Univalence conditions and properties of a new general integral operator

ROBERTA BUCUR and DANIEL BREAZ

ABSTRACT. In this paper, we obtain univalence conditions and the order of convexity of a new general integral operator defined on the space of normalized analytic functions in the open unit disk U. Also, we give some other properties on the class $N(\varphi)$. Results presented in this paper may motivate further reserch in this fascinating field.

1. Introduction, definitions and P reliminaries

Let $U=\{z:|z|<1\}$ denote the open unit disk of the complex plane and $\mathcal A$ denote the class of all functions of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

which are analytic in U and satisfy the condition f(0) = f'(0) - 1 = 0.

Consider $S = \{ f \in \mathcal{A} : f \text{ is univalent in } U \}.$

A function $f \in A$ is said to be starlike of order δ , $0 \le \delta < 1$, that is $f \in S^*(\delta)$, if and only if

$$Re\left\lceil \frac{zf^{'}(z)}{f(z)}\right\rceil > \delta \quad (z \in U).$$

A function $f \in \mathcal{A}$ is said to be convex of order δ , $0 \le \delta < 1$, that is $f \in K(\delta)$, if and only if

$$Re\left[\frac{zf^{''}(z)}{f^{\prime}(z)}+1\right]>\delta\quad(z\in U).$$

It is well known that $S^*(0) \equiv S^*$ (see [1]) and $K(0) \equiv K$ (see [18]) are the classes of starlike and convex functions in U, respectively.

Also, let $N(\varphi)$, $\varphi > 1$ denote the class of functions $f \in A$ which satisfy

$$Re\left[\frac{zf^{''}(z)}{f'(z)}+1\right]<\varphi\quad(z\in U).$$

The class $N(\varphi)$ was studied in [3, 13, 21].

Frasin and Jahangiri [8] defined the family $B(\mu, \lambda), \mu \geq 0, 0 \leq \lambda < 1$ consisting of functions $f \in \mathcal{A}$ which satisfy the condition

(1.2)
$$\left|f^{'}(z)\left[\frac{z}{f(z)}\right]^{\mu}-1\right|<1-\lambda,\quad(z\in U).$$

Received: 23.05.2015. In revised form: 04.03.2016. Accepted: 11.03.2016

2010 Mathematics Subject Classification. 30C45, 30C75.

Key words and phrases. Analytic functions, univalent functions, Starlike functions, convex functions, integral operator, General Schwarz Lemma.

Corresponding author: Roberta Bucur; roberta_bucur@yahoo.com

The family $B(\mu, \lambda)$ is a comprehensive class of analytic functions. For instance, we have $B(1, \lambda) = S^*(\lambda)$ and $B(2, \lambda) = B(\lambda)$ (see Frasin and Darus [9]).

In the present paper, we define a new integral operator given by

(1.3)
$$F(z) = \int_0^z \prod_{i=1}^n \left[\frac{tf_i'(t)}{g_i(t)} e^{h_i(t)} \right]^{\alpha_i} dt,$$

where parameters $\alpha_i \in \mathbb{C}$ and the functions $f_i, g_i, h_i \in \mathcal{A}, i \in \{1, ..., n\}$, are so constrained that the integral (1.3) exists.

The operator F generalizes certain integral operators:

- (i) For $e^{h_i(t)} = 1$, $g_i(t) = t$ and $\alpha_i > 0$ we have $F(z) = \int_0^z \prod_{i=1}^n \left[f_i'(t) \right]^{\alpha_i} dt$, that was defined by Breaz, Owa and Breaz in [4], and this operator is a generalization of the integral operator $F(z) = \int_0^z \left[f'(t) \right]^{\alpha} dt$, discussed in [14, 15, 17].
- (ii) For $g_i(t)=t$ we get $F(z)=\int_0^z \prod_{i=1}^n \left[f_i'(t)e^{h_i(t)}\right]^{\alpha_i} dt$ which was studied by Oprea and Breaz in [12] and this operator is a generalization of the integral operator $F(z)=\int_0^z \left[f'(t)e^{h(t)}\right]^{\alpha_i} dt$, defined and studied by Ularu and Breaz in [19, 20].
- (iii) For n=1 and $e^{h_1(t)}=1$ we obtain $F(z)=\int_0^z \left[\frac{tf'(t)}{g(t)}\right]^\alpha dt$, introduced and studied by Bucur, Andrei and Breaz in [5].
- (iv) For n=1 and $f_1(t)=t$ we have $F(z)=\int_0^z \left[\frac{te^{h(t)}}{g(t)}\right]^\alpha dt$ defined and disscused by Bucur, Andrei and Breaz in [6].

Recently, many authors studied the sufficient conditions for the univalence and convexity of certain families of integral operators in the open unit disk and some of them motivated our work (see [7, 16]).

In order to derive our main results, we have to recall here the following:

Lemma 1.1. (Mocanu and Serb [11]) Let $M_0 = 1,5936...$, the positive solution of equation

$$(1.4) (2-M)e^M = 2.$$

If $f \in \mathcal{A}$ and

$$\left| \frac{f''(z)}{f'(z)} \right| \le M_0 \quad (z \in U),$$

then

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < 1 \quad (z \in U).$$

The edge M_0 is sharp.

Lemma 1.2. (Becker [2]) If the function f is regular in the unit disk U, $f(z) = z + a_2 z^2 + \dots$ and

(1.6)
$$(1 - |z|^2) \cdot \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \quad (z \in U),$$

then the function f is univalent in U.

Lemma 1.3. (The General Schwarz Lemma [10]) Let f be regular function in the disk $U_R = \{z \in \mathbb{C} : |z| < R\}$ with |f(z)| < M, for M fixed. If f has at z = 0 one zero with multiplicity

bigger than m, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \quad (z \in U_R).$$

The equality holds if and only if $f(z) = e^{i\theta} \frac{M}{R^m} z^m$, where θ is constant.

Lemma 1.4. (Wilken and Feng [22]) If $0 < \delta < 1$ and $f \in K(\delta)$, then $f \in S^*(\nu(\delta))$, where

(1.7)
$$\nu(\delta) = \begin{cases} \frac{1-2\delta}{2^{2(1-\delta)}-2}, & \text{if } \delta \neq \frac{1}{2}, \\ \frac{1}{2\log 2}, & \text{if } \delta = \frac{1}{2}. \end{cases}$$

2 MAIN RESULTS

In the following theorem we give sufficient conditions for the univalence of the operator F defined in (1.3), by using Mocanu and Şerb Lemma and Becker univalence criterion.

Theorem 2.1. Let $\alpha_1, \alpha_2, \dots \alpha_n$ be complex numbers, M_0 the positive solution of the equation (1.4), $M_0 = 1,5936...$, functions $f_i, g_i \in \mathcal{A}$ and $h_i \in B(\mu_i, \lambda_i)$, $\mu_i \geq 0$, $0 \leq \lambda_i < 1$, $N_i \geq 1$ and $M_i \geq 1$, $i \in \{1, \dots, n\}$. If

(2.8)
$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \le N_i, \quad \left| \frac{g''(z)}{g'(z)} \right| \le M_0, \quad |h_i(z)| < M_i \quad (z \in U; \ i \in \{1, \dots, n\})$$

and

(2.9)
$$\sum_{i=1}^{n} |\alpha_i| \cdot \frac{9a_i^2 - 1 + (3a_i^2 + 1)\sqrt{3a_i^2 + 1}}{a_i^2} \le \frac{27}{2},$$

where $a_i = N_i + (2 - \lambda_i) M_i^{\mu_i}$, then the function F given by (1.3) is in the class S.

Proof. After some computations, we obtain that

(2.10)
$$\frac{zF^{''}(z)}{F'(z)} = \sum_{i=1}^{n} \alpha_i \left[\frac{zf_i^{''}(z)}{f_i'(z)} - \left(\frac{zg_i'(z)}{g_i(z)} - 1 \right) + zh_i'(z) \right],$$

which readily vields

$$\left| \frac{zF^{''}(z)}{F^{'}(z)} \right| \leq \sum_{i=1}^{n} |\alpha_{i}| \left\{ |z| \cdot \left| \frac{f_{i}^{''}(z)}{f_{i}^{'}(z)} \right| + \left| \frac{zg_{i}^{'}(z)}{g_{i}(z)} - 1 \right| + |zh_{i}^{'}(z)| \right\}
(2.11)
$$\leq \sum_{i=1}^{n} |\alpha_{i}| \left\{ |z| \cdot \left| \frac{f_{i}^{''}(z)}{f_{i}^{'}(z)} \right| + \left| \frac{zg_{i}^{'}(z)}{g_{i}(z)} - 1 \right| + \left(\left| h_{i}^{'}(z) \left(\frac{z}{h_{i}(z)} \right)^{\mu_{i}} - 1 \right| + 1 \right) \cdot \frac{|h_{i}(z)|_{i}^{\mu}}{|z|^{\mu_{i}-1}} \right\}.$$$$

Now, by using (2.8) and applying Lemma Mocanu and Şerb to the functions g_1, \ldots, g_n , we obtain

$$\left|\frac{zg_i'(z)}{g_i(z)} - 1\right| < 1 \quad (z \in U).$$

Also, applying the General Schwarz Lemma to the functions h_1, \ldots, h_n , we have

(2.13)
$$|h_i(z)| \le M_i |z| \quad (z \in U).$$

Using the hypothesis of the theorem and replacing (2.12) and (2.13) in inequality (2.11), we find that

$$(1 - |z|^2) \cdot \left| \frac{zF''(z)}{F'(z)} \right| \le (1 - |z|^2) \cdot \left\{ \sum_{i=1}^n |\alpha_i| [1 + N_i |z| + (2 - \lambda_i) M_i^{\mu_i} |z|] \right\} = \sum_{i=1}^n |\alpha_i| G_i(x),$$

where function $G_i:[0,1)\to\mathbb{R}$,

$$G_i(x) = (1 - x^2)(a_i x + 1), \ x = |z| \text{ and } a_i = N_i + (2 - \lambda_i)M_i^{\mu_i}.$$

Since the maximum point of G_i is $x = \frac{\sqrt{1+3a_i^2}-1}{3a_i}$, it results

$$G_i(x) \le \frac{2[9a_i^2 - 1 + (3a_i^2 + 1)\sqrt{3a_i^2 + 1}]}{27a_i^2} \quad (x \in [0, 1)),$$

which in conjunction with the inequality (2.14), leads us to

$$(1-|z|^2) \cdot \left| \frac{zF''(z)}{F'(z)} \right| \le 1 \quad (z \in U).$$

Finally by applying Lemma 1.2, it results that function F given by (1.3) is in the class S.

Theorem 2.2. Let $\alpha_1, \alpha_2, \ldots \alpha_n$ be complex numbers, functions $f_i \in K(\delta_i), 0 \le \delta < 1$, $g_i \in S^*(k_i), 0 \le k_i < 1$ and $h_i \in B(\mu_i, \lambda_i), \ \mu_i \ge 0, \ 0 \le \lambda_i < 1, \ i \in \{1, \ldots, n\}$. Suppose that for all $z \in U$, we have

$$(2.15) |h_i(z)| < M_i (M_i \ge 1, i \in \{1, \dots, n\}).$$

If

(2.16)
$$\sum_{i=1}^{n} |\alpha_i| \cdot \frac{\left(3a_i^2 - b_i^2 + b_i\sqrt{3a_i^2 + b_i^2}\right) \left(2b_i + \sqrt{3a_i^2 + b_i^2}\right)}{a_i^2} \le \frac{27}{2},$$

where $a_i = (2 - \lambda_i) M_i^{\mu_i}$ and $b_i = 2 - k_i - \delta_i$, then the function F given by (1.3) is in the class S.

Proof. Just as in the proof of Theorem 2.1, we obtain

$$\left|\frac{zF^{''}(z)}{F^{'}(z)}\right| \leq \sum_{i=1}^{n} \left|\alpha_{i}\right| \left\{ \left|\frac{zf_{i}^{''}(z)}{f_{i}^{'}(z)}\right| + \left|\frac{zg_{i}^{'}(z)}{g_{i}(z)} - 1\right| + \left|zh_{i}^{'}(z)\right| \right\}.$$

(2.17)

Next, using the General Schwarz Lemma for functions h_i (i = 1, ..., n), together with the hypothesis of the Theorem 2.2, the last inequality implies

$$(1 - |z|^{2}) \cdot \left| \frac{zF^{"}(z)}{F'(z)} \right|$$

$$\leq (1 - |z|^{2}) \cdot \left\{ \sum_{i=1}^{n} |\alpha_{i}| \left[2 - \delta_{i} - k_{i} + \left(\left| h_{i}'(z) \left(\frac{z}{h_{i}(z)} \right)^{\mu_{i}} - 1 \right| + 1 \right) \cdot \frac{|h_{i}(z)|_{i}^{\mu}}{|z|^{\mu_{i} - 1}} \right] \right\}$$

$$(2.18) \qquad \leq (1 - |z|^{2}) \cdot \left\{ \sum_{i=1}^{n} |\alpha_{i}| [2 - \delta_{i} - k_{i} + (2 - \lambda_{i}) M_{i}^{\mu_{i}} |z|] \right\} = \sum_{i=1}^{n} |\alpha_{i}| H_{i}(x),$$

where

$$H_i(x) = (1 - x^2)(a_i x + b_i), \ x = |z|, \ a_i = (2 - \lambda_i)M_i^{\mu_i} \text{ and } b_i = 2 - \delta_i - k_i.$$

After some computations, we obtain that $x = \frac{\sqrt{b_i^2 + 3a_i^2 - b_i}}{3a_i}$ is the maximum point of G_i , so

$$G_i(x) \le \frac{2\left(3a_i^2 - b_i^2 + b_i\sqrt{3a_i^2 + b_i^2}\right)\left(2b_i + \sqrt{3a_i^2 + b_i^2}\right)}{27a_i^2} \quad (x \in [0, 1)).$$

П

Thus.

(2.19)
$$(1-|z|^2) \cdot \left| \frac{zF''(z)}{F'(z)} \right| \le 1 \quad (z \in U),$$

and applying Lemma 1.2, we yield that F given by (1.3) is in the class S.

Corollary 2.1. Let $\alpha_1, \alpha_2, \dots \alpha_n$ be complex numbers, functions $f_i \in K, g_i \in S^*$ and $h_i \in S^*$, $i \in \{1, \dots, n\}$. Suppose that for all $z \in U$, we have

$$|h_i(z)| < M_i \quad (M_i \ge 1, i \in \{1, \dots, n\}).$$

Ιf

$$\sum_{i=1}^{n} |\alpha_i| \cdot \frac{\left(6M_i^2 - 1 + \sqrt{3M_i^2 + 1}\right) \left(2 + \sqrt{3M_i^2 + 1}\right)}{M_i^2} \le \frac{27}{2},$$

then the function F given by (1.3) is in the class S.

Corollary 2.2. Let $\alpha_1, \alpha_2, \ldots \alpha_n$ be complex numbers, functions $f_i \in K(\delta_i), 0 \le \delta_i < 1$, $g_i \in K(k_i), 0 \le k_i < 1$ and $h_i \in S^*(\lambda_i), i \in \{1, \ldots, n\}$). Suppose that for all $z \in U$, we have

$$|h_i(z)| < M_i \quad (M_i \ge 1, i \in \{1, \dots, n\}).$$

Ιf

$$\sum_{i=1}^{n} |\alpha_i| \cdot \frac{\left(3a_i^2 - b_i^2 + b_i\sqrt{3a_i^2 + b_i^2}\right) \left(2b_i + \sqrt{3a_i^2 + b_i^2}\right)}{a_i^2} \le \frac{27}{2},$$

where $a_i = (2 - \lambda_i)M_i$, $b_i = 2 - \delta_i - \beta(k_i)$, and $\beta(k_i)$ is given by relation(1.7), then the function F given by (1.3) is in the class S.

Proof. If $g_i \in K(k_i)$, applying Lemma 1.4, we obtain $g_i \in S^*(\beta(k_i))$. Further, using Theorem 2.2 with $\mu_i = 1$, we deduce that function F given by (1.3) is in the class S.

Theorem 2.3. Let α_i be complex numbers, functions $f_i \in \mathcal{A}$, $g_i \in B(\eta_i, \nu_i)$, $\eta_i \geq 0$, $0 \leq \nu_i < 1$, and $h_i \in B(\mu_i, \lambda_i)$, $\mu_i \geq 0$, $0 \leq \lambda_i < 1$, $i \in \{1, \dots, n\}$. Suppose that

$$(2.20) \quad \left| \frac{f_i''(z)}{f_i'(z)} \right| < N_i \ (N_i \ge 1), \quad |g_i(z)| < P_i \ (P_i \ge 1) \quad \text{ and } \quad |h_i(z)| < M_i \ (M_i \ge 1),$$

for all $z \in U$ and $i \in \{1, ..., n\}$. Then the function F given by (1.3) is in the class $K(\delta)$, where

(2.21)
$$\delta = 1 - \sum_{i=1}^{n} |\alpha_i| \cdot [1 + N_i + (2 - \nu_i)P_i^{\eta_i - 1} + (2 - \lambda_i)M_i^{\mu_i}]$$

and

(2.22)
$$0 < \sum_{i=1}^{n} |\alpha_i| \cdot [1 + N_i + (2 - \nu_i)P_i^{\eta_i - 1} + (2 - \lambda_i)M_i^{\mu_i}] \le 1.$$

Proof. From (2.10), we obtain

$$(2.23) \quad \left| \frac{zF''(z)}{F'(z)} \right| \leq \sum_{i=1}^{n} |\alpha_{i}| \cdot \left\{ 1 + |z| \cdot \left| \frac{f_{i}''(z)}{f_{i}'(z)} \right| + \left| g_{i}'(z) \cdot \left(\frac{z}{g_{i}(z)} \right)^{\eta_{i}} \right| \cdot \left| \left(\frac{g_{i}(z)}{z} \right) \right|^{\eta_{i}-1} + \left| |z| \cdot \left| h_{i}'(z) \cdot \left(\frac{z}{h_{i}(z)} \right)^{\mu_{i}} \right| \cdot \left| \left(\frac{h_{i}(z)}{z} \right) \right|^{\mu_{i}} \right\}.$$

Using the hypothesis and the General Schwarz Lemma, inequation (2.23) implies

$$\begin{split} \left| \frac{zF''(z)}{F'(z)} \right| &\leq \sum_{i=1}^{n} |\alpha_{i}| \cdot \left\{ 1 + |z| \cdot N_{i} + \left(\left| g_{i}'(z) \cdot \left(\frac{z}{g_{i}(z)} \right)^{\eta_{i}} - 1 \right| + 1 \right) P_{i}^{\eta_{i} - 1} + \\ & \left(\left| h_{i}'(z) \cdot \left(\frac{z}{h_{i}(z)} \right)^{\mu_{i}} - 1 \right| + 1 \right) M_{i}^{\mu_{i}} \right\} \\ &\leq \sum_{i=1}^{n} |\alpha_{i}| \cdot [1 + N_{i} + (2 - \nu_{i}) P_{i}^{\eta_{i} - 1} + (2 - \lambda_{i}) M_{i}^{\mu_{i}}] = 1 - \delta. \end{split}$$

This evidently completes the proof.

Corollary 2.3. Let α_i be complex numbers, functions $f_i \in \mathcal{A}$, $g_i \in S^*(\nu_i)$, $0 \le \nu_i < 1$, and $h_i \in S^*(\lambda_i)$, $0 \le \lambda_i < 1$, $i \in \{1, \ldots, n\}$. Suppose that

$$(2.24) \quad \left| \frac{f_i''(z)}{f_i'(z)} \right| < N_i \ (N_i \ge 1), \quad |g_i(z)| < P_i \ (P_i \ge 1) \quad \text{ and } \quad |h_i(z)| < M_i \ (M_i \ge 1),$$

for all $z \in U$ and $i \in \{1, ..., n\}$. Then the function F given by (1.3) is in the class $K(\delta)$, where

(2.25)
$$\delta = 1 - \sum_{i=1}^{n} |\alpha_i| \cdot [3 + N_i - \nu_i + (2 - \lambda_i)M_i]$$

and

(2.26)
$$0 < \sum_{i=1}^{n} |\alpha_i| \cdot [3 + N_i - \nu_i + (2 - \lambda_i)M_i] \le 1.$$

Proof. In Theorem 2.3, we consider $\mu_i = 1$ and $\eta_i = 1$ for all $i \in \{1, 2, ... n\}$.

Corollary 2.4. Let α_i be complex numbers, functions $f_i \in \mathcal{A}$, $g_i \in S^*$ and $h_i \in S^*$, $i \in \{1, \ldots, n\}$. Suppose that

$$(2.27) \quad \left| \frac{f_i''(z)}{f_i'(z)} \right| < N_i \ (N_i \ge 1), \quad |g_i(z)| < P_i \ (P_i \ge 1) \quad \text{ and } \quad |h_i(z)| < M_i \ (M_i \ge 1),$$

for all $z \in U$ and $i \in \{1, ..., n\}$. If

(2.28)
$$\sum_{i=1}^{n} |\alpha_i| \cdot [3 + 2M_i + N_i] = 1,$$

then the function F given by (1.3) is convex in U.

Proof. In Corollary 2.3, we consider $\lambda_i = 1$, $\nu_i = 0$ for all $i \in \{1, 2, ... n\}$ and $\delta = 0$.

In the following theorem we give sufficient conditions such that the integral operator F is in the class $N(\varphi)$.

Theorem 2.4. Let α_i be positive real numbers, functions $f_i \in N(\beta_i)$, $g_i \in S^*(k_i)$, $0 \le k_i < 1$ and $h_i \in B(\mu_i, \lambda_i)$, $\mu_i \ge 0$, $0 \le \lambda_i < 1$, $i \in \{1, ..., n\}$. If

$$|h_i(z)| < M_i \ (z \in U, M_i \ge 1, i \in \{1, \dots, n\}),$$

then the function F given by (1.3) is in the class $N(\varphi)$, where

$$\varphi = 1 + \sum_{i=1}^{n} \alpha_i [\beta_i - k_i + (2 - \lambda_i) M_i^{\mu_i}].$$

Proof. From (2.10), we obtain

(2.29)

$$\operatorname{Re}\left[\frac{zF^{''}(z)}{F^{'}(z)}+1\right] = \sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left[\frac{zf_{i}^{''}(z)}{f_{i}^{'}(z)}+1\right] - \sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left[\frac{zg_{i}^{'}(z)}{g_{i}(z)}\right] + \sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left[zh_{i}^{'}(z)\right] + 1.$$

Letting $h_i \in B(\mu_i, \lambda_i)$ with $h_i(0) = 0$ and $|h_i(z)| < M_i$ for all $i \in \{1, ..., n\}$, from General Schwarz Lemma, we get

$$(2.30) \quad \operatorname{Re} \left[z h_i^{'}(z) \right] \leq \left| z h_i^{'}(z) \right| \leq \left(\left| h_i^{'}(z) \cdot \left(\frac{z}{h_i(z)} \right)^{\mu_i} - 1 \right| + 1 \right) M_i^{\mu_i} \cdot |z| < (2 - \lambda_i) M_i^{\mu_i}.$$

So, using the hypothesis and (2.30) in relation (2.29), we have

$$\operatorname{Re}\left[\frac{zF^{''}(z)}{F^{'}(z)} + 1\right] < \sum_{i=1}^{n} \alpha_{i}(\beta_{i} - k_{i} + (2 - \lambda_{i})M_{i}^{\mu_{i}}) + 1.$$

Since $\sum_{i=1}^{n} \alpha_i(\beta_i - k_i + (2 - \lambda_i)M_i^{\mu_i}) > 0$, we yield that F given by (1.3) is in the class $N(\varphi)$, where $\varphi = 1 + \sum_{i=1}^{n} \alpha_i [\beta_i - k_i + (2 - \lambda_i)M_i^{\mu_i}]$.

Corollary 2.5. Let α_i be positive real numbers, functions $f_i \in N(\beta)$, $\beta > 1$ $g_i \in S^*(k)$, $0 \le k < 1$ and $h_i \in S^*(\lambda)$, $0 \le \lambda < 1$, $i \in \{1, ..., n\}$. If

$$|h_i(z)| \le M \ (z \in U, M \ge 1, \ i \in \{1, \dots, n\}),$$

then the function F given by (1.3) is in the class $N(\varphi)$, where

$$\varphi = 1 + \sum_{i=1}^{n} \alpha_i [\beta - k + (2 - \lambda)M].$$

Proof. In Theorem 2.4, we consider $\mu_i = 1$ and $\beta_i = \beta > 1$ and $k_i = k$ for all $i \in \{1, \dots, n\}$.

Remark 2.1. Many other interesting corollaries of Theorems 2.1 to 2.4 can be obtained by suitably specializing the parameters and the functions involved.

REFERENCES

- [1] Alexander, J. W., Functions which maps the interior of the unit circle upon simple regions, Ann. of Math., 17 (1915), 12–22
- [2] Becker, J., Lownersche Differential gleichung und quasi-konform fortsetzbare schlichte funktionen, J. Reine Angew. Math., 255 (1972), 23–43
- [3] Breaz, D., Certain integral operators on the classes $M(\beta_i)$ and $N(\beta_i)$, J. Inequal. Appl., Vol. 2008, Article ID 719354 (2008), 4 pg.
- [4] Breaz, D., Owa, S. and Breaz, N., A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16 (2008)
- [5] Bucur, R., Andrei, L. and Breaz, D., Geometric Properties of a New Integral Operator, Abstr. Appl. Anal., Vol. 2015, Article ID 430197 (2015), 6 pg.
- [6] Bucur, R., Andrei, L. and Breaz, D., Univalence criterion, starlikeness and convexity for a new integral operator, Int. Electron. J. Pure Appl. Math., 9 (2015), No. 3, 215–223
- [7] Frasin, B. A. and Breaz, D., Univalence conditions of general integral operator, Mat. Vesnik, 65 (2013), No. 3, 394–402
- [8] Frasin, B. A. and Jahangiri, J., A new and comprehensive class of analytic functions, An. Univ. Oradea, Fasc. Mat. XV (2008), 59–62
- [9] Frasin, B. A. and Darus, M., On certain analytic univalent functions, Int. J. Math. Math. Sci., 25 (2001), No. 5, 305–310
- [10] Mayer, O., The functions theory of one variable complex, Bucuresti, 1981
- [11] Mocanu, P. T. and Şerb, I., A sharp simple criterion for a subclass of starlike functions, Complex Variables Theory Appl., 32 (1997), No. 2, 161–168

- [12] Oprea, A. and Breaz, D., Univalence conditions for two general integral operators, Adv. in Pure Math., 4 (2014), No. 8, 487–493
- [13] Owa, S. and Srivastava, H. M., Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3 (2002), No. 3, Art. 42, 1–13
- [14] Pascu, N. N. and Pescar, V., On the integral operators of Kim-Merkes and Pfaltzgraff, Stud. Univ. Babeş-Bolyai Math., 32 (1990), No. 2, 185–192
- [15] Pescar, V., Some Integral Operators and Their Univalence, J. Anal., 5 (1997), 157–162
- [16] Pescar, V., New univalence criteria for some integral operators, Stud. Univ. Babeş-Bolyai Math., 59 (2014), No. 2, 167–176
- [17] Pfaltzgraff, I., Univalence of the integral of $(f'(z))^{\lambda}$, Bull. Lond. Math. Soc., 7 (1975), No. 3, 254–256
- [18] Study, E., Vorlesungen uber ausgewahlte Gegenstande der Geometrie, 2. Heft, Teubner, Leipzig und Berlin, 1913
- [19] Ularu, N. and Breaz, D., Univalence criterion and convexity for an integral operator, Appl. Math. Lett., 25 (2012), 658–661
- [20] Ularu, N. and Breaz, D., Univalence condition and properties for two integral operators, Appl. Sci., 15 (2013), 658–661
- [21] Uralegaddi, A, Ganigi, M. D. and Sarangi, S. M., Univalent functions with positive coefficients, Tamkang J. Math., 25 (1994), No. 3, 225–230
- [22] Wilken, D. R. and Feng, J., A remark on convex and starlike functions, J. Lond. Math. Soc. (2), 21 (1980), No. 2, 287–290

DEPARTMENT OF MATHEMATICS

University of Pitesti

STR. TÂRGUL DIN VALE 1, R-110040 PITESTI, ROMANIA

E-mail address: roberta_bucur@vahoo.com

DEPARTMENT OF MATHEMATICS

"1 DECEMBRIE 1918" UNIVERSITY OF ALBA IULIA

STR. N. IORGA 11-13, R-510009 ALBA IULIA, ROMANIA

E-mail address: dbreaz@uab.ro