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On the Stancu type bivariate approximation formula

DAN MICLAUS

ABSTRACT. In the present paper we establish the form of remainder term associated to the bivariate approx-
imation formula for Stancu type operators, using bivariate divided differences. We also shall establish an upper
bound estimation for the remainder term, in the case when approximated function fulfills some given properties.

1. INTRODUCTION

Let N be the set of positive integers and Ny = N U {0}. The operators B,, : C[0,1] —
C10, 1] given by

(1.1) Bu(f;2) = pk(@)f (&),
k=0

where p,, ;(x) are the fundamental Bernstein’s polynomials defined by

(12) pn,k('r) = (Z)xk(l - x)n7k7

for any = € [0,1], any k£ € {0,1,...,n} and any n € N, are called Bernstein operators.
These operators were introduced by S. N. Bernstein [8]. Let a be a non-negative param-

eter, which may depend only on the natural number n. The operators p . C [0,1] —
C10, 1] given by
13) P (fre) = 3o pi@)f (),

k=0

where pff,i(x) is a polynomial, which can be expressed by means of the factorial power

thl =t —h) - ... (t — (n — 1)h), tl%"] = 1, (the nth factorial power of ¢ with increment
h), defined by

(4 Pile) = ()=

forany z € [0,1], any k € {0,1,...,n} and any n € N, are called Stancu operators. These
operators were introduced by D. D. Stancu [19]. He investigated this linear polynomial
operator of Bernstein type, in order to use it in the theory of uniform approximation of
functions. In the case when a = 0, the operators (1.3) reduce, obviously, to the classical
Bernstein operators. For o = + one obtains a special case of the operators (1.3), introduced
by L. Lupas and A. Lupas [14]. This is given by

a9 A=Y lr ) = 3 (e ).
k=0

k=0
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In [15], we established that an expression of the remainder term of Stancu operators,
proved by D. D. Stancu [20], using only divided differences of second order is just an
intermediate form of the relation

n—1

(1.6) R{®(frw) = —20op)kem) N2 ) (2 + ) [o, &, 551 1],
k=0

forz € [0,1)\ {£ | k =0,n}, where sfﬁ,i(x) =) =t a](gg”gﬁalﬁ " a], z>0,a > 0. Also
in [15], the study on the remainder term associated to the particular case (1.5) of Stancu
operators is made in analogous manner. In a recent paper [1] is given a new represen-
tation of the remainder in the Bernstein approximation based on divided differences, for
arbitrary functions.

The aim of this paper is to revise, respectively establish the form of remainder term as-
sociated to the bivariate approximation formula of Stancu type operators, using bivariate
divided differences. The revision is motivated by two ideas. One of them is contained in
[15], where the revisited form of the reminder term associated to the univariate approxi-
mation formula of Stancu operators is established. The another one, is based on the fact
that Stancu operators are not projectors and the decomposition formula of the identity
operator for determining the form of the bivariate remainder term can not be applied.
Concerning the second idea, the reader is invited to see the paper [5], where a detailed
and complete exposure for the case of Bernstein operators was given. As a new direction
of research, we note that, this revised form of remainder term associated to the bivariate
approximation formula of Stancu type operators can be used in construction of quadra-
ture and cubature formulas. An example in this sense could be the recent paper [7], where
the Bernstein quadrature formula was revised.

2. AUXILIARY RESULTS

W. ]. Gordon [11] has introduced the basic notions of the algebraic theory of multivari-
ate functions approximation, a theory which was studied and developed by F. J. Delvos
and W. Schempp [10]. The method of parametric extension is a procedure for construct-
ing linear operators on the spaces of multivariate functions, starting from linear operators
defined on spaces of univariate functions, (see [10]).

Let S = [0, 1] x [0, 1] be a polygonal domain and suppose that f € C(S) is given, (z,y) € S
and m,n € N. Then, for «, 8 > 0 the parametric extensions of (1.3) are defined by

(2.7) PSP (fra,y) ZZp (y)f (L,y), respectively
=0 j=0
(2.8) J PP (frmy) Zzpm n ) f (z,L).
=0 j=0

Considering the operators (2.7) and (2.8) the bivariate Stancu operators [20], [9] P<a .2)
C(S) — C(S) can be got by the tensorial product of parametric extensions and are given
by

29) PP (yP,EQ"”; ) PP (fiz,y) = Zzpml P W)f (5. 4)

=0 j=0

Let us recall some results concerning divided differences, which we will use afterwards
in the paper. Suppose that f : I — R is a real-valued function and z¢, 21 € I, such that
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xo # 1, I being a certain interval of the real axis. The first order divided difference of f
with respect the distinct knots zg, z; is defined by

(2.10) [0, z1; f] = f(wxlz :iixO)

If 2o, 21, ..., 2z, € I are distinct knots and f : I — R is given, then the nth order divided
difference of f with respect the mentioned knots is defined by the recurrence relation

[xl?"')xn;f]_[‘II"O?"')xn*l;f]
Ty — X ’

(2.11) [0, 15 T f] =

We note that, in the case of coalescing points, if f is a suitably differentiable function, the
divided difference can be defined by using a limiting process. The divided differences
were intensively studied by T. Popoviciu [18].

Now, let I, J be certain real intervals, f : I x J — R be a real-valued function and
(z0,Y0), (x1,11) € I x J, such that 2y # x1 and yy # y1. The bivariate divided differences
of f with respect the knots (z¢,y0), (¢1,¥1) are defined using the method of parametric
extensions in [2], by

(212) [ To, T1 ;f} _ fleny) = f(@o,41) = (@1, 90) + F(@o, yo)

Yo, Y1 (71— 20)(¥1 — Y0)

Other equivalent definitions for univariate, respectively bivariate divided differences can
be found in the excellent monographs [12] and [13]. In definition of divided differences
the number of abscissas in general is not equal with the number of coordinates. It follows

o [
[ To, T1 'f} _ flz1,90) = f(%0,%0) [ Lo, T1, T2 .f} _ Yo

(.

Yo T1 — X0 Yo T2 — T ’
where ¢, x1, z2 are distinct knots. If zg,21,...,2, € I and yo,41,...,y4 € J are distinct
knots and f : I x J — Ris given, the following recurrence formula

TOy L1y -y T 1 T1,...,T
2.13) { v f] _ ([ b f]
Yo, Yis-- -5, Yq (Ip*l?o)(yquo) Y1y--5Yq

Oy --3Tp—1 | Tly--03Tp . Oy -3 Tp—1 |
- ) - ) + )
|:y1a"'7yq f:| |:y05"'ayq—1 f:| |:y0a"'7yq—1 f:|>
holds (see [2]), for p,qg € N, p,q > 2 and

Loy L1y.--, L Loy LjqseesLf
214 I bl P 7 — 0 19 bl P 7 ,
( ) |:y07y1;"'ayq f:| I:yj(nyjla"'ayjq f:|

where (ig, i1, . . .,4p), (Jo,J1,- - -, Jq) are permutations of (0, 1, ..., p), respectively (0,1,.. ., q).
Another interesting results concerning univariate, respectively bivariate divided differ-
ences with multiple knots can be found in a recent paper of O. T. Pop and D. Barbosu
[17].
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3. MAIN RESULTS

In the following, let f : S — R be given. The parametric extensions of the particular
case (1.5) of Stancu operators are defined in [16] and are given by

(3.15) P (Foa ) Zzpm Dl W) f (2.9)
=0 j=0
D N [ S ) s D S -
Z (z)(j) [r 2] [ 2 f (,y) , respectively
i=0 j=0 e
(3.16) P ) = S o @l ) f ()
i=0 j=0
S ) C ) L 1 i P ) i
_Z;jz:(:)(i)(j) 1[m_%]1[n I f(fﬂvfl)

Using the parametric extensions (3.15) and (3.16) we get the tensorial product, given by
1 1 1 1 11 . .
(3.17) P (yPrim’”;x,y) = P () = S A @l s (2, 2).
=0 j=0

We shall prove:

Theorem 3.1. Forz € [0, 1)\ { | i =0,m}andy € [0,1)\ {Z | j = 0,n}, the remainder term
associated to the Stancu bivariate approximation formula can be represented under the following
form

m—-l n i il
Ty 2oy T
(318) RS (fim,y) = —2USHEma) NN (@ +a) <ﬁj>(y)[ oo ;f}
1=0 j=0 n
m n—1 i
y(1 14+n, —
SRS S w8 | T s oS
=0 7=0 Y n’ n
m—1n—1 o A i1
zy(1—2x)(1 1+ma)(1+n B8 me m
e ) 57 S 2 e+ s B) | T ).
i=0 j=0 ‘n? n
m— o)t (1_paq)lm—1-i,—a]
where Sfr?il,i(xJFO‘) = ( il)( - (1+éa)lmt1?fa] .
Proof. Starting with the approximation formula f(z;y) = D(fra, y) + RSB (fix Y),

in order to evaluate the remainder term, using the Vandermonde convolution formula we
notice that the bivariate Stancu operators (2.9) reproduce constants, such that

(3.19) O (f;2,y) = Zzpm pi ) (Fay) — £ (£, 2))

1=0 5=0

Using the identity

Fy) = f (o k) = (f (=, )—f(#%))ﬂf(mvy) G
+ (f(z,9) = f (=, ( !

2= f Gy + )
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and taking into account (3.19), it follows

O (fr,y) = Zzpm @pi W) (f (2, 4) = f (£, 2))

i=0 j=0
F S @) (f (29) — (5. 2)
i=0 j=0
F3S R @) () — F (0 2) — £ (S0) + 1 (£,2)
o =51+ S5 + Ss.
For Sy, it follows $; = 3% ) P (@)pl) () =t [ xjﬁ J} next taking into account
mx —i = (m—i)(z + zza)O]— il —z+ (m—i)a) anZl the following relation tli+7:h] =

tlhl (¢ — i)l for anyi j €N, h#0,weget

Zmez z)pie) (y) L letie) et in i) [ g m ;f}

i=0 57=0
R pli+1,—al (m—i,—al (@) 2t
1 itl,—al(] _pylm—i,—a =
= Z (mi ) 1%%32} pn,j (y) [ l?m ’f]
=0 j=0 n
" li,—a] [m+1—i (8) i
1 Bh—al_ m+1—i,—a] =
-3D () R ) | ]
i=1j=0 n

n m— [1,—«a] [1,—«a] i,—a] [m—1—i,—«] l"l
I R e ) VR

i=0 j=0
pa g m—1 x[i+1’70‘](1—7;)[m7i‘70‘] (B) Jf,%
- (") 1l —al P | 5™ S
=0 j=0 n
m—1 n i
z(l—x am [} z, ~
- e 37550 e+ o) | 7 ]
i=0 j=0 n
m—1 n T i+l
sten) 3350 )| T ]
i=0 j=0 n
z(l—z)(1+am) R (a (B) z, L Z, el
— et 37 5050 v alo) (| 57 ] - | )
i=0 j=0 n n
m—1 n T L u
_x(ljnz&(iZ)am) Zsﬁg,i@*‘a)pfﬁ,; (y) [ mom §f] .
i=0 j=0 n
Analogously for Sy, it follows S5 = }° Z p ( )png(y)”yn;ﬂ [ yﬁl : f},next taking into
y

,_;o

accountny —j = (n —j)(y +jB) — ( + (n — j)B), we get
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)(n Ny+iB)—j(1—y+(n—35)B) [ ™. ;f]

m n
=2 p@n :

=0 j=0

m n—1 .
[3+1,=81 (] _yy)ln—3,— 8] L
=S Y AR @() E | |
=0 7=0 ‘n
U =Bl (1 —qy)[n+1—d,—8] 4
XY (R |
=0 j=1 ‘n
m n—1 i
_ ¥O= Qo) L
- ™m,i n + i
S5 @0 | ]
7 7=0
m n—1 QP
_u0=p (o) §S e 4 (6) 1J(y+5)[ " ;f]
0 j=0 Y=
i=0 j=
m n—1 i i
g S5, e ([ 3 o1] = [ s o))
0 0 Y5 Y
i=0 j=
m n—1 i
__ y(1-y)(1+Bn) <6> m .
= SR S S @4 B) | T e o]
=0 57=0 n’ n

For Ss, it follows S3 = Z Z pml( )Pn; (y) (me=t) (mel) [ y7 m ,f] next taking into

=0 j=0
account the identities max —i = (m —i)(x +ia) —i(l—x+ (m—i)a),ny—j = (n—j)(y+

JB) =il —y+ (n—j)B), we get

m— 1n—1 i
[z+1 7o¢]( )[7n7i,7a]y[j+17*5](17y)[”*j«*5] Z, m .
§ ; ) 1lm,—al1[n,—B] y l 7f
i=0 j= 0 n
m—1 n
(m 1) (n 1) glit1l, —al (a- T)[m “ 70‘]@/ (1 y)[n+1 3—hl €, m . f
i j—1 1lm,—al][n,—A] Yy 2
i=0 j=1 ' n
m n—1 ) A ) ] 7
. (mfl) (TL*l) x[z,fu](1_$)[1n+177,,7a]y[‘]+1,*51(1_y)[n71,*5] xZ, ﬁ 'f
i—1 ] 1[m,—a]1[n,—/3] y J bl
i=1 j=0 ' n
& Ll +1mi,—a] nt1-g—8) [z, 2
m—1\ mn—1y !> " (1—g)lm Bmalyli =Bl (1 —gy)lnti-d,— ‘m .
‘*‘E:E:(iq)(jq) T =aT1 0] y, L i f
i=1 j=1 ’n
=Ty — Ty — T3 + Ty,
where
it li+1,-al [m—i,—al, li+1,~ 8] (n—s.—5]
o m—1\ (n—1) z" T 7 (1—g)m=H =yt =Pl _q)lm =7~ x, H
T = ( i )( g ) 1lm.—al1[n.—B] y, L o f
i=0 j=0 .
m—1n—1 i
_ zy(l—z)(1—y)(1+mao)(1+np) E : § : (B) Ty .
- (14+a)(1+8) sm 1,2 :L’ + a)sn—l,j(y + B) Y, 3” ’f :
n

=0 7=0
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S

n

plitl—al (g _gyim—is—aly =Bl (1 _yyint1-5.-8 [ x, L
= Z Z T e 10 ] T
=0 j=1 Y, n
m—1n—1 ) ) ) ) i
o m—1\ (n—1\ allth—el(1—g)lm—t—elyli+1, -8l (1_,)ln—3,—F] T,
- ( i )( j ) 1lm,—al1[n, —B] y Jj+1 if
1=0 _7=0 L
m—1n—1 i
_ zy(l—=z)(1—y)(1+ma)(1+npB) (8 Tom . .
- (14a)(1+8) Z Zsm 1,4 LL’ +a)8n—17j(y+ﬁ) y ﬁi—l 7f .
=0 7=0 ’on
ULy (i, —o] (m41—i,—al [+1, -] m—s-8 [ x, -2
— m—1\ (n—1\ x>~ (1—g)mT1=H=alyli+h, =Pl (] _q)ln=3.— v
T3 = Z Z (i—l)( j ) 1lm,—al1[n,—A] J i f
i=1 j=0 Y n
m—1n—1 ) ) ) ] i+1
- m—1\ (n—1\ zlfth—el(1—g)lm—t—elyli+1, -8l (1_4)ln—3,—F] T,
- ( i )( j ) 1[m,—al1[n,— 8] J 7f
i=0 j=0 Yo
m—1n—1 r. i 1
_ zy(l—=z)(1—y)(1+ma)(1+np) B > Y m .
- (14+a)(145) Zzsm 111’4—0&) (y+5) lm 7f
=0 7=0 Y, n

m n
o m—1\ fn—1y 2!t =2l (1_g)m+1-i,—al li,=8] (1 _y)ln+1-4,— 5] T,
Ty = E : E :(1—1)(3‘—1) 1[m,—al1[n, 5] 2 o f
L n

m—1n—1
_ m—1\ (n—1\ gt el (1—g)lm -t —alyli+1, =8l _yln—d =81 | T, =
- ( i )( j ) 1lm.—al1(n,— Al j f

.
<
.
I
o

m—1n-—1 i1
zy(l—x)(1 (1+ma)(1+np B z,
— s imaind) S8 o) o a)sl?) (4 ) [ i ,f]
=0 7=0 "

Using the last expressions of 11,15, T3, T4 and the relation (2.13), it follows

m—1n—1 7 ’L‘-‘rl
zy(l—z)(1—y)(1+ma)(1+nB) (B sm’ . m .
Sy = WOl Gind) 37 % " sl i@+ a)s,” (y + ) { g 1 ,f} :
i=0 j=0 mon

Taking into account the last expressions of S, S2 and S3, it follows the desired equality.
O

Let C?2(S) be the space of bidimensional functions with continuous partial derivatives
in S of order less than or equal to two. The upper bound estimation for the remainder term
is given in:

Corollary 3.1. If the function f has the following properties
i) feC*%(S),
ii) there exists da;g s on S,

o%f 0

iii) 5%, By]; , af? gyz are bounded on S, then the inequalities hold

(3.20) R (Fra.y)
< iﬂ”“;,,fg&tgm) Mso[f] + iy“;,zﬁ;f") Mo, |f] + S S = 2 Ma o f]

(1+am)(148n)
< 8m(1+a) My po[f] + Sn(l_t,_g) Mo2[f] + m]\@ 2[f]




110 Dan Miclaus
for x € [0,1\{L|i=0,m}, y € [O,l]\{% |j=0,n}, « = a(m) — 0asm — oo,

B =08(Mn) - 0asn — ooand m,n € N, where Mao[f] := sup %(m,y) , Mosf] ==

(z,y)eS
82
5F (@,y)

sup
(z,y)ES

, My s[f] := sup
(z,y)€S

84
Wafyz(w?y)’v

Proof. Applying the mean value theorem for the bivariate divided differences, it follows
that exist (51 (Z7 ])7 m (27 J))a (62(% J)u 772(i7 .7))7 (53(27 .7)7 773(27 ])) € (07 1) X (07 1)/ such that

m—1 n

=z x mao 2 .. ..
R (fr,y) = —20=2bma) No N0 (@ + a)pl (9) 5 55 (6 5),m G, )
=0 j=0
m n—1 )
YLD NN pih(@)si (v + B)5 54 (626, 5), 126, 5)
i= Oj 0

ey(1—2)(1—y) (1tma)(14n8) X~ X () ne .
+ - nLn(l?{l—a)(l-&-B) ZS -1, I’+Oé Sp— 1,](y+ﬂ)1

(53(Z 7)sm3(i,9))-

=0 j7=0

Next by using modulus, the fact that partial derivatives of function f are bounded on S
and the Vandermonde convolution formula, one arrives at (3.20). ]

Remark 3.1. For o = 0, respectively 8 = 0 one remarks that the results of Theorem 3.1
and Corollary 3.1 reduce to the classical case of bivariate Bernstein operators, (see [3], [4],

(5], [6]).

The study on the remainder term associated to the particular case of Stancu operators,

can be done in analogous manner, i.e., starting with the approximation formula f(z,y) =
1 1

P<m’:>(f T y)+R<m’">(f,x y), it follows:

Theorem 3.2. For z € [0,1]\ {£ |i=0,m} and y € [0,1)\ {Z | j = 0,n}, the representation
of the remainder term for the particular case of Stancu operators, is given by

o z(l-x ™ - $71,u
2 RE (fny) =B Y Sk e | ]
=0 j=0 n
201-9) N2 S () 1 (3) N
- yn—i—ly Zzpmﬁ (I)Snil,j (y+ n) |: ni j+1 7f:|
=0 j7=0 Y, n’ n
try(-n)(1-y) N N () 1y (3 NEX S~
+ T D r D) S (@ + ) a2y (v + 3) [ g b ;f] :
i=0 j=0 n’ n
L €T i [L, 7”’] —xT 1 ["Lilil E]
where s7<n"1>1i (er %) _ (mi—l)( +i) (1—2+ )1
7 (1+%)["‘ -]
Proof. Using the same idea as in Theorem 3.1, we get the relation (3.21). O

The above result follows also from (3.18), if we take v = -, respectively 8 = +

Corollary 3.2. If the function f has the following properties
i) f € C%2(8S),
i1) there exists #gqﬁ on S,
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8%f 0%f  9'f

iii) (%2 /557 Guzoyz are bounded on S, then the inequalities hold
1
(22 (R (fia,y)| < D My olf] + M My o] + 2SSO gy ]

< (m+1)M2 olf] + 4(n+1)M0 2[f1+ mMz,z[ﬂ,

forz e [0,1\{L |i=0,m},ye[0,1]\{|j=0,n}andm,n €N, where Ma[f], My[f],
Ma o[ f] were already presented.

Acknowledgment. I thank to the reviewer for his suggestions leading to the improvement
of this paper.
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