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A characterization of cone-convex vector-valued functions

DAISHI KUROIWA, NICOLAE POPOVICI and MATTEO ROCCA

ABSTRACT. An interesting result in convex analysis, established by J.-P. Crouzeix in 1977, states that a real-
valued function defined on a linear space is convex if and only if each function obtained from it by adding a
linear functional is quasiconvex. The aim of this paper is to extend this result for vector-valued functions taking
values in a partially ordered linear space.

1. INTRODUCTION

The role of both convexity and quasiconvexity in optimization theory is nowadays
well-recognized. Various generalizations of the classical notions of convexity and quasi-
convexity of real-valued functions have been proposed in the literature for vector-valued
functions taking values in a real linear space, partially ordered by a convex cone.

In this paper we will investigate only two of them, known as the cone-convexity and
the cone-quasiconvexity. They preserve the characteristic properties of real-valued convex
and quasiconvex functions concerning the convexity of the epigraph and the convexity of
the lower level sets, respectively (cf. Luc [7]).

An interesting topic in vector optimization is to characterize the cone-(quasi)convexity
of the vector-valued functions in terms of usual (quasi)convexity of certain real-valued
functions, by means of appropriate scalarization functions, as for instance the Gerstewitz-
type nonlinear scalarization functions or the extreme directions of the ordering cone’s
polar (see, e.g., La Torre, Popovici and Rocca [6]).

The principal aim of this paper is to present a new characterization of cone-convex
vector-valued functions in terms of cone-quasiconvexity. Our main result (Theorem 3.1)
represents an extension of a classical result by Crouzeix [4], stating that a real-valued
convex function defined on a linear space is convex if and only if each function obtained
from it by adding a linear functional is quasiconvex.

We also prove that, under certain additional assumptions, the cone-convex vector-
valued functions can be characterized in terms of scalar quasiconvexity of certain real-
valued functions defined by means of the extreme directions of the ordering cone’s polar
(Corollary 3.3).

In Section 2 we introduce some preliminary notations and we present the definitions
of the main generalized convexity concepts used in the sequel. Section 3 is devoted to
the characterization of cone-convexity in terms of cone-quasiconvexity and contains our
main results and their corollaries.

2. PRELIMINARIES: NOTATIONS AND BASIC DEFINITIONS

For any real linear space V (i.e., a linear space over the field R of reals) we adopt the
following notations. The origin (i.e., the zero vector) of V will be denoted by 0V . For
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any nonempty sets A,B ⊆ V and Λ ⊆ R, and for any t ∈ R and v ∈ V , we denote
A + B := {a + b | (a, b) ∈ A × B}, v + B := {v} + B, Λ · A := {λa | (λ, a) ∈ Λ × A},
tA := {t} ·A, and Λ · v := Λ · {v}.

Throughout this paper X and Y will be real linear spaces. As usual, the notation
L(X,Y ) stands for the space of linear operators between X and Y . Following Zălinescu
[11], we will denote by X ′ := L(X,R) and Y ′ := L(Y,R) the algebraic duals of X and Y ,
respectively. Whenever Y will be a real topological linear space, we will also consider its
topological dual Y ∗ := {y∗ ∈ Y ′ | y∗ is continuous}.

In the sequel D will denote a nonempty convex subset of the real linear space X , i.e.,
tD + (1− t)D ⊆ D for all t ∈ [0, 1]. Recall that a function f : D → R is called convex if

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)(2.1)

for all x1, x2 ∈ D and t ∈ [0, 1], while f is called quasiconvex if

f(tx1 + (1− t)x2) ≤ max{f(x1), f(x2)}(2.2)

for all x1, x2 ∈ D and t ∈ [0, 1]. Clearly, any convex function is quasiconvex.
The sum of two functions, f1 : D1 → R and f2 : D2 → R, defined on any convex

subsets D1 and D2 of X having at least one point in common, is understood to be the
function f1 + f2 : D1 ∩D2 → R, defined pointwise as

(f1 + f2)(x) := f1(x) + f2(x), ∀x ∈ D1 ∩D2.

In the next section we will often operate with functions defined on D1 = D and D2 = X .
Notice that the sum of any two convex functions is convex, but the sum of two quasicon-
vex functions is not necessarily quasiconvex.

Example 2.1. Let f1 : R→ R and f2 : R→ R be defined for all x ∈ R by

f1(x) = x3 and f2(x) = −x.
Obviously, both functions are quasiconvex, but their sum is not quasiconvex.

The notions of convexity and quasiconvexity of real-valued functions can be naturally
extended to vector-valued functions taking values in a partially ordered linear space. Let
C ⊆ Y be a convex cone of the real linear space Y , i.e.,

0Y ∈ C = R+ · C = C + C.

It is known that C induces a linear partial order on Y , defined for any y1, y2 ∈ Y by

y1 ≤C y2 :⇔ y2 ∈ y1 + C.

A vector-valued function f : D → Y is said to be C-convex if it satisfies the following
vectorial version of (2.1) for all x1, x2 ∈ D and t ∈ [0, 1]:

f(tx1 + (1− t)x2) ≤C tf(x1) + (1− t)f(x2).

Obviously every linear operator A ∈ L(X,Y ) is C-convex. Notice also that the sum of
any two C-convex functions is C-convex.

In contrast to (2.1), in order to adapt (2.2) to vector functions, we cannot simply replace
“≤” by “≤C” since max{f(x1), f(x2)} does not make sense in general when (Y,≤C) is not
a lattice. Following Luc [7], we say that f : D → Y is C-quasiconvex if for all x1, x2 ∈ D
and t ∈ [0, 1] we have

f(tx1 + (1− t)x2) ≤C y

for every upper bound y of {f(x1), f(x2)}. In other words, f is C-quasiconvex if and only
if for all x1, x2 ∈ D and t ∈ [0, 1] we have

(f(x1) + C) ∩ (f(x2) + C) ⊆ f(tx1 + (1− t)x2) + C.
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It is easily seen that every C-convex function is C-quasiconvex.

Remark 2.1. For any f : D → Y the following characterizations hold true:
a) f is C-convex if and only if the epigraph of f , i.e., set

{(x, y) ∈ X × Y | f(x) ≤C y},
is convex. In particular, when Y = Rn and C = Rn

+, then f = (f1, . . . , fn) : D → Rn is
Rn

+-convex if and only if its scalar components, f1 : D → R, . . . , fn : D → R are convex.
b) f is C-quasiconvex if and only if the level set

{x ∈ D | f(x) ≤C y}
is convex for every y ∈ Y . In particular, when Y = Rn and C = Rn

+, then a vector-valued
function f = (f1, . . . , fn) : D → Rn is Rn

+-quasiconvex if and only if its scalar components,
f1 : D → R, . . . , fn : D → R are quasiconvex.

3. MAIN RESULTS: CHARACTERIZATIONS OF C-CONVEX FUNCTIONS

The next theorem represents a characterization of C-convex vector-valued functions in
terms of C-quasiconvexity.

Theorem 3.1. For any vector-valued function, f : D → Y , the following assertions are equivalent:
1◦ f is C-convex.
2◦ f +A is C-quasiconvex for every A ∈ L(X,Y ).

Proof. The implication 1◦ ⇒ 2◦ is obvious, since any operator A ∈ L(X,Y ) is C-convex
and therefore, under the hypothesis 1◦, function f +A is C-convex hence C-quasiconvex.

In order to prove the implication 2◦ ⇒ 1◦, assume that 2◦ holds and consider x1, x2 ∈ D
and t ∈ [0, 1]. We will prove that

tf(x1) + (1− t)f(x2) ∈ f(tx1 + (1− t)x2) + C.(3.3)

Let x0 = x1 − x2. Since (3.3) obviously holds when x1 = x2, we can assume in what
follows that x0 6= 0X . Then, {x0} can be extended to a basis of X by Zorn’s lemma.
Consequently, there is a linear functional x∗ ∈ X ′ (determined by its action on the basis)
such that x∗(x0) = 1. Define A : X → Y for all x ∈ X by

A(x) = x∗(x)(f(x2)− f(x1)).

It is easily seen that A ∈ L(X,Y ) and A(x0) = A(x1 − x2) = f(x2)− f(x1), hence

(f +A)(x1) = (f +A)(x2).(3.4)

By assumption 2◦, the function f +A is C-quasiconvex, hence(
(f +A)(x1) + C

)
∩
(
(f +A)(x2) + C

)
⊆ (f +A)(tx1 + (1− t)x2) + C,

which, in view of (3.4), actually means that

(f +A)(x1) + C −A(tx1 + (1− t)x2) ⊆ f(tx1 + (1− t)x2) + C.

Thus, in order to prove (3.3) it suffices to show that

tf(x1) + (1− t)f(x2) ∈ (f +A)(x1) + C −A(tx1 + (1− t)x2).

Indeed, by linearity of A this relation can be rewritten as

(1− t)(f +A)(x2) ∈ (1− t)(f +A)(x1) + C,

which is true due to (3.4) and the fact that 0Y ∈ C. �

As a straightforward consequence of Theorem 3.1 we recover the following result,
which is a counterpart of Proposition 9 in Crouzeix [4, Ch. 1].
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Corollary 3.1. For any f : D → R the following assertions are equivalent:
1◦ The function f is convex.
2◦ For each x∗ ∈ X ′, the function f + x∗ is quasiconvex.

Example 3.2. Consider the functions f1 and f2 of Example 2.1. In this case, Corollary 3.1
neatly shows that function f = f1 is not convex, since x∗ = f2 is a linear functional but
f + x∗ = f1 + f2 is not quasiconvex.

An interesting question in vector optimization, motivated by the practical importance
of scalarization techniques, is to characterize theC-(quasi)convex vector-valued functions
in terms of usual (quasi)convexity of certain real-valued functions (see, e.g., La Torre,
Popovici and Rocca [6]). A possible approach to this aim is to use the functions belonging
to the polar of the ordering cone C, defined as

C+ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0, ∀ y ∈ C}.

Recall that a function f : D → Y is called ∗-quasiconvex w.r.t. C in the sense of
Jeyakumar, Oettli and Natividad [5] or scalarly-quasiconvex in the sense of Sach [9] if
y∗ ◦ f is quasiconvex for all y∗ ∈ C+.

Lemma 3.1 (Luc [7], Jeyakumar, Oettli and Natividad [5]). Assume that Y is a real locally
convex space and C ⊆ Y is a closed convex cone. For any function f : D → Y the following hold
true:
a) f is C-convex if and only if y∗ ◦ f is convex, for each y∗ ∈ C+.
b) f is C-quasiconvex whenever it is ∗-quasiconvex w.r.t. C.

Corollary 3.2. Under the hypotheses of Lemma 3.1, the assertions below are equivalent for any
function f : D → Y .

1◦ f is C-convex.
2◦ f +A is ∗-quasiconvex w.r.t. C for all A ∈ L(X,Y ).

Proof. Assume that 1◦ is true and consider an operator A ∈ L(X,Y ). Then function f +A
is C-convex as a sum of two C-convex functions. By Lemma 3.1.a) it follows that, for
every y∗ ∈ C+ the function y∗ ◦ (f + A) is convex, hence quasiconvex, which shows that
f +A is ∗-quasiconvex w.r.t. C. Thus 2◦ holds true.

Conversely, assume that assertion 2◦ is true. Then, according to Lemma 3.1.b), f +A is
C-quasiconvex for all A ∈ L(X,Y ). By Theorem 3.1 we infer that function f is C-convex,
i.e., 1◦ holds true. �

Remark 3.2. Assume that the hypotheses on Y and C in Lemma 3.1 are fulfilled and let
f : D → Y . According to Theorem 3.1 and Corollary 3.2, the following conditions are
equivalent:

(C1) f +A is C-quasiconvex for every A ∈ L(X,Y ).
(C2) f +A is ∗-quasiconvex w.r.t. C for every A ∈ L(X,Y ).
However, if f + A is C-quasiconvex for some A ∈ L(X,Y ), we cannot guarantee the

∗-quasiconvexity of f + A. More precisely, although (C1) ⇔ (C2) holds, the following
assertions are not equivalent in general for an a priori given A ∈ L(X,Y ):

(C1′) f +A is C-quasiconvex.
(C2′) f +A is ∗-quasiconvex w.r.t. C.

Example 3.3. Let X = R, Y = R2 and C = R2
+, and let A = 0 ∈ L(R,R2) be the null

operator. Let f = (f1, f2) : D = R→ R2 be the function defined by

f(x) = (x3,−x), ∀x ∈ R.
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By using the definition of C-quasiconvexity (or the componentwise characterization of
C-quasiconvexity, mentioned in Remark 2.1) it is easy to check that function f (i.e., f +A)
is C-quasiconvex. However, by choosing y∗ ∈ C+ defined as y∗(y) = y1 + y2 for all
y = (y1, y2) ∈ R2, we get y∗ ◦ (f + A) = f1 + f2, which is not quasiconvex, as we have
already seen in Example 2.1. Thus the function f +A is not ∗-quasiconvex.

In what follows we denote by extdC+ the set of all extreme directions ofC+. Recall that
y∗ ∈ extdC+ if and only if y∗ ∈ C+ \ {0Y ∗} and for all y∗1 , y∗2 ∈ C+ such that y∗ = y∗1 + y∗2
we actually have y∗1 , y∗2 ∈ R+ · y∗.

The following result gives a characterization ofC-convex vector-valued functions, which
is similar to Lemma 3.1.a), but involves only the extreme directions of C+.

Lemma 3.2 (Popovici [8, Th. 2.1]). Assume that Y is a real locally convex space andC is a closed
convex cone of Y satisfying the property that C+ is the weak*-closed convex hull of extdC+. For
any function f : D → Y the following assertions are equivalent:

1◦ f is C-convex.
2◦ y∗ ◦ f is convex, for each y∗ ∈ extdC+.

Remark 3.3. Every closed convex cone C with nonempty interior in a Banach space Y
satisfies the property that C+ is the weak∗-closed convex hull of extdC+. However, there
are cones with empty interior which satisfy this condition as well (see Example 3.5 below).

Corollary 3.3. Let f : D → Y . Under the hypotheses of Lemma 3.2 the following assertions are
equivalent:

1◦ f is C-convex.
2◦ y∗ ◦ f + x∗ is quasiconvex, for all y∗ ∈ C+ and x∗ ∈ X ′.
3◦ y∗ ◦ f + x∗ is quasiconvex, for all y∗ ∈ extdC+ and x∗ ∈ X ′.

Proof. The equivalence 1◦ ⇔ 2◦ follows by Lemma 3.1.a) and Corollary 3.1, while the
equivalence 1◦ ⇔ 3◦ follows by Lemma 3.2 and Corollary 3.1 (applied for y∗ ◦ f ). �

Example 3.4. Let Y = Rn be the real Euclidean space, partially ordered by a polyhedral
cone C with nonempty interior in Rn. By identifying Y ∗ = (Rn)∗ with Rn, the polar cone
C+ ⊆ Rn is also polyhedral, being generated by a finite number of its extreme directions,
d1, . . . , dm. Corollary 3.3 actually shows that a vector function f = (f1, . . . , fn) : D → Rn

is C-convex if and only if, for all i ∈ {1, . . . ,m}, the function 〈di, f〉 + x∗ is quasiconvex
for every x∗ ∈ X ′, where 〈·, ·〉 denotes the usual inner product in Rn.

In particular, if C = Rn
+ is the usual ordering cone, then C+ = Rn

+ and

extdC+ = ]0,∞[·B,

where B is the canonical basis of Rn. Hence f is Rn
+-convex if and only if the scalar

functions α1f1+x∗, . . . , αnfn+x∗ are quasiconvex for all positive numbers α1, . . . , αn and
every functional x∗ ∈ X ′, which indeed is equivalent to the fact that f1 + x∗, . . . , fn + x∗

are quasiconvex for every x∗ ∈ X ′.

Example 3.5. Let p ∈ ]1,∞[ be a real number and consider the sequence space Y = lp,
partially ordered by

C = lp+ = {y = (yi)i∈N ∈ lp | ∀ i ∈ N, yi ≥ 0}.

Then, by identifying Y ∗ = (lp)∗ with lq (where 1/p + 1/q = 1), we have C+ = lq+. Notice
that intC = ∅while C+ is the weak∗-closed convex hull of

extdC+ = {y∗ = (y∗i )i∈N ∈ lq | ∃ i ∈ N : y∗i > 0, y∗j = 0, ∀ j ∈ N, j 6= i}.
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In this case, Corollary 3.3 shows that a function f = (fi)i∈N : D → lp is lp+-convex if and
only if, for all i ∈ N, y∗i > 0 and x∗ ∈ X ′, the function y∗i fi + x∗ is quasiconvex, which
indeed is equivalent to the fact that fi + x∗ is quasiconvex for all i ∈ N and x∗ ∈ X ′.

In contrast to C-convex functions, the C-quasiconvex ones cannot be easily handled
by scalarization. In order to obtain a characterization of C-quasiconvexity similar to
Lemma 3.2, some additional assumptions must be imposed on the ordered space (Y,≤C).

Lemma 3.3 (Benoist, Borwein and Popovici [3, Th. 3.1]). Assume that Y is a real Banach
space and C ⊆ Y is a closed convex cone such that C−C = Y and C+ is the weak*-closed convex
hull of extdC+. For any function f : D → Y the following assertions are equivalent:

1◦ f is C-quasiconvex.
2◦ y∗ ◦ f is quasiconvex, for each y∗ ∈ extdC+.

As a consequence of Theorem 3.1 and Lemma 3.3 we can derive the following result.

Corollary 3.4. Let f : D → Y . Under the hypotheses of Lemma 3.3 the following assertions are
equivalent:

1◦ f is C-convex.
2◦ y∗ ◦ (f +A) is quasiconvex, for all y∗ ∈ extdC+ and A ∈ L(X,Y ).

Remark 3.4. Obviously y∗ ◦ (f + A) = y∗ ◦ f + y∗ ◦ A, for all y∗ ∈ Y ′ and A ∈ L(X,Y ).
By comparing assertion 3◦ of Corollary 3.3 with assertion 2◦ in Corollary 3.4, a natural
question arises on whether any x∗ ∈ X ′ could be expressed as a composite function y∗ ◦A
for some A ∈ L(X,Y ), when y∗ ∈ extdC+ is a priori given. We end our paper by giving
a positive answer to this question. To this aim, we will use linear processes.

Recall that a set-valued function F : X → 2Y is said to be a linear process in the sense
of Aubin and Frankowska [2] if its graph,

{(x, y) ∈ X × Y | x ∈ X, y ∈ F(x)},
is a linear subspace of X × Y . Notice that the linear processes are also known in the
literature under different names, as for instance in the early paper by Arens [1] or in the
recent one by Száz [10], where they are called linear relations, a set-valued function being
identified with its graph, which in its turn can be seen as a binary relation.

Lemma 3.4 (Száz [10, C. 8.3]). Every linear process, A : X → 2Y , taking nonempty values,
admits a linear single-valued selection function, i.e., a linear operator A ∈ L(X,Y ) such that
A(x) ∈ A(x) for all x ∈ X .

Theorem 3.2. For any linear functionals, x∗ ∈ X ′ and y∗ ∈ Y ′ \ {0Y ′}, there exists a linear
operator A ∈ L(X,Y ) such that x∗ = y∗ ◦A.

Proof. Let x∗ ∈ X ′ and let y∗ ∈ Y ′ be such that y∗(ỹ) 6= 0 for some ỹ ∈ Y . Consider the
set-valued map A : X → 2Y , defined for all x ∈ X by

A(x) := {y ∈ Y | y∗(y) = x∗(x)}.(3.5)

It is a simple exercise to check that for all x ∈ X we have

A(x) =
x∗(x)

y∗(ỹ)
ỹ + ker y∗.

By linearity of x∗ it follows that A(x1) + A(x2) ⊆ A(x1 + x2) and tA(x) ⊆ A(tx) for all
x1, x2, x ∈ X and t ∈ R. Thus the graph of A is a linear subspace of X × Y , i.e., A is
a linear process. Due to Lemma 3.4, we can choose a selection A ∈ L(X,Y ) of A. By
definition (3.5) of Awe conclude that y∗(A(x)) = x∗(x) for all x ∈ X , i.e., x∗ = y∗ ◦A. �
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The following result is a straightforward consequence of Theorem 3.2.

Corollary 3.5. Let f : D → Y be a function and let y∗ ∈ Y ′ \ {0Y ′}. The following assertions
are equivalent:

1◦ y∗ ◦ f + x∗ is quasiconvex, for all x∗ ∈ X ′.
2◦ y∗ ◦ (f +A) is quasiconvex, for all A ∈ L(X,Y ).

Remark 3.5. Since extdC+ ⊆ C+ \ {0Y ∗} ⊆ Y ′ \ {0Y ′}, Corollary 3.5 allows us to recover
the conclusion of Corollary 3.4 directly from Corollary 3.3, under the mild hypotheses of
Lemma 3.2, by avoiding so the use of Lemma 3.3.
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[10] Száz, Á., Linear extensions of relations between vector spaces, Comment. Math. Univ. Carolinae, 44 (2003),

367–385
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