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Five short lemmas in Banach spaces

QINGPING ZENG

ABSTRACT. Consider a commutative diagram of bounded linear operators between Banach spaces

0 −−−−−→ X
J−−−−−→ Y

Q−−−−−→ Z −−−−−→ 0

A

y B

y C

y
0 −−−−−→ X −−−−−→

J
Y −−−−−→

Q
Z −−−−−→ 0

with exact rows. In what ways are the spectral and local spectral properties of B related to those of the pairs of
operators A and C? In this paper, we give our answers to this general question using tools from local spectral
theory.

1. INTRODUCTION

In homological algebra, the short five lemma states that in abelian category, or in the
category of groups, for the following commutative diagram

0 −−−−→ X1
J1−−−−→ Y1

Q1−−−−→ Z1 −−−−→ 0

A

y B

y C

y
0 −−−−→ X2 −−−−→

J2
Y2 −−−−→

Q2

Z2 −−−−→ 0

with exact rows, if A and C are isomorphisms, then B is an isomorphism as well.
The present work is concerned with the analogues in Banach category. More precisely,

for the following commutative diagram of bounded linear operators between Banach
spaces

(1.1)

0 −−−−→ X
J−−−−→ Y

Q−−−−→ Z −−−−→ 0

A

y B

y C

y
0 −−−−→ X −−−−→

J
Y −−−−→

Q
Z −−−−→ 0

with exact rows, what are the relationships between the (local) spectral properties of B
and those of the pairs of operators A and C? In this paper, we give our answers to this
general question using local spectral theory. For some pioneering work in this direction,
we refer the reader to the seminal monograph by Laursen and Neumann [5, pp. 112-120
and p. 145].

Received: 16.01.2014. In revised form: 20.03.2015. Accepted: 27.03.2015
2010 Mathematics Subject Classification. 47A10, 47A11, 47A53.
Key words and phrases. Short five lemma, Bishop’s property, single valued extension property, Drazin invertible,

spectrum.

131



132 Qingping Zeng

2. NOTATIONS

We first fix some notations in spectral theory. Throughout this paper, B(X) will denote
the set of all bounded linear operators on a complex Banach space X . For an operator T ∈
B(X), let N (T ) denote its kernel, α(T ) its nullity, R(T ) its range, β(T ) its defect, σ(T ) its
spectrum, σap(T ) its approximate point spectrum, σsu(T ) its surjective spectrum and ρ(T )
its resolvent set. If the rangeR(T ) of T ∈ B(X) is closed and α(T ) <∞ (resp. β(T ) <∞),
then T is said to be upper semi-Fredholm (resp. lower semi-Fredholm). If T ∈ B(X)
is both upper and lower semi-Fredholm, then T is said to be Fredholm. If T ∈ B(X) is
either upper or lower semi-Fredholm, then T is said to be semi-Fredholm, and its index is
defined by ind(T ) = α(T )−β(T ). The upper semi-Weyl operators (resp. lower semi-Weyl
operators) are defined as the class of upper semi-Fredholm operators with index less than
or equal to zero (resp. lower semi-Fredholm operators with index greater than or equal to
zero), while Weyl operators are defined as the class of Fredholm operators of index zero.
Recall that the descent and the ascent of T ∈ B(X) are dsc(T ) = inf{n ∈ N : R(Tn) =
R(Tn+1)} and asc(T ) = inf{n ∈ N : N (Tn) = N (Tn+1)}, respectively. It is known that
if asc(T ) and dsc(T ) are both finite, then they are equal ([1, Theorem 3.3]). We call an
operator T ∈ B(X) Drazin invertible if asc(T ) = dsc(T ) < ∞. An operator T ∈ B(X) is
called upper semi-Browder (resp. lower semi-Browder) if it is upper semi-Fredholm of
finite ascent (resp. lower semi-Fredholm of finite desent), while T is called Browder if it
is Fredholm of finite ascent and finite descent.

For T ∈ B(X), let us define the upper semi-Fredholm spectrum, lower semi-Fredholm
spectrum, essential spectrum, upper semi-Weyl spectrum, lower semi-Weyl spectrum,
Weyl spectrum, upper semi-Browder spectrum, lower semi-Browder spectrum,Browder
spectrum and Drazin spectrum of T as follows respectively:

σusf (T ) = {λ ∈ C : T − λI is not upper semi-Fredholm},

σlsf (T ) = {λ ∈ C : T − λI is not lower semi-Fredholm},
σe(T ) = {λ ∈ C : T − λI is not Fredholm},

σusw(T ) = {λ ∈ C : T − λI is not upper semi-Weyl},
σlsw(T ) = {λ ∈ C : T − λI is not lower semi-Weyl},

σw(T ) = {λ ∈ C : T − λI is not Weyl},
σusb(T ) = {λ ∈ C : T − λI is not upper semi-Browder},
σlsb(T ) = {λ ∈ C : T − λI is not lower semi-Browder},

σb(T ) = {λ ∈ C : T − λI is not Browder},
σd(T ) = {λ ∈ C : T − λI is not Drazin}.

We next fix some notations in local spectral theory. Let D(λ, r) be the open disc centred
at λ ∈ C with radius r > 0. We say that T ∈ B(X) has the single valued extension
property at λ ∈ C (SVEP at λ for brevity), if there exists r > 0 such that for every open
subset U ⊆ D(λ, r), the only analytic function f : U → X which satisfies (T − µ)f(µ) = 0
for all µ ∈ U is the function f ≡ 0. Let S(T ) := {λ ∈ C : T does not have the SVEP at λ}.
An operator T ∈ B(X) is said to have SVEP if S(T ) = ∅.

Let O(U,X) denote the Fréchet algebra of all X-valued analytic functions on the open
subset U ⊆ C endowed with uniform convergence on compact subsets of U . An operator
T ∈ B(X) is said to satisfy Bishop’s property (β) at λ ∈ C if there exists r > 0 such that
for every open subset U ⊆ D(λ, r) and for any sequence {fn}∞n=1 ⊆ O(U,X), lim

n→∞
(T −

µ)fn(µ) = 0 in O(U,X) implies lim
n→∞

fn(µ) = 0 in O(U,X). We denote by σβ(T ) the set

where T fails to satisfy (β) and we say that T satisfies Bishop’s property (β) if σβ(T ) = ∅.
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3. MAIN RESULTS

We begin by the following local version of [5, Lemma 2.2.1].

Lemma 3.1. Under the hypothesis (1.1), we have
(1) S(A) ⊆ S(B) ⊆ S(A) ∪ S(C);
(2) σβ(A) ⊆ σβ(B) ⊆ σβ(A) ∪ σβ(C).

Proof. The first inclusions of (1) and (2) are evident, while the second inclusions of (1) and
(2) can be seen along the lines of the argument in [5, Lemma 2.2.1]. �

In the next theorem, we relate the local spectral properties of B to those of A and C by
using Gleason’s theorem and Allan-Leiterer’s theorem.

Theorem 3.1. Under the hypothesis (1.1), we have
(1) S(B) ∪ σsu(A) = S(A) ∪ S(C) ∪ σsu(A);
(2) σβ(B) ∪ σsu(A) = σβ(A) ∪ σβ(C) ∪ σsu(A).

Proof. We will prove (2), omitting the similar proof of (1).
(2) By Lemma 3.1, it suffices to show that

σβ(C) ⊆ σβ(B) ∪ σsu(A).
Let λ /∈ σβ(B)∪σsu(A). Then there exists r > 0 such that for every open subsetU ⊆ D(λ, r)
and for any sequence {gn}∞n=1 ⊆ O(U, Y ), lim

n→∞
(B − µ)gn(µ) = 0 in O(U, Y ) implies

lim
n→∞

gn(µ) = 0 inO(U, Y ). We can take r sufficiently small such thatD(λ, r)∩σsu(A) = ∅.
Let U ⊆ D(λ, r) be open and {hn}∞n=1 ⊆ O(U,Z) such that lim

n→∞
(C − µ)hn(µ) = 0 in

O(U,Z). By the version of Gleason’s theorem for exact sequences ([5, Proposition 2.1.5]),
we can find a sequence {gn}∞n=1 of analytic Y -valued functions such that

Qgn(µ) = hn(µ), for all µ ∈ U.
HenceQ(B−µ)gn(µ) = (C−µ)Qgn(µ) = (C−µ)hn(µ)→ 0 inO(U,Z). By [5, Proposition
1.2.1], there exists {un}∞n=1 of analytic Y -valued functions such that Qun(µ) = 0 for all
µ ∈ U and

(B − µ)gn(µ) + un → 0 in O(U, Y ).

Again by the version of Gleason’s theorem for exact sequences, we can find a sequence
{vn}∞n=1 of analytic X-valued functions such that

Jvn(µ) = un(µ), for all µ ∈ U.
It follows from Allan-Leiterer’s theorem ([5, Theorem 3.2.1]) that we can find a sequence
{fn}∞n=1 of analytic X-valued functions such that

(A− µ)fn(µ) = vn(µ), for all µ ∈ U.
Thus un(µ) = Jvn(µ) = J(A− µ)fn(µ) = (B − µ)Jfn(µ) for all µ ∈ U , and hence

(B − µ)gn(µ) + (B − µ)Jfn(µ)→ 0 in O(U, Y ).

Since B satisfies Bishop’s property (β) at λ,

gn(µ) + Jfn(µ)→ 0 in O(U, Y ).

Therefore,
hn(µ) = Qgn(µ) = Qgn(µ) +QJfn(µ)→ 0 in O(U,Z).

This shows that λ /∈ σβ(C). �

We remark that the key ingredient of the following lemma is the index equality

indB = indA+ indC.
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Lemma 3.2. ([8]) Under the hypothesis (1.1), then
(1) if both A and C are upper semi-Fredholm, so does B. In this case,

α(A) ≤ α(B) ≤ α(A) + α(C)

and indB = indA + indC.
(2) if both A and C are lower semi-Fredholm, so does B. In this case,

β(C) ≤ β(B) ≤ β(A) + β(C)

and indB = indA + indC.

The next lemma concerns the ascent and descent of A, B and C.

Lemma 3.3. Under the hypothesis (1.1), we have
(1) asc(A) ≤ asc(B) ≤ asc(A) + asc(C);
(2) dsc(C) ≤ dsc(B) ≤ dsc(A) + dsc(C).

Proof. (1) Clearly, asc(A) ≤ asc(B). To show asc(B) ≤ asc(A) + asc(C), we may suppose
that asc(A) = p < ∞ and asc(C) = q < ∞. Let y ∈ N (Bp+q+1). Then Cp+q+1Qy =
QBp+q+1y = 0 and, since asc(C) = q, CqQy = 0. Hence QBqy = CqQy = 0, so
Bqy ∈ N (Q) = R(J). Choose x ∈ X for which Bqy = Jx. Thus JAp+1x = Bp+1Jx =
Bp+1Bqy = 0. Therefore, Ap+1x = 0. Since asc(A) = p, Apx = 0. Consequently,
Bp+qy = BpJx = JApx = 0. This shows that asc(B) ≤ p+ q.

(2) Clearly, dsc(C) ≤ dsc(B). To show dsc(B) ≤ dsc(A)+ dsc(C), we may suppose that
dsc(A) = p < ∞ and dsc(C) = q < ∞. Let y ∈ R(Bp+q). Then there exists y1 ∈ Y such
that y = Bp+qy1 and since dsc(C) = q and Q is surjective,

QBqy1 = CqQy1 = Cq+1Qy2 = QBq+1y2

for some y2 ∈ Y . Thus Bqy1 −Bq+1y2 ∈ N (Q) = R(J), and so

Bqy1 −Bq+1y2 = Jx1

for some x1 ∈ X . Because dsc(A) = p <∞, we conclude that

Bp+qy1 −Bp+q+1y2 = Bp(Bqy1 −Bq+1y2)

= BpJx1

= JApx1

= JAp+q+1x2

= Bp+q+1Jx2

for some x2 ∈ X . Consequently, y = Bp+qy1 = Bp+q+1y2 + Bp+q+1Jx2 ∈ R(Bp+q+1).
This shows that dsc(B) ≤ p+ q. �

Recall that an operator T ∈ B(X) is called generalized Drazin invertible if 0 /∈ accσ(T ),
where for a subset K ⊆ C, accK stands for accumulation points of K.

Lemma 3.4. Under the hypothesis (1.1), then if any two of A, B and C are generalized Drazin
invertible, so is the third one.

Proof. Suppose that B and C are generalized Drazin invertible. Then 0 /∈ accσ(B) and
0 /∈ accσ(C). Hence there exists a deleted neighborhood D = {λ ∈ C : 0 < |λ| < ε} of 0
for whichD ⊆ ρ(B)∩ρ(C). Thus by Lemma 3.2, we know thatα(A−λ) ≤ α(B−λ) = 0 and
that ind(A−λ) = ind(B−λ)−ind(C−λ) = 0 for all λ ∈ D. Hence α(A−λ) = β(A−λ) = 0
for all λ ∈ D, and thus D ⊆ ρ(A). Consequently 0 /∈ accσ(A), that is A is generalized
Drazin invertible.

The other conclusions follow by a similar argument. �
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Remark 3.1. It is interesting to note that similar results to Lemma 3.4 hold for invertibility,
Fredholmness, Weylness, Browderness. Indeed, this can be seen by the proof given in
Lemma 3.4 with minor changes.

The following lemma shows that similar result to Lemma 3.4 also holds for Drazin
invertibility. But for this, some notations and fundamental facts are needed.

Associated with T ∈ B(X), two important subspaces of X are the analytic core of T
defined by

K(T ) :={x ∈ X : there exist a sequence {xn}n≥1 in X and a constant δ > 0

such that Tx1 = x, Txn+1 = xn and ||xn|| ≤ δn||x|| for all n ≥ 1},

and the quasi-nilpotent part of T defined by

H0(T ) := {x ∈ X : lim
n→∞

||Tnx||1/n = 0}.

These subspaces which are introduced and studied by Mbekhta in [6], play an important
role in local spectral theory. Some basic facts about these two subspaces we will need later
are collected as follows (see [1, 6, 7]):

(i) N (Tn) ⊆ H0(T ) for all n ∈ N;
(ii) TK(T ) = K(T );
(iii) 0 /∈ accσ(T ) if and only if X = H0(T )⊕K(T ), where the direct sum is topological.

In this case, T |H0(T ) is quasi-nilpotent and T |K(T ) is invertible.

Lemma 3.5. Under the hypothesis (1.1), then if any two of A, B and C are Drazin invertible, so
is the third one.

Proof. Suppose that A and C are Drazin invertible. Then Lemma 3.3 implies that B is
Drazin invertible.

Suppose that A and B are Drazin invertible. Then dsc(C) < ∞ and by Lemma 3.1, we
know that C is generalized Drazin invertible, and so 0 /∈ accσ(C). Thus by [1, Theorem
3.81], we infer that C is Drazin invertible.

Now suppose that B and C are Drazin invertible. Observe that Drazin invertibility of
B implies that there exists p ∈ N such that H0(B) = N (Bp). It follows form

JH0(A) ⊆ H0(B) ∩R(J) = N (Bp) ∩R(J) = JN (Ap)

and injectivity of J that H0(A) = N (Ap). By Lemma 3.1, we infer that A is generalized
Drazin invertible, and so 0 /∈ accσ(A). Hence X = H0(T )⊕K(T ) = N (Ap)⊕K(T ), from
which it follows that

X = N (Ap)⊕R(Ap).
Consequently, A is Drazin invertible. �

In the next theorem, with the help of the single valued extension property, we relate
the spectral properties of B to those of A and C.

Theorem 3.2. Under the hypothesis (1.1), we have
(1) σ(B) ∪ (S(A∗) ∩ S(C)) = σ(A) ∪ σ(C);
(2) σb(B) ∪ (S(A∗) ∩ S(C)) = σb(A) ∪ σb(C);
(3) σd(B) ∪ (S(A∗) ∩ S(C)) = σd(A) ∪ σd(C);
(4) σe(B) ∪ (S(A∗) ∩ S(C)) = σe(A) ∪ σe(C) ∪ (S(A∗) ∩ S(C));
(5) σw(B) ∪ (S(A) ∩ S(C∗)) ∪ (S(A∗) ∩ S(C)) = σw(A) ∪ σw(C) ∪ (S(A) ∩ S(C∗)) ∪

(S(A∗) ∩ S(C)).
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Proof. (1) By Remark 3.1, we infer that σ(B) ⊆ σ(A) ∪ σ(C), and hence

σ(B) ∪ (S(A∗) ∩ S(C)) ⊆ σ(A) ∪ σ(C).
Conversely, let λ /∈ σ(B) ∪ (S(A∗) ∩ S(C)). Then A− λ is bounded below and C − λ is

surjective. We claim that λ /∈ σ(A) ∪ σ(C). Indeed:
(a) if λ /∈ S(A∗), then by [1, Corollary 2.50], A− λ is invertible. Hence by Lemma 3.2,

0 = ind(B − λ) = ind(A− λ) + ind(C − λ) = ind(C − λ),
and therefore C − λ is invertible.

(b) if λ /∈ S(C)), then by [1, Corollary 2.50], C − λ is invertible. Hence by Lemma 3.2,

0 = ind(B − λ) = ind(A− λ) + ind(C − λ) = ind(A− λ),
and therefore A− λ is invertible.

(2) From Remark 3.1 we know that σb(B) ⊆ σb(A) ∪ σb(C), and therefore

σb(B) ∪ (S(A∗) ∩ S(C)) ⊆ σb(A) ∪ σb(C).
Conversely, let λ /∈ σb(B) ∪ (S(A∗) ∩ S(C)). Then A − λ is upper semi-Browder and

C − λ is lower semi-Browder. We claim that λ /∈ σb(A) ∪ σb(C). Indeed:
(a) if λ /∈ S(A∗), then by [4, Corollary 16], A− λ is Browder. Hence by Lemma 3.2,

0 = ind(B − λ) = ind(A− λ) + ind(C − λ) = ind(C − λ),
and therefore by [1, Theorem 3.4] C − λ is Browder.

(b) if λ /∈ S(C)), then by [4, Theorem 15], C − λ is Browder. Hence by Lemma 3.2,

0 = ind(B − λ) = ind(A− λ) + ind(C − λ) = ind(A− λ),
and therefore by [1, Theorem 3.4] A− λ is Browder.

(3) To show σd(B) ∪ (S(A∗) ∩ S(C)) ⊆ σd(A) ∪ σd(C), it suffices to prove that σd(B) ⊆
σd(A) ∪ σd(C). Let λ /∈ σd(A) ∪ σd(C). By Lemma 3.3, we conclude that λ /∈ σd(B).

Conversely, let λ /∈ σd(B) ∪ (S(A∗) ∩ S(C)). We claim that λ /∈ σd(A) ∪ σd(C). Indeed:
(a) if λ /∈ S(C)), then by the fact that dsc(C − λ) is finite and [1, Theorem 3.81], C − λ is

Drazin invertible. Consequently, by Lemma 3.5 we infer that A− λ is Drazin invertible.
(b) if λ /∈ S(A∗), since we have the following commutative diagram

(3.2)

0 −−−−→ Z∗
Q∗−−−−→ Y ∗

J∗−−−−→ X∗ −−−−→ 0

C∗
y B∗

y A∗
y

0 −−−−→ Z∗ −−−−→
Q∗

Y ∗ −−−−→
J∗

X∗ −−−−→ 0

with exact rows, by the preceding argument in (a), A∗ − λ is Drazin invertible. Hence
A− λ is Drazin invertible. By Lemma 3.5, we get that C − λ is Drazin invertible.

(4) By Remark 3.1, we infer that σe(B) ⊆ σe(A) ∪ σe(C), and hence

σe(B) ∪ (S(A∗) ∩ S(C)) ⊆ σe(A) ∪ σe(C) ∪ (S(A∗) ∩ S(C)).
Conversely, let λ /∈ σe(B) ∪ (S(A∗) ∩ S(C)). Then A − λ is upper semi-Fredholm and

C − λ is lower semi-Fredholm. We claim that λ /∈ σe(A) ∪ σe(C). Indeed:
(a) if λ /∈ S(A∗), then by [4, Corollary 12], A− λ is Fredholm. Hence by Lemma 3.2,

ind(C − λ) = ind(B − λ)− ind(A− λ) <∞,
and therefore C − λ is Fredholm.

(b) if λ /∈ S(C)), then by [4, Corollary 11], C − λ is Fredholm. Hence by Lemma 3.2,

ind(A− λ) = ind(B − λ)− ind(C − λ) <∞,
and therefore A− λ is Fredholm.
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(5) By Remark 3.1, we infer that σw(B) ⊆ σw(A) ∪ σw(C), and hence

σw(B)∪(S(A)∩S(C∗))∪(S(A∗)∩S(C)) ⊆ σw(A)∪σw(C)∪(S(A)∩S(C∗))∪(S(A∗)∩S(C)).

Conversely, let λ /∈ σw(B) ∪ (S(A) ∩ S(C∗)) ∪ (S(A∗) ∩ S(C)). Then A − λ is upper
semi-Fredholm and C − λ is lower semi-Fredholm. We claim that λ /∈ σw(A) ∪ σw(C).
Indeed:

(a) if λ /∈ S(A) ∪ S(A∗) (resp. λ /∈ S(C) ∪ S(C∗)), then by [4, Corollary 13], A − λ is
Weyl (resp. C −λ is Weyl). Hence by Lemma 3.2 we infer that C −λ (resp. A−λ) is Weyl.

(b) if λ /∈ S(A) ∪ S(C)) (resp. λ /∈ S(A∗) ∪ S(C∗)), then by [4, Corollary 11] (resp. [4,
Corollary 12]), ind(A−λ) ≤ 0 and ind(C−λ) ≤ 0 (resp. ind(A−λ) ≥ 0 and ind(C−λ) ≥ 0).
Hence by Lemma 3.2,

0 = ind(B − λ) = ind(A− λ) + ind(C − λ),

from which it follows that both A− λ and C − λ are Weyl. �

Recall that an operator T ∈ B(X) is called Riesz if σe(T ) = {0}. We say that an oper-
ator is polynomially Riesz (resp. polynomially quasi-nilpotent) if there exists a nonzero
complex polynomial p such that p(T ) is Riesz (resp. quasi-nilpotent).

Corollary 3.1. Under the hypothesis (1.1), if X , Y and Z are infinite-dimensional complex Ba-
nach spaces, then

(1) B is quasi-nilpotent if and only if A and C are quasi-nilpotent;
(2) B is polynomially quasi-nilpotent if and only if A and C are polynomially quasi-nilpotent;
(3) B is Riesz if and only if A and C are Riesz;
(4) B is polynomially Riesz if and only if A and C are polynomially Riesz.

Proof. (1) Suppose that A and C are quasi-nilpotent. By Theorem 3.2, we have B is quasi-
nilpotent.

Conversely, suppose thatB is quasi-nilpotent. Then ρ(B) is connected, and hence from
[3, Theorem 1.29] we can infer that σ(A) = {0}, that is A is quasi-nilpotent. Dually, C is
quasi-nilpotent too.

(2) Suppose that A and C are polynomially quasi-nilpotent. By the spectral mapping
theorem for the ordinary spectrum, we infer that σ(A) and σ(C) are both finite. Thus by
Theorem 3.2, we know that σ(B) is finite. Hence again by the spectral mapping theorem
for the ordinary spectrum, B is polynomially quasi-nilpotent.

Conversely, suppose that B is polynomially quasi-nilpotent. Then σ(B) is finite, and
hence ρ(B) is connected. From [3, Theorem 1.29] we can infer that σ(A) is finite, that is A
is polynomially quasi-nilpotent. Dually, C is polynomially quasi-nilpotent too.

(3) Suppose that A and C are Riesz. By Theorem 3.2, we have B is Riesz.
Conversely, suppose that B is Riesz. By [1, Theorems 3.113 and 3.115], we can infer

that A and C are Riesz.
(4) Suppose thatA and C are polynomially Riesz. By the spectral mapping theorem for

the essential spectrum, we infer that σe(A) and σe(C) are both finite. Thus by Theorem
3.2, we know that σe(B) is finite. Hence again by the spectral mapping theorem for the
essential spectrum, B is polynomially Riesz.

Conversely, suppose that B is polynomially Riesz. Then σe(B) = K is finite. Hence for
all λ ∈ C\K, A − λ is upper semi-Fredholm. From [1, Theorem 3.36], we can infer that
A − λ is Fredholm for all λ ∈ C\K. Therefore σe(A) is finite, that is A is polynomially
Riesz. Dually, C is polynomially Riesz too. �

An operator T ∈ B(X) is called meromorphic if T − λ is Drazin invertible for every
λ ∈ σ(T )\{0}. We say that an operator is algebraic if there exists a nonzero complex



138 Qingping Zeng

polynomial p such that p(T ) = 0. It is easily seen that T ∈ B(X) is meromorphic if and
only if σd(T ) ⊆ {0}. It follows form [1, Theorem 3.83] that T ∈ B(X) is algebraic if and
only if σdsc(T ) := {λ ∈ C : dsc(T − λ) =∞} = ∅ if and only if σd(T ) = ∅.

Corollary 3.2. Under the hypothesis (1.1), we have
(1) B is meromorphic if and only if A and C are meromorphic;
(2) B is algebraic if and only if A and C are algebraic.

Proof. (1) Suppose that A and C are meromorphic. Then σd(A) ⊆ {0} and σd(C) ⊆ {0}.
By Theorem 3.2, we can infer that σd(B) ⊆ {0}, that is B is meromorphic.

Conversely, suppose thatB is meromorphic. By Lemma 3.3, we can infer that σdsc(C) ⊆
σdsc(B) ⊆ σd(B) ⊆ {0}. Hence form [2, Corollary 1.9] it follows that C is meromorphic.
Dually, A is also meromorphic.

(2) Suppose that A and C are algebraic. Then σd(A) = ∅ and σd(C) = ∅. By Theorem
3.2, we can infer that σd(B) = ∅, that is B is algebraic.

Conversely, suppose that B is algebraic. By Lemma 3.3, we can infer that σdsc(C) ⊆
σdsc(B) ⊆ σd(B) = ∅. Hence C is algebraic. Dually, A is also algebraic. �

For the one-side spectral properties, we need the following key lemma.

Lemma 3.6. Under the hypothesis (1.1), then
(1) if β(B) <∞ and α(C) <∞, then β(A) ≤ β(B) + α(C);
(2) if dsc(B) = q <∞ and asc(C) = p <∞, then dsc(A) ≤ p+ q.

Proof. (1) Let Ĵ : X −→ R(J) and Q̂ : Y/N (Q) −→ R(Q) be defined by:

Ĵx = Jx for all x ∈ X

and
Q̂(y +N (Q)) = Qy for all y +N (Q) ∈ Y/N (Q),

respectively. From the hypothesis (1.1), we know that Ĵ and Q̂ are isomorphic. Moreover,
it is easily seen that B|R(J)= ĴAĴ−1 and that BR(J) = BN (Q)= Q̂−1CQ̂. Let M = R(J).
Then it suffices to show that if β(B) <∞ and α(BM ) <∞, then β(B|M ) ≤ β(B)+α(BM ).

Now suppose that β(B) < ∞ and α(BM ) < ∞. Let B̃ : B−1(M)
M −→ M

B(M) be an
operator induced by B:

B̃(y +M) = By +B(M) for all y +M ∈ B−1(M)

M
.

It is easily seen that R(B̃) = M∩R(B)
B(M) and that

M
B(M)

M∩R(B)
B(M)

≈ M
M∩R(B) ≈

M+R(B)
R(B) ⊆ X

R(B) . But

then we conclude that β(B|M ) ≤ β(B) + α(BM ).
(2) Let x ∈ R(Ap+q). Then there exists x1 ∈ Y such that x = Ap+qx1 and since dsc(B) =

q,
Jx = JAp+qx1 = Bp+qJx1 = B2p+q+1y1

for some y1 ∈ Y . Thus 0 = QJx = QB2p+q+1y1 = C2p+q+1Qy1, and because asc(C) =
p <∞, we conclude that

QBpy1 = CpQy1 = 0,

so Bpy1 ∈ N (Q) = R(J). Choose x2 ∈ X for which Bpy1 = Jx2. Consequently, Jx =
Bp+q+1Jx2 = JAp+q+1x2, and so x = Ap+q+1x2 ∈ R(Ap+q+1). This shows that dsc(A) ≤
p+ q. �

Now, we will relate the one-side spectral properties of B to those of A and C.
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Theorem 3.3. Under the hypothesis (1.1), we have
(1) σsu(B) ∪ S(C) = σsu(A) ∪ σsu(C) ∪ S(C);
(2) σap(B) ∪ S(A∗) = σap(A) ∪ σap(C) ∪ S(A∗);
(3) σlsf (B) ∪ S(C) = σlsf (A) ∪ σlsf (C) ∪ S(C);
(4) σusf (B) ∪ S(A∗) = σusf (A) ∪ σusf (C) ∪ S(A∗);
(5) σlsw(B) ∪ (S(A) ∩ S(C∗)) ∪ S(C) = σlsw(A) ∪ σlsw(C) ∪ (S(A) ∩ S(C∗)) ∪ S(C);
(6) σusw(B)∪ (S(A)∩ S(C∗))∪ S(A∗) = σusw(A)∪ σusw(C)∪ (S(A)∩ S(C∗))∪ S(A∗);
(7) σlb(B) ∪ S(C) = σlb(A) ∪ σlb(C) ∪ S(C);
(8) σub(B) ∪ S(A∗) = σub(A) ∪ σub(C) ∪ S(A∗).

Proof. By (3.2), it suffices to show (1), (3), (5) and (7).
(1) By Lemma 3.2, we infer that σsu(B) ⊆ σsu(A) ∪ σsu(C), and hence

σsu(B) ∪ S(C) ⊆ σsu(A) ∪ σsu(C) ∪ S(C).
Conversely, let λ /∈ σsu(B) ∪ S(C). Then dsc(B − λ) = 0 and C − λ is invertible. By

Lemma 3.6, dsc(A− λ) = 0, that is A− λ is surjective.
(3) By Lemma 3.2, we infer that σlsf (B) ⊆ σlsf (A) ∪ σlsf (C), and hence

σlsf (B) ∪ S(C) ⊆ σlsf (A) ∪ σlsf (C) ∪ S(C).
Conversely, let λ /∈ σlsf (B) ∪ S(C). Then β(B − λ) < ∞ and C − λ is Fredholm. By

Lemma 3.6, β(A− λ) <∞, that is A− λ is lower semi-Fredholm.
(5) By Lemma 3.2, we infer that σlsw(B) ⊆ σlsw(A) ∪ σlsw(C), and hence

σlsw(B) ∪ (S(A) ∩ S(C∗)) ∪ S(C) ⊆ σlsw(A) ∪ σlsw(C) ∪ (S(A) ∩ S(C∗)) ∪ S(C).
Conversely, let λ /∈ σlsw(B)∪ (S(A)∩ S(C∗))∪ S(C). Then β(B − λ) <∞ and C − λ is

Fredholm. By Lemma 3.6, β(A − λ) < ∞. We claim that both A − λ and C − λ are lower
semi-Weyl. Indeed:

(a) if λ /∈ S(A) ∪ S(C)), then by [4, Corollary 11], ind(A − λ) ≤ 0 and ind(C − λ) ≤ 0.
Therefore by Lemma 3.2,

0 ≤ ind(B − λ) = ind(A− λ) + ind(C − λ),
from which it follows that both A− λ and C − λ are lower semi-Weyl.

(b) if λ /∈ S(C∗) ∪ S(C)), then C − λ is Weyl and by Lemma 3.2,

0 ≤ ind(B − λ) = ind(A− λ) + ind(C − λ),
from which it follows that A− λ is lower semi-Weyl.

(7) By Lemmas 3.2 and 3.3, we infer that σlb(B) ⊆ σlb(A) ∪ σlb(C), and hence

σlb(B) ∪ S(C) ⊆ σlb(A) ∪ σlb(C) ∪ S(C).
Conversely, let λ /∈ σlb(B) ∪ S(C). Then β(B − λ) < ∞, des(B − λ) < ∞ and C − λ

is Browder. By Lemma 3.6, β(A − λ) < ∞ and des(A − λ) < ∞, that is A − λ is lower
semi-Browder. �
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