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A note on some positive linear operators associated with
the Hermite polynomials

GRAŻYNA KRECH

ABSTRACT. In this paper we give direct approximation theorems and the Voronovskaya type asymptotic
formula for certain linear operators associated with the Hermite polynomials. These operators extend the well-
known Szász-Mirakjan operators.

1. INTRODUCTION

We introduce the class of operators Gαn , n ∈ N := {1, 2, 3, . . .}, α ≥ 0, given by the
formula

(1.1) Gαn(f ;x) = e−(nx+αx
2)
∞∑
k=0

xk

k!
Hk(n, α)f

(
k

n

)
, x ∈ R+

0 := [0,∞),

where Hk is the two variable Hermite polynomial (see [2]) defined by

Hk(n, α) = k!

[ k2 ]∑
s=0

nk−2sαs

(k − 2s)!s!
.

The Hermite polynomials and their properties were investigated in many papers, for ex-
ample in [3, 15, 16]. Integrals of these polynomials are ubiquitous in problems concerning
classical and quantum optics and in quantum mechanics (see [1, 22, 23]).

The operators (1.1) are linear and positive. Basic facts on positive linear operators, their
generalizations and applications, can be found in [17, 18].

In this paper we shall study approximation properties ofGαn for functions f ∈ CB
(
R+

0

)
,

where CB(R+
0 ) is the space of all real-valued functions f continuous and bounded on R+

0 .
The norm on CB(R+

0 ) is defined by

||f || = sup
x∈R+

0

|f(x)|.

For α = 0 we have

G0
n(f ;x) = e−nx

∞∑
k=0

xk

k!
nkf

(
k

n

)
, x ∈ R+

0 ,

so G0
n, n ∈ N are the classical Szász-Mirakjan operators. Approximation properties of

Szász-Mirakjan operators in many different spaces were studied, for example, in [12, 13,
33, 35]. The above operators were modified by several authors (e.g. [4, 6, 7, 8, 9, 10, 11,
14, 19, 20, 24, 25, 27, 28, 29, 30, 31, 36]) which showed that new operators have similar or
better approximation properties than G0

n.
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Observe that Hk(2n,−1) = H̃k(n), where H̃k is the kth classical Hermite polynomial
defined by

H̃k(t) = (−1)ket
2 dk

dtk
e−t

2

, k ∈ N0.(1.2)

So, we can also consider operators of the form

G̃−1n (f ;x) = e−(2nx−x
2)
∞∑
k=0

xk

k!
H̃k(n)f

(
k

2n

)
, x ∈ R+

0 .

The operators G̃−1n , n ∈ N are linear, but not positive. In this case (α = −1), approximation
properties of G̃−1n should be considered which, however, will be done in a further note. It
is worth mentioning that some approximation theorems for Poisson integrals associated
with the classical Hermite polynomials (1.2) were presented in [34].

2. AUXILIARY RESULTS

In this section we shall give some properties of the operatorsGαn , α ≥ 0, which we shall
apply to the proofs of the main theorems.

In the sequel the following functions will be meaningful:

ep(t) = tp, φx,p(t) = (t− x)p, p ∈ N0 := N ∪ {0}, x, t ∈ R+
0 .

Using the generating function of two variable Hermite polynomials (see [2])
∞∑
k=0

tk

k!
Hk(n, α) = ent+αt

2

,

we have
∞∑
k=0

tk

k!
Hk+r(n, α) =

dr

dtr
ent+αt

2

, r ∈ N,

and by simple computation we obtain the following lemma.

Lemma 2.1. For any p ∈ N we have

Gαn(ep;x) = xp +O
(
n−1

)
for each x ∈ R+

0 . In particular

Gαn(1;x) = 1, Gαn(e1;x) = x+
2αx2

n
,

Gαn(e2;x) = x2 +
4αx3 + x

n
+

4α2x4 + 4αx2

n2
,

Gαn(φx,1;x) =
2αx2

n
, Gαn(φx,2;x) =

x

n
+

4αx2(αx2 + 1)

n2
,

Gαn(φx,4;x) = O
(
n−2

)
for each x ∈ R+

0 .

Using the definition (1.1) we can state the next result.

Theorem 2.1. The operator Gαn maps CB(R+
0 ) into CB(R+

0 ) and

||Gαn(f)|| ≤ ||f ||
for f ∈ CB(R+

0 ).
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3. RATE OF CONVERGENCE

In this part we shall state some estimates of the rate of convergence of the operators
Gαn , α ≥ 0 for functions f ∈ CB

(
R+

0

)
. We shall use the modulus of continuity

ω1(f, δ) = sup
x,y∈R+

0
|y−x|≤δ

|f(y)− f(x)|, δ > 0

and the modulus of smoothness

ω2(f, δ) = sup
x∈R+

0
0<h≤δ

|f(x+ 2h)− 2f(x+ h) + f(x)|, δ > 0.

As is known (see, for example, [18, 21]), the modulus of smoothness ω2(f, δ) of f ∈
CB(R+

0 ) is equivalent to the Peetre K-functional defined by

K2(f, δ) = inf
g∈C2

B(R+
0 )
{‖f − g‖+ δ‖g ′′‖}, δ > 0,(3.3)

where C2
B(R

+
0 ) = {g ∈ CB(R+

0 ) : g′ ∈ ACloc(R+
0 ), g

′′ ∈ CB(R+
0 )}. This means that there

exist positive constants M and δ0, independent of f , such that

M−1ω2(f, δ) ≤ K2(f, δ
2) ≤Mω2(f, δ), 0 < δ ≤ δ0.(3.4)

Of course, in this paper we only need the second inequality.
First, we present the quantitative estimate for Gαn in terms of the classical first order

modulus using a result of Shisha and Mond ([32], see also [5]).

Theorem 3.2. For every f ∈ CB(R+
0 ), x ∈ R+

0 and n ∈ N, we have

|Gαn(f ;x)− f(x)| ≤ 2ω1

(
f,
√
Gαn(φx,2;x)

)
= 2ω1

(
f,

√
x

n
+

4αx2(αx2 + 1)

n2

)
.

Now, we state the estimate in terms of the first and second order moduli via K- func-
tionals.

Theorem 3.3. If f ∈ CB(R+
0 ), then for every x ∈ R+

0 we have

|Gαn(f ;x)− f(x)|

≤ Mω2

f, 1
2

√
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
+ ω1

(
f,

2αx2

n

)
,

where M is some positive constant.

Proof. We define Tαn as follows

Tαn (f ;x) = Gαn(f ;x)− f
(
x+

2αx2

n

)
+ f(x).

Let x ∈ R+
0 and g ∈ C2

B(R
+
0 ). We can write

g(t)− g(x) = (t− x)g′(x) +
∫ t

x

(t− u)g′′(u) du, t ∈ R+
0 .
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From this and by Tαn (φx,1;x) = 0 we obtain

|Tαn (g − g(x);x)| =
∣∣∣∣Tαn (∫ t

x

(t− u)g′′(u) du;x
)∣∣∣∣

=

∣∣∣∣∣Gαn
(∫ t

x

(t− u)g′′(u) du;x
)
−
∫ x+ 2αx2

n

x

(
x+

2αx2

n
− u
)
g′′(u) du

∣∣∣∣∣ .
Observe that

Gαn

(∫ t

x

(t− u)g′′(u) du;x
)

= e−(nx+αx
2)
∞∑
k=0

xk

k!
Hk(n, α)

∫ k
n

x

(
k

n
− u
)
g′′(u) du

≤ ‖g′′‖
2

Gαn(φx,2;x)

and ∣∣∣∣∣
∫ x+ 2αx2

n

x

(
x+

2αx2

n
− u
)
g′′(u) du

∣∣∣∣∣ ≤ ‖g′′‖2
(
2αx2

n

)2

.

Hence

|Tαn (g − g(x);x)| ≤ ‖g
′′‖
2

(
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
)

for g ∈ C2
B(R

+
0 ).

Let f ∈ CB(R+
0 ). From the above we have

|Gαn (f − f(x);x)|

≤ |Tαn (f − g;x)− (f − g)(x)|+ |Tαn (g;x)− g(x)|+
∣∣∣∣f (x+

2αx2

n

)
− f(x)

∣∣∣∣
≤ 2‖f − g‖+ ‖g

′′‖
2

(
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
)

+ ω1

(
f,

2αx2

n

)

≤ 2

{
‖f − g‖+ 1

4

(
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
)
‖g′′‖

}
+ ω1

(
f,

2αx2

n

)
.

Using (3.3) and (3.4) we obtain

|Gαn (f − f(x);x)|

≤ 2K

(
f,

1

4

(
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
))

+ ω1

(
f,

2αx2

n

)

≤ Mω2

f, 1
2

√
x

n
+

4αx2(αx2 + 1)

n2
+

(
2αx2

n

)2
+ ω1

(
f,

2αx2

n

)
for some constant M > 0. �
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Remark 3.1. Observe that from Păltănea’s theorem in [26] we can state the following result:

|Gαn(f ;x)− f(x)|

≤
(
1 +

1

2h2
Gαn(φx,2;x)

)
ω2 (f, h) +

1

h
|Gαn(φx,1;x)|ω1 (f, h) ,

where h > 0, f ∈ CB(R+
0 ), x ∈ R+

0 . Setting h =
√

2αx2

n we get

|Gαn(f ;x)− f(x)|

≤
(
1 +

1

4αx
+
αx2 + 1

n

)
ω2

(
f,

√
2αx2

n

)
+

√
2αx2

n
ω1

(
f,

√
2αx2

n

)
for α, x > 0. The above estimate gives a similar result like in Theorem 3.3, but it leads to the
estimate with precise constants.

The inequality obtained in Theorem 3.2 (also in Theorem 3.3 and Remark 3.1) implies
the following corollary.

Corollary 3.1. If f is an uniformly continuous bounded function on R+
0 , then

lim
n→∞

Gαn(f ;x) = f(x)

uniformly on every interval [a, b] ⊂ R+
0 , a < b.

4. THE VORONOVSKAYA TYPE THEOREM

In this section we shall establish the Voronovskaya type asymptotic formula for the
operators Gαn .

We first need the following lemma, which immediately follows from Lemma 2.1.

Lemma 4.2. For every fixed x ∈ R+
0 , it holds

lim
n→∞

nGαn(φx,1;x) = 2αx2, lim
n→∞

nGαn(φx,2;x) = x,

lim
n→∞

n2Gαn(φx,4;x) =Mx,α,(4.5)

where Mx,α is some positive constant.

Theorem 4.4. Let x ∈ R+
0 be a fixed point and let f be an uniformly continuous bounded function

on R+
0 . If f is of the class C1(R+

0 ) in a certain neighbourhood of a point x and f ′′(x) exists, then

lim
n→∞

n [Gαn(f ;x)− f(x)] = 2αx2f ′(x) +
x

2
f ′′(x).

Proof. Let x ∈ R+
0 . Define

ψx(t) =


f(t)− f(x)− (t− x)f ′(x)− 1

2 (t− x)
2f ′′(x)

(t− x)2
, t 6= x,

0, t = x.

Then from Taylor’s formula we have limt→x ψx(t) = 0 and the function ψx is uniformly
continuous and bounded on R+

0 .
Remark that

Gαn(f ;x)− f(x) = f ′(x)Gαn (φx,1;x)

+
1

2
f ′′(x)Gαn (φx,2;x) +Gαn (ψx φx,2;x) .(4.6)
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Using the Cauchy-Schwarz inequality we obtain

n |Gαn (ψx φx,2;x)| ≤
∣∣Gαn (ψ2

x;x
)∣∣1/2 ∣∣n2Gαn (φx,4;x)∣∣1/2 .

Let ηx(t) = ψ2
x(t). We have ηx(x) = 0 and ηx is bounded and uniformly continuous on

R+
0 . Then it follows from Corollary 3.1 that

lim
n→∞

Gαn
(
ψ2
x;x
)
= lim
n→∞

Gαn (ηx;x) = ηx(x) = 0.

Using (4.5) we obtain

lim
n→∞

nGαn (ψx φx,2;x) = 0.(4.7)

From (4.6), (4.7) and Lemma 4.2 we get the assertion. �

Corollary 4.2. Let x ∈ R+
0 . If f satisfies the assumption of Theorem 4.4, then

|Gαn(f ;x)− f(x)| = O
(
n−1

)
.
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Gauthier-Villars, Paris 1926
[3] Babusci, D., Dattoli, G. and Quattromini, M., On integrals involving Hermite polynomials, Appl. Math. Lett.,

25 (2012), 1157–1160
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