 1.3e-5

TABLE 1. Numerical experiments about the relative errors Rn(x) in the approx-
imation of the solution of problem (3.43) with l = 0, different values of Z and E,
and several values of C given by (2.11) for several degrees of approximation n.

4. FINAL REMARKS

In this paper we have completed the research line initiated in [5] and continued in [2],
[3] and [4], analyzing the differential equation in (2.8) for any α ∈ R. For different regions
of α, we have constructed a sequence of functions yn(x) that converges to the unique
solution of an appropriate initial value problem. As it is shown in [5], [2], [3] and [4],
for any real α, that sequence consists of iterated integrals of Bessel functions similar to
(2.11); that reduce to exponential functions in the case α= 0 [5] or Airy functions in the
case α=−1 [3]. Depending on the value of α, a different number of conditions must be
specified in order to have a well-posed initial value problem, as it is summarized in Table
2. α < 1 1 ≤ α < 2 α = 2 α > 2

Initial data y(0), y′(0) y′(0) y(0) y(∞)

TABLE 2. The initial conditions that must be added to the differential equation
in (2.8) to set a well-posed problem depend on the value of α.

For any real α, the sequence yn(x) is not only convergent, but it is also an asymptotic
expansion for large Λ of the unique solution of the initial value problem, different from
the one supplied by Olver’s method.
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