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On the uniform convergence of a q-series

OCTAVIAN AGRATINI and VIJAY GUPTA

ABSTRACT. The paper deals with a class of linear positive operators expressed by q-series. By using modulus
of smoothness an upper bound of approximation error is determined. We identify functions for which these
operators provide uniform approximation over noncompact intervals. A particular case is delivered.

1. INTRODUCTION

In the last years Quantum Calculus began to be widely used in the construction of lin-
ear positive approximation processes. The first step in this direction was made in 1987
by Lupaş [16] and through the work of Ostrovska [22] his research was internationally
disseminated. Starting from q-Bernstein operators, other important classes of discrete
operators have been reintroduced by using q-calculus. For example, we can refer to op-
erators q-Meyer-König and Zeller [25], [13], q-Bleimann, Butzer and Hahn operators [5],
q-Szász-Mirakjan operators [4], [18], q-Baskakov operators [20]. We quoted only a few
of works that served as a model for investigating and generalizations classes of discrete
q-operators. Integral extensions in q-Calculus of the above discrete operators have also
been studied, see for example [1], [6], [14]. For a comprehensive view of the results ob-
tained in this area, the recent monograph [7] can be consulted. The newest trend in this
domain is the investigation of linear operators introduced by using (p, q) - integers [21],
[26]. Originally, this type of integers has been introduced in order to generalize or to unify
several forms of q-oscillator algebras. In the end we specify that over time the mentioned
classes of operators have been extensively studied by many mathematicians and collec-
tive research. Among them, here we mention the papers of Barbosu and his collaborators
[9] - [12], [23] - [24].

Our study aimed at a class of q-operators with two particular features: they are ex-
pressed through a series and acts on functions on unbounded interval. Since we take into
account linear approximation processes, clearly the sequence of operators associated to a
function f must converge to approximated element. For continuous functions defined on
a compact, uniform convergence takes place. If we work with continuous functions de-
fined on an unbounded interval, only pointwise convergence occurs. In this note we indi-
cate sufficient conditions which ensure uniform convergence for our class of q-operators.

2. THE OPERATORS

First of all we recall some formulas in q-Calculus, see, e.g., [3], [17]. Throughout the
paper we consider q ∈ (0, 1). For any n ∈ N0 = {0} ∪ N, the q-integer [n]q and the
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q-factorial [n]q! are respectively defined by

[n]q =

n−1∑
j=0

qj , [n]q! =

n∏
j=1

[j]q, n ∈ N,

and [0]q = 0, [0]q! = 1. The q-binomial coefficients, also known as Gaussian coefficients,

are denoted by
[n
k

]
q

and are given as follows[n
k

]
q
=

[n]q!

[k]q![n− k]q!
, k = 0, 1, . . . , n.

The q-derivative of a function f : R→ R is defined by

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0, Dqf(0) = lim

x→0
Dqf(x),

and the high q-derivatives are given recursively by

D0
qf = f, Dn

q f = Dq(D
n−1
q f), n ∈ N.

A real function f is q-differentiable on a real interval I if for every x ∈ I the q-derivative
of f exists and it is finite.

The roots of our operators are in connection with a general class of operators intro-
duced by Baskakov [8] and developed by Mastroianni [19]. Following [2], let (φn)n≥1 be a
sequence of real valued functions defined on R+, continuously infinitely q-differentiable
on R+ and satisfying the following conditions:

(2.1) φn(0) = 1, n ∈ N;

(2.2) (−1)kDk
qφn(x) ≥ 0, n ∈ N, k ∈ N0, x ≥ 0;

for all (x, k) ∈ R+ × N0 there exists a positive integer ik, 0 ≤ ik ≤ k, and a function
βn,k,ik,q : R+ → R such that

(2.3) Dk+1
q φn(x) = (−1)ik+1Dk−ik

q φn(q
ik+1x)βn,k,ik,q(x),

where

(2.4) lim
n

βn,k,ik,q(0)

[n]ik+1
q qk−ik

= 1.

We consider the operators

(2.5) (Tn,qf)(x) =

∞∑
k=0

(−x)k

[k]q!
qk(k−1)/2Dk

qφn(x)f

(
[k]q

[n]qqk−1

)
, x ≥ 0,

where f ∈ F(R+) := {f : R+ → R, the q-series in (2.5) is absolutely convergent for each
n ∈ N}.

In particular CB(R+) ⊂ F(R+), where CB(R+) stands for the space of all continuous
and bounded real-valued functions defined on R+. For each n ∈ N, Tn,q is a linear positive
operator.

For our study we use the modulus of smoothness associated to any bounded function
h : R+ → R and given by

(2.6) ωh(δ) ≡ ω(h; δ) = sup{|h(x′)− h(x′′)| : x′, x′′ ∈ R+, |x′ − x′′| ≤ δ}, δ ≥ 0.

Its relevant properties are presented, e.g., in [15, pp. 43-46]. Among them we recall that
ωh is a non-decreasing function and

(2.7) ω(h;λδ) ≤ (1 + λ)ω(h; δ), δ ≥ 0 and λ ≥ 0.
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Also, if h is uniformly continuous function on R+, then

(2.8) lim
δ→0+

ω(h; δ) = 0.

Finally we set e0(t) = 1 and ej(t) = tj , t ≥ 0.

3. RESULTS

Primarily we indicate a relation satisfied by our operators. The second central moment
of Tn,q , n ∈ N, is given by the formula

(3.9) Tn,q(ϕ
2
x;x) = an,qx

2 + bn,qx, x ≥ 0,

where ϕx(t) = t− x, (t, x) ∈ R+ × R+, and

(3.10) an,q = 1 + 2
Dqφn(0)

[n]q
+
D2
qφn(0)

q[n]2q
, bn,q = −

Dqφn(0)

[n]2q
,

see [2, Eqs. (21)-(22)]. Relation (2.2) ensures bn,q ≥ 0.

Lemma 3.1. Let the operators Tn,q , n ∈ N, be defined by (2.5). The following inequality

(3.11) (Tn,qhx)(x) ≤
√
cn,q, x ≥ 0,

holds, where

(3.12) hx(t) = |w(t)− w(x)|, t ≥ 0, w = e1/(e1 + e0), cn,q = |an,q|+ bn,q

and an,q , bn,q are given at (3.10).

Proof. For x = 0 the relation is evident because Tn,q enjoys the interpolatory property, i.e.
(Tn,qf)(0) = f(0) for any function f ∈ F(R+).

Further, let x > 0 be arbitrarily fixed. For the sake of brevity we denote

(3.13) αn,k,q(x) =
(−x)k

[k]q!
qk(k−1)/2Dk

qφn(x) and xn,k,q =
[k]q

[n]qqk−1
.

We can write

(Tn,qhx)(x) =

∞∑
k=0

αn,k,q(x)

∣∣∣∣ xn,k,q
xn,k,q + 1

− x

x+ 1

∣∣∣∣
≤ 1

x+ 1

∞∑
k=0

αn,k,q(x)|xn,k,q − x|

≤ 1

x+ 1

( ∞∑
k=0

αn,k,q(x)

)1/2( ∞∑
k=0

αn,k,q(x)ϕ
2
x(xn,k,q)

)1/2

=
1

x+ 1
((Tn,qe0)(x))

1/2((Tn,qϕ
2
x)(x))

1/2

≤
√
|an,q|+ bn,q.

We used above Cauchy-Schwarz inequality, the identity Tn,qe0 = e0 and relations (3.9)-
(3.10). Inequality (3.11) follows. �

Based on the properties (2.1)-(2.4), we deduce

(3.14) lim
n

Dqφn(0)

[n]q
= −1, lim

n

D2
qφn(0)

q[n]2q
=

1

qi1
, i1 ∈ {0, 1},
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consequently

(3.15) 0 ≤ lim
n
cn,q =

∣∣∣∣ 1qi1 − 1

∣∣∣∣+ 1− q ≤ 1− q2

q
.

Theorem 3.1. Let the operators Tn,q , n ∈ N, be defined by (2.5). Let f ∈ CB(R+) and the
function

(3.16) f∗(t) = f(w−1(t)), t ≥ 0.

For all x ∈ R+ the following inequality

(3.17) |(Tn,qf)(x)− f(x)| ≤ 2ω(f∗;
√
cn,q)

holds. In the above w : R+ → [0, 1) and cn,q are given at (3.12).

Proof. For x = 0 the first member of the inequality is null, consequently (3.17) takes place.
Further, we consider x > 0 arbitrarily fixed and we use the notation introduced by relation
(3.13).

In view of definitions (2.5) and (2.7) we can write

|(Tn,qf)(x)− f(x)| = |Tn,q(f∗ ◦ w;x)− (f∗ ◦ w)(x)|(3.18)

≤
∞∑
k=0

αn,k,q(x)|f∗(w(xn,k,q))− f∗(w(x))|

≤
∞∑
k=0

αn,k,q(x)ω(f
∗; |w(xn,k,q)− w(x)|).

In the next step we use (3.12) and the property (2.8) in which is chosen

λ = |w(xn,k,q − w(x)|/(Tn,qhx)(x).

We get

ω(f∗; |w(xn,k,q)− w(x)|) ≤
(
1 +
|w(xn,k,q)− w(x)

(Tn,qhx)(x)
ω(f∗;Tn,qhx)(x)

)
≤
(
1 +
|w(xn,k,q)− w(x)|

(Tn,qhx)(x)

)
ω(f∗;

√
cn,q),

see (3.11). Returning at (3.18), and knowing both the form of the function Tn,qhx and the
identity Tn,qe0 = e0, we arrive at the desired result. �

Since q ∈ (0, 1) is fixed, we deduce lim
n
Tn,qϕ

2
x 6= 0, see (3.9), (3.10) and (3.14). Conse-

quently, on the basis of Bohman-Korovkin criterion, (Tn,q)n≥1 does not form an approx-
imation process. In order to transform it for satisfying this property, for each n ∈ N the
constant q will be replaced by a number qn ∈ (0, 1) such that lim

n
qn = 1. Such a replace-

ment should not be surprising because a q-analogue, also called q-extension of a math-
ematical object M, is a family of objects M(q) such that lim

q→1
M(q) = M. Under these

circumstances, the pointwise convergence of (Tn,qg)(x) to g(x) as n → ∞ takes place,
where g ∈ F(R+) ∩ C(R+). Also, the uniform convergence of Tn,qg to g as n → ∞ holds
for any compact K ⊂ R+.

As we stated at the beginning, our goal is to indicate sufficient conditions for which
this class of operators provides uniform approximation on the whole interval R+.

Theorem 3.2. Let (qn)n≥1, 0 < qn < 1, be a sequence such that lim
n
qn = 1. Let the operators

Tn,qn , n ∈ N, be defined as in (2.5). Let f ∈ CB(R+) and let f∗ be defined by (3.16).
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If f∗ is uniformly continuous on R+, then Tn,qnf converges uniformly to f on R+ as n tends
to infinity.

Proof. Since lim
n
qn = 1, using relation (3.15), we deduce

lim
n→∞

cn,qn = 0.

Further on, f∗ being uniformly continuous on R+, property (2.8) guarantees

lim
n→∞

ω(f∗;
√
cn,qn) = 0.

Considering this relation, the inequality established in (3.17) implies the conclusion of our
theorem. �

4. PARTICULAR CASE

At first we recall the following expansion in q-Calculus of the exponential function

Eq(x) =

∞∑
k=0

qk(k−1)/2
xk

[k]q!
, x ∈ R.

By using the notation (1− a)∞q =
∏∞
j=0(1− qja), we can write

Eq(x) = (1 + (1− q)x)∞q ,

see [17, Eq. (9.10)]. For obtaining a particular class of our sequence (Tn,q)n, we choose
φn(x) = Eq(−[n]qx), x ≥ 0, n ∈ N. By direct computation we get

Dk
qφn(x) = (−1)k[n]kqqk(k−1)/2Eq(−[n]qqkx), x ≥ 0.

Conditions (2.1) and (2.2) are evident fulfilled. By taking ik = 0, (2.3) and (2.4) are also
valid, where βn,k,0,q(x) = [n]qq

k, k ∈ N0, are constant functions. By simple calculations, in
(3.9) we obtain an,q = 0 and bn,q = 1/[n]q . We arrived at a q-analogue of Szász-Mirakjan
operator.

Relation (3.17) says: the order of approximation of f by this sequence of operators is
O(1/

√
[n]qn). Since an,q = 0, this time we can make a different choice most appropriate

for the function w, i.e. w(t) =
√
t, t ≥ 0. Both conclusions of Theorem 3.1 and Theorem

3.2 remain valid.
For another q-generalization of these particular operators, this time q > 1, a similar re-

sult has been obtained by Mahmudov [18, Theorem 4.1]. In this case was also used function
w =

√
e1.
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