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An extension of Assad-Kirk’s fixed point theorem for
multivalued nonself mappings

ISHAK ALTUN 1,2 and GÜLHAN MINAK2

ABSTRACT. In the present paper, taking into account the recent developments on the theory of fixed point, we
give some fixed point results for multivalued nonself mappings on complete metrically convex metric spaces.
Our main result properly includes the famous Assad-Kirk fixed point theorem for nonself mappings. Also,
we provide a nontrivial example which shows the motivation for such investigations of multivalued nonself
contraction mappings.

1. INTRODUCTION

Metric fixed point theory is one of the most rapidly growing research areas in non-
linear functional analysis and a very powerful tool in solving existence and uniqueness
problems in many branches of mathematical analysis, e.g., operator theory and varia-
tional analysis, especially, differential, integral and functional equations as applications
of fixed points of contractive mappings defined for different types of spaces. Nowadays,
these problems require the search for more and better tools which is very remarkable in
the literature. One of such tools was given by Jleli and Samet [18], introduced a new type
of contractive mapping. Throughout this study we shall call the contraction defined in
[18] as θ-contraction. Let (X, d) be a metric space and T : X → X be a mapping. Then we
say that T is θ-contraction if there exists k ∈ (0, 1) such that

(1.1) θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k

for all x, y ∈ X with d(Tx, Ty) > 0, where θ : (0,∞) → (1,∞) is a function satisfying the
following conditions:

(θ1) θ is nondecreasing.
(θ2) For each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 if and only if limn→∞ tn = 0+.

(θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1
tr = l.

We denote by Θ be the class of all functions θ satisfying (θ1)-(θ3). Considering in-
equality (1.1), we obtain different types of nonequivalent contractions. For example, for
θ(t) = e

√
t, (1.1) turns to

(1.2) d(Tx, Ty) ≤ k2d(x, y),

for all x, y ∈ X with Tx 6= Ty. It is clear that the inequality d(Tx, Ty) ≤ k2d(x, y) also
holds for x, y ∈ X with Tx = Ty. Therefore, every Banach contraction mapping is a
θ-contraction with θ(t) = e

√
t. Similarly, for θ(t) = e

√
tet , (1.1) turns to

(1.3)
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ k2,

for all x, y ∈ X with d(Tx, Ty) > 0.
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Let θ1, θ2 ∈ Θ. If θ1(t) ≤ θ2(t) for all t > 0 and θ = θ2
θ1

is nondecreasing, then every
θ1-contraction mapping is also θ2-contraction. Therefore, if a mapping T satisfies (1.2),
then it satisfies (1.3).

In addition, from (θ1) and (1.1), it is easy to concluded that every θ-contraction T is a
contractive mapping, i.e., d(Tx, Ty) < d(x, y) for each x, y ∈ X with x 6= y. Thus, every
θ-contraction mapping on a metric space is continuous. For each such mapping T, the fol-
lowing theorem has been proved by Jleli and Samet [18], which is a proper generalization
of Banach contraction principle.

Theorem 1.1 (Corollary 2.1 of [18]). Let (X, d) be a complete metric space and T : X → X be
a given mapping. If T is an θ-contraction, then T has a (unique) fixed point.

In the literature, one can find pivotal papers related to θ-contractions. For example,
in [4, 17], the authors analyzed θ-contractions considering generalized contractive and
almost contractive conditions for single valued mappings.

2. PRELIMINARIES

In this section, we give some notational and terminological conventions which will be
used throughout this paper for the sake of completeness.

2.1. Multivalued Contraction. Let (X, d) be a metric space. Denote P (X) by the class
of all nonempty subsets of X, CB(X) by the class of all nonempty closed and bounded
subsets of X and, K(X) by the class of all nonempty compact subsets of X . Let H be the
Pompeiu-Hausdorff metric with respect to d, for A,B ∈ CB(X),

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

where d(x,B) = inf {d(x, y) : y ∈ B}. We can find detailed information about the Pompeiu-
Hausdorff metric in [1, 7, 10, 15]. Then, a map T : X → CB(X) is said to be multivalued
contraction if there exists L ∈ [0, 1) such that H(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X (see
[21]). In 1969, Nadler [21] initiated the idea for multivalued contraction mapping and
extended the Banach contraction principle to multivalued mappings and after, proved a
fundamental fixed point theorem for multivalued mappings. This result states that every
multivalued contraction mappings on complete metric spaces has at least one fixed point,
that is, there exists x ∈ X such that x ∈ Tx. Inspired by his result, there has been continu-
ous, intense research activity for fixed point results concerning multivalued contractions,
and by now, there are a number of results that extend this fixed point result in many ways
over the years (see [8, 11, 13, 19, 20, 22, 23, 24]). One of the most interesting extension
was given by Assad and Kirk [6] for multivalued nonself mappings defined on a closed
subset of metrically convex metric spaces. They gave a sufficient condition for fixed point
of such mappings considering specific boundary condition. We can find some significant
generalization of Assad and Kirk’s result in [2, 3, 5, 9, 12, 16] and references therein.

Let (X, d) be a metric space. Then X is said to be metrically convex if there is a point
z ∈ X, x 6= y 6= z such that

d(x, y) = d(x, z) + d(z, y),

for any x, y ∈ X with x 6= y. For the sequel, we need the following very useful lemma.

Lemma 2.1 ([6]). Let C be a nonempty closed subset of a complete and metrically convex metric
space (X, d). Then, for any x ∈ C, y /∈ C, there exists a point z ∈ ∂C such that

d (x, z) + d (z, y) = d (x, y) ,

where ∂C denotes the boundary of C.
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Theorem 2.2 (Assad and Kirk’s fixed point theorem). Let (X, d) be a complete and metrically
convex metric space, C be a nonempty closed subset of X, and T : C → CB(X) be a mapping
such that, for all x, y ∈ C,
(2.4) H(Tx, Ty) ≤ kd(x, y),

for some k ∈ (0, 1) . If Tx ⊆ C for each x ∈ ∂C, then T has a fixed point in C.

2.2. Multivalued θ-Contraction. The concept of multivalued θ-contraction introduced by
Hançer et al [14]. Let (X, d) be a metric space and T : X → CB(X) be a mapping. If there
exist k ∈ (0, 1) and θ ∈ Θ such that

(2.5) θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k

for all x, y ∈ X with H(Tx, Ty) > 0. Considering θ(t) = e
√
t, we can say that every

multivalued contraction is also multivalued θ-contraction. Thus, they established a fixed
point theorem, which extended Nadler’s result in a different way than the well-known
methods in the literature.

Theorem 2.3 ([14]). Let (X, d) be a complete metric space and T : X → K(X) be a mapping. If
T is a multivalued θ-contraction, then T has a fixed point.

Note that Tx is compact for all x ∈ X in Theorem 2.3. In the proof of this theorem, it has
been used the fact that for any x ∈ X , there exists a point s ∈ S such that d(x, s) = d(x, S),
where (X, d) is a metric space and S is a compact subset of X . Therefore the following
problem arised: Can we replace CB(X) instead of K(X) in Theorem 2.3? Unfortunately,
the answer is negative with the same conditions as shown in the following example (see
[14]).

Example 2.1 ([14]). Consider the complete metric space (X, d), where X = [0, 2] and
d(x, y) = 1 + |x− y| if x 6= y, d(x, y) = 0 if x = y. Define a mapping T : X → CB(X),
Tx = Q if x ∈ X\Q and Tx = X\Q if x ∈ Q, where Q is the set of all rational numbers in
X . Then, T is a multivalued θ-contraction with k = 1

2 and θ ∈ Θ defined by θ(t) = e
√
t if

t ≤ 1 and θ(t) = 9 if t > 1, but it has no fixed points.

However, it has been demonstrated that if the function θ satisfies the following (θ4)
condition in Theorem 2.3, then K(X) can be replaced by CB(X):

(θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
Note that, if θ satisfies (θ1), then it satisfies (θ4) if and only if it is right continuous. Let

Ξ be the family of all functions θ satisfying (θ1)-(θ4) .

Theorem 2.4 ([14]). Let (X, d) be a complete metric space and T : X → CB(X) be a mapping.
If T is a multivalued θ-contraction with θ ∈ Ξ, then T has a fixed point.

The purpose of this paper is to give a new approach to Assad-Kirk fixed point theorem
and a new real generalization of it, by using θ-contractiveness of a multivalued mapping.

3. MAIN RESULTS

The following theorem is our main result:

Theorem 3.5. Let (X, d) be a complete and metrically convex metric space, C be a nonempty
closed subset of X , T : C → CB(X) be a mapping such that, for all x, y ∈ C with H(Tx, Ty) >
0,

(3.6) θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k
,

for some k ∈ (0, 1) and θ ∈ Ξ. If Tx ⊆ C for each x ∈ ∂C, then T has a fixed point in C.
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Proof. Suppose that T has no fixed points. Thus d(x, Tx) > 0 for all x ∈ C. Now, we
construct two sequences {xn} and {yn} in C in the following way. Let x0 ∈ C and y1 ∈
Tx0.

If y1 ∈ C, let x1 = y1.
If y1 /∈ C, then from Lemma 2.1, there exists a point x1 ∈ ∂C such that

d(x0, x1) + d(x1, y1) = d(x0, y1).

Thus x1 ∈ C. Now, we claim that d(y1, Tx1) > 0. Suppose d(y1, Tx1) = 0. If y1 ∈ C,
then x1 is a fixed point of T , which is a contradiction. If y1 /∈ C, then x1 ∈ ∂C and so
Tx1 ⊆ C. Therefore, y1 /∈ Tx1, which is a contradiction. Thus, d(y1, Tx1) > 0. Now, since
d(y1, Tx1) ≤ H(Tx0, Tx1), then we have

(3.7) θ(d(y1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k
.

On the other hand, from (θ4) we get

θ(d(y1, Tx1)) = θ(inf{d(y1,m) : m ∈ Tx1}) = inf{θ(d(y1,m)) : m ∈ Tx1},
and so, from (3.7) we get

inf{θ(d(y1,m)) : m ∈ Tx1} ≤ [θ(d(x0, x1))]
k
.

Thus, there exists y2 ∈ Tx1 such that

θ(d(y1, y2)) ≤ [θ(d(x0, x1))]
γ
,

where 0 < k < γ < 1.
If y2 ∈ C, let x2 = y2.
If y2 /∈ C, select a point x2 ∈ ∂C such that

d(x1, x2) + d(x2, y2) = d(x1, y2).

Thus, x2 ∈ C. We can show that d(y2, Tx2) > 0. As above, we can find a point y3 ∈ Tx2
such that

θ(d(y2, y3)) ≤ [θ(d(x1, x2))]
γ
.

Continuing the arguments, we obtain two sequences {xn} and {yn} such that for n ∈ N,
i) yn+1 ∈ Txn
ii)

θ(d(yn, yn+1)) ≤ [θ(d(xn−1, xn))]
γ
,

where yn+1 = xn+1 if yn+1 ∈ C or

(3.8) d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1)

if yn+1 /∈ C and xn+1 ∈ ∂C.
Now, we set

P = {xi ∈ {xn} : xi = yi, i ∈ N} and Q = {xi ∈ {xn} : xi 6= yi, i ∈ N}.
Observe that if xi ∈ Q for some i, then xi+1 ∈ P.

We wish to estimate the distance d(xn, xn+1) for n ≥ 2. Note that d(xn, xn+1) > 0,
otherwise, T has a fixed point. For this we have to consider three cases:

Case 1. If xn ∈ P and xn+1 ∈ P , then, we get

θ(d(xn, xn+1)) = θ(d(yn, yn+1)) ≤ [θ(d(xn−1, xn))]
γ
.

Case 2. If xn ∈ P and xn+1 ∈ Q. then, from (3.8), we get

θ(d(xn, xn+1)) ≤ θ(d(xn, yn+1)) = θ(d(yn, yn+1)) ≤ [θ(d(xn−1, xn))]
γ
.

Case 3. If xn ∈ Q and xn+1 ∈ P, then, since

θ(d(yn, yn+1)) ≤ [θ(d(xn−1, xn))]
γ ⇒ d(yn, yn+1) < d(xn−1, xn),
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we get

θ(d(xn, xn+1)) ≤ θ(d(xn, yn) + d(yn, xn+1)) = θ(d(xn, yn) + d(yn, yn+1))

≤ θ(d(xn, yn) + d(xn−1, xn)) = θ(d(xn−1, yn))

= θ(d(yn−1, yn)) ≤ [θ(d(xn−2, xn−1))]
γ
.

The only other possibility xn ∈ Q and xn+1 ∈ Q can not occur. Thus, we get

(3.9) θ(d(xn, xn+1)) ≤

 [θ(d(xn−1, xn))]
γ

[θ(d(xn−2, xn−1))]
γ

for n ≥ 2. Now we claim that

(3.10) θ(d(xn, xn+1)) ≤ δ

(
γ

n−1
2

)

for all n ∈ N, where
δ = max{θ(d(x0, x1)), θ(d(x1, x2))}.

Let us prove (3.10) by induction method.
For n = 1, it is clear that (3.10) is satisfied.
For n = 2, we use (3.9) and taking each case separately, we get

θ(d(x2, x3)) ≤ [θ(d(x1, x2))]
γ ≤ δγ ≤ δ

(
γ

1
2

)
;

θ(d(x2, x3)) ≤ [θ(d(x0, x1))]
γ ≤ δγ ≤ δ

(
γ

1
2

)
.

For n = 3, we use (3.9) and taking each case separately, we get

θ(d(x3, x4)) ≤ [θ(d(x2, x3))]
γ ≤ δ

(
γ

1
2

)
γ

= δ

(
γ

3
2

)
≤ δγ ;

θ(d(x3, x4)) ≤ [θ(d(x1, x2))]
γ ≤ δγ .

For n = 4, we use (3.9) and taking each case separately, we get

θ(d(x4, x5)) ≤ [θ(d(x3, x4))]
γ ≤ δ(γ

2) ≤ δ
(
γ

3
2

)
;

θ(d(x4, x5)) ≤ [θ(d(x2, x3))]
γ ≤ δ

(
γ

1
2

)
γ

= δ

(
γ

3
2

)
.

Now, assume that (3.10) holds for 1 ≤ n ≤ m. Observe that for m > 2,

θ(d(xm+1, xm+2)) ≤ [θ(d(xm, xm+1))]
γ

≤ δ

(
γ

m−1
2

)
γ

= δ

(
γ

m+1
2

)
≤ δ

(
γ

m
2

)
;

θ(d(xm+1, xm+2)) ≤ [θ(d(xm−1, xm))]
γ ≤ δ

(
γ

m−2
2

)
γ

= δ

(
γ

m
2

)
.

Then, our claim is true. Using (3.10), we obtain

(3.11) lim
n→∞

θ(d(xn, xn+1)) = 1.

From (θ2), limn→∞ d(xn, xn+1) = 0+ and so from (θ3) there exist r ∈ (0, 1) and l ∈ (0,∞]
such that

lim
n→∞

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there

exists n0 ∈ N such that, for all n ≥ n0,∣∣∣∣θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r − l

∣∣∣∣ ≤ B.
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This implies that, for all n ≥ n0,
θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r ≥ l −B = B.

Then, for all n ≥ n0,
n [d(xn, xn+1)]

r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.
Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the defini-

tion of the limit, there exists n0 ∈ N such that, for all n ≥ n0,
θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r ≥ B.

This implies that, for all n ≥ n0,
n [d(xn, xn+1)]

r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.
Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An [θ(d(xn, xn+1))− 1] .

Using (3.10), we obtain, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An

[
δ

(
γ

n−1
2

)
− 1

]
.

Letting n→∞ in the above inequality, we obtain

lim
n→∞

n [d(xn, xn+1)]
r

= 0.

Thus, there exits n1 ∈ N such that n [d(xn, xn+1)]
r ≤ 1 for all n ≥ n1. So, we have, for all

n ≥ n0

(3.12) d(xn, xn+1) ≤ 1

n
1
r

.

In order to show that {xn} is a Cauchy sequence consider m,n ∈ N such that m > n ≥ n1.
Using the triangular inequality for the metric and from (3.12), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

1

i1/r

By the convergence of the series
∞∑
i=1

1
i1/r

, passing to limit n,m→∞,we get d(xn, xm) → 0.

This implies that the sequence {xn} is a Cauchy sequence in C. Since C is closed, the
sequence {xn} converges to some point z ∈ C. By our choice of {xn}, there exists a
subsequence {xnk

} of {xn} such that xnk
∈ P , that is, xnk

= ynk
, k ∈ N. Note that

xnk
∈ Txnk−1 for k ∈ N and xnk−1 → z as k → ∞. Also note that from (3.6) and (θ1) we

get
H(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C and so, we have

d(xnk
, T z) ≤ H(Txnk−1, T z) ≤ d(xnk−1, z),

which on letting k → ∞ implies that d(z, Tz) = 0, which is a contradiction. Therefore, T
has a fixed point in C. �
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In the following theorem we remove the condition (θ4) on θ, but we have to restrict the
set of values of T .

Theorem 3.6. Let (X, d) be a complete and metrically convex metric space, C be a nonempty
closed subset ofX , T : C → K(X) be a mapping such that, for all x, y ∈ C withH(Tx, Ty) > 0,

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k
,

for some k ∈ (0, 1) and θ ∈ Θ. If Tx ⊆ C for each x ∈ ∂C, then T has a fixed point in C.

Proof. Suppose that T has no fixed points. Thus d(x, Tx) > 0 for all x ∈ C. Now, we
construct two sequence {xn} and {yn} inC in the following way. Let x0 ∈ C and y1 ∈ Tx0.

If y1 ∈ C, let x1 = y1.
If y1 /∈ C, select a point x1 ∈ ∂C such that

d(x0, x1) + d(x1, y1) = d(x0, y1).

Thus x1 ∈ C. Now, we claim that d(y1, Tx1) > 0. Suppose d(y1, Tx1) = 0. If y1 ∈ C,
then x1 is a fixed point of T , which is a contradiction. If y1 /∈ C, then x1 ∈ ∂C and so
Tx1 ⊆ C. Therefore, y1 /∈ Tx1, which is a contradiction. Thus, d(y1, Tx1) > 0. Now, since
d(y1, Tx1) ≤ H(Tx0, Tx1), then we get

(3.13) θ(d(y1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k
.

On the other hand, since Tx1 is compact there exists y2 ∈ Tx1 such that

d(y1, Tx1) = d(y1, y2).

Thus, from (3.13) we get

θ(d(y1, y2)) ≤ [θ(d(x0, x1))]
k
.

The rest of the proof can be completed as in the proof of Theorem 3.5. �

The provided nontrivial example shows that Theorem 3.5 is a proper generalization of
Theorem 2.4.

Example 3.2. Consider the sequence {sn}N∪{0} as s0 = 0 and

sn = sn−1 + n2 =
n(n+ 1)(2n+ 1)

6
for n ≥ 1.

Let X = R and C = (−∞, 0) ∪ {sn : n ∈ N ∪ {0}} and d(x, y) = |x− y| . Then (X, d)
is a complete and metrically convex metric space and C is a closed subset of X . Let
T : C → CB(X) be given by

Tx =


{
−x4
}

, x ∈ (−∞, 0]

{0, sn−1} , x = sn, n ≥ 1
.

Note that ∂C = {sn : n ∈ N ∪ {0}} and, for each x ∈ ∂C, Tx ⊂ C. Now, we show that the
contractive condition (3.6) of Theorem 3.5 is satisfied with θ(t) = e

√
tet and k = e−0.5. So,

the contractive condition (3.6) turns into

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ e−1,

for each x, y ∈ C with H(Tx, Ty) > 0. Note that, if H(Tx, Ty) > 0, then (x, y) /∈
{(0, s1), (s1, 0)} and x 6= y. In the following cases, without lost of generality we may
assume x > y:
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Case 1. Consider x, y ∈ (−∞, 0]. Then, we obtain

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) =

1
4d(x, y)

d(x, y)
e

1
4d(x,y)−d(x,y) =

1

4
e−

3
4d(x,y) <

1

4
< e−1.

Case 2. Consider x, y ∈ {sn : n ∈ N}. Then for x = sm and y = sn, we obtain

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) =

sm−1 − sn−1
sm − sn

esm−1−sn−1−sm+sn

=
2(m3 − n3)− 3(m2 − n2) + (m− n)

2(m3 − n3) + 3(m2 − n2) + (m− n)
e−(m

2−n2)

< e−(m
2−n2) < e−1.

Case 3. Consider x ∈ {sn : n ∈ N} and y ∈ (−∞, 0]. Then,

H(Tx, Ty) = H({0, sn−1}, {−
y

4
}) ≤ max{ |y|

4
, sn−1}

and d(x, y) = sn + |y|. Thus

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤

max{ |y|4 , sn−1}
sn + |y|

emax{ |y|4 ,sn−1}−sn−|y|

< emax{ |y|4 ,sn−1}−sn−|y| < e−1.

Consequently, by summarizing all cases, we conclude that contractive condition (3.6)
is satisfied. Hence, all assumptions in Theorem 3.5 are satisfied and so, T has a fixed point
in C.

On the other hand, it is easy to show that Theorem 2.2 cannot be applied to this ex-
ample. Indeed, suppose there exists k ∈ (0, 1) such that condition (2.4) holds. If we take
x = sn for n ≥ 2 and y = 0, then H(Tx, Ty) = H({0, sn−1} , {0}) = sn−1 and d(x, y) = sn.
Then, limn→∞

H(Tsn,T0)
d(sn,0)

= limn→∞
sn−1

sn
= 1, which contradict to k < 1.
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