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Fixed points of mappings defined on spaces with distance

MITROFAN M. CHOBAN

ABSTRACT. In the present article we study distinct metrical structures guaranteeing the existence of fixed
points for a given mapping (Propositions 3.4 and 5.9, Theorems 4.1 and 7.3, Corollaries 2.1, 3.3, 4.4, 4.7, 5.10,
6.12, 6.13). Some examples are proposed (Examples 1.4, 4.9, 6.12).

1. PRELIMINARIES

By a space we understand a topological T0-space. We use the terminology from [23, 25,
38].

The problem of fixed points is one of the most investigated and consists in finding
conditions under which for a given mapping ϕ : X −→ X the set of fixed points Fix(ϕ)
= {x ∈ X : ϕ(x) = x} of ϕ is non-empty. Still now were founded various conditions
that use distinct structures on X : metrical structures [9, 10, 11, 12, 16, 17, 18, 20, 21, 25, 27,
28, 35, 36, 38]; ordering structures [8, 25, 36, 37, 38, 39]; structures of topological nature
[25, 36, 38]; linear structures [8, 14, 25, 38, 36] etc.

Let X be a non-empty set and d : X ×X → R be a mapping such that for all x, y ∈ X
we have:

(im) d(x, y) ≥ 0;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y.
Then (X, d) is called a distance space and d is called a distance on X .
General problems of the distance spaces were studied in [1, 3, 12, 15, 24, 29, 30, 31, 32,

33, 34]. In [18] were proposed some reduction principles of fixed point theorems for metric
spaces to the case of topological spaces with a continuous pseudometric. The similar re-
duction principles are true for distinct classes of distance spaces. The notion of a distance
space is more general than the notion of o-metric spaces in sense of A. V. Arhangel’skii [3]
and S. I. Nedev [29]. A distance d is an o-metric if from d(x, y) = 0 it follows that x = y.
These notions coincide in the class of T1-spaces.

Let d be a distance onX andB(x, d, r) = {y ∈ X : d(x, y) < r} be the ball with the center
x and radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there exists r > 0 such
that B(x, d, r) ⊂ U . The family T (d) of all d-open subsets is the topology on X generated
by d. A distance space is a sequential space, i.e. a set B ⊆ X is closed if and only if together
with any sequence it contains all its limits [23].

Let (X, d) be a distance space, {xn : n ∈ N = {1, 2, ...}} be a sequence in X and x ∈ X .
We say that the sequence {xn : n ∈ N}:

1) is convergent to x if and only if limn→∞d(x, xn) = 0. We denote this by xn → x or
x = limn→∞xn (really, we may denote x ∈ limsn→∞xn);

2) is convergent if it converge to some point in X ;
3) is Cauchy or fundamental if limn,m→∞d(xn, xm) = 0.
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A distance space (X, d) is complete if every Cauchy sequence in X converges to some
point in X .

Remark 1.1. Let ρ be a pseudo-distance on a space X and d(x, y) = ρ(x, y) + ρ(y, x) for all
x, y ∈ X . Then: (X, d) is a pseudo-symmetric space; d is a symmetric if and only if ρ is a
distance; {xn : n ∈ N} is a Cauchy sequence in (X, ρ) if and only if it is a Cauchy sequence
in (X, d); T (ρ) ⊆ T (d).

Lemma 1.1. Let (X, d) be a distance space, ϕ : X −→ X be a mapping and for each point x ∈ X
there exist two positive numbers c(x), k(x) > 0 such that d(ϕ(x), ϕ(y)) ≤ k(x) ·d(x, y) provided
y ∈ X and d(x, y) ≤ c(x). Then the mapping ϕ is continuous.

Proof. Let {xn ∈ X : n ∈ N} be a convergent to x ∈ X sequence. Then limn→∞d(x, xn) = 0,
limn→∞d(ϕ(x), ϕ(xn)) = 0 and limn→∞ϕ(xn) = ϕ(x). Hence the mapping ϕ is continuous.

�

Let X be a non-empty set and d be a distance on X . Then:
- (X, d) is called a symmetric space and d is called a symmetric on X if for all x, y ∈ X we

have
(iiim) d(x, y) = d(y, x);
- (X, d) is called a quasimetric space and d is called a quasimetric on X if for all x, y, z ∈ X

we have
(ivm) d(x, z) ≤ d(x, y) + d(y, z);
- (X, d) is called a metric space and d is called a metric if d is a symmetric and a quasi-

metric simultaneous.

Lemma 1.2. Let (X, d) be a distance space, ϕ : X −→ X be a mapping and d(ϕ(x), ϕ(y)) +
d(ϕ(y), ϕ(x)) < d(x, y) + d(y, x) for all distinct points x, y ∈ X . Then:

1. The mapping ϕ does not have two distinct fixed points.
2. The mapping ϕ does not have periodic non-fixed points.

Proof. Let ρ(x, y) = d(x, y) + d(y, x) for all x, y ∈ X . Then ρ is a symmetric on X and
ρ(ϕ(x), ϕ(y)) < ρ(x, y)) for all distinct points x, y ∈ X . From ρ(ϕ(x), ϕ(y)) < ρ(x, y) it
follows that at most one of the points x, y is not fixed. Hence the mapping ϕ does not
have two distinct fixed points. Assume that the mapping ϕ has a periodic point, say z, of
period m ≥ 2, i.e. the points z1 = z, z2 = ϕ(z1), ..., zm = ϕ(zm−1) are distinct and z1 =
ϕ(zm). Then ρ(z1, z2) = ρ(ϕ(zm), ϕ(z1) < ρ(zm, z1) = ρ(ϕ(zm−1), ϕ(zm) < ρ(zm−1, zm)... <
ρ(z1, z2), a contradiction. The proof is complete. �

Let X be a non-empty set and d(x, y) be a distance on X with the following property:
(N ) for each point x ∈ X and any ε > 0 there exists δ = δ(x, ε) > 0 such that from

d(x, y) ≤ δ and d(y, z) ≤ δ it follows d(x, z) ≤ ε.
Then (X, d) is called an N-distance space and d is called an N-distance on X . If d is a sym-
metric, then we say that d is an N -symmetric.

Spaces with N -distances were studied by V. Niemyzki [33] and by S. I. Nedev [29].
If d satisfy the condition
(F ) for any ε > 0 there exists δ = δ(ε) > 0 such that from d(x, y) ≤ δ and d(y, z) ≤ δ it

follows d(x, z) ≤ ε,
then d is called an F-distance or a Fréchet distance and (X, d) is called an F-distance space.

Any F -distance is an N -distance. If d is a symmetric and an F -distance on a space X ,
then we say that d is an F -symmetric.

Remark 1.2. If (X, d) is an F -symmetric space, then any convergent sequence is a Cauchy
sequence. For N -symmetric spaces and for quasimetric spaces this assertion is not true.
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Example 1.1. Let X = {2−n : n ∈ N} ∪ {0}, ρ(x, x) = d(x, x) = 0, d(x, y) = d(y, x) for
all x, y ∈ X , ρ(2−n, 2−m) = d(2−n, 2−m) = 1 for all distinct n,m ∈ N and ρ(2−n, 0) = 1,
ρ(0, 2−n) = d(0, 2−n) = 2−n for each n ∈ N. The distance d is an N -symmetric and it is not
an F -distance. The topology T (d) generate by d is a compact metric topology on X . By
construction, T (ρ) = T (d). The distance ρ is a quasimetric. The sequence {2−n : n ∈ N} is
convergent and it is not a Cauchy sequence in the distance spaces (X, ρ) and (X, d) .

We say that a distance d on a space (X, d) is balanced if for every Cauchy sequence
{xn : n ∈ N} convergent to x inX and any point y ∈ X we have d(y, x) = limn→∞d(y, xn).

Remark 1.3. Any metric is balanced. Moreover, assume that x, y ∈ X , (X, d) is a metric
space and {xn : n ∈ N} is a sequence convergent to x. Then d(y, x) = limn→∞d(y, xn).

Example 1.2. Let X = {2−n : n ∈ N} ∪ {0, 2}, d(x, x) = 0 and d(x, y) = d(y, x) for all
x, y ∈ X , d(0, 2) = 2, d(2−n, 2−m) = |2−n − 2−m| for all n,m ∈ N and d(2−n, 2) = 3,
d(2−n, 0) = 2−n for each n ∈ N. By construction, (X, d) is an F -symmetric. The symmetric
d is not balanced and the topology T (d) generate by d is a compact metric topology on X .

Example 1.3. Let X = {2−n : n ∈ N} ∪ {0, 2}, d(x, x) = 0 for any x ∈ X , d(0, 2) = 2, d(2, 0)
= 3, d(2−n, 2−m) = |2−n−2−m| for all n,m ∈ N and d(2−n, 2) = 3, d(2, 2−n) = 2, d(2−n, 0) =
1 for each n ∈ N. By construction, (X, d) is a quasimetric. By construction, 3 = d(2, 0) > 2
= limn→∞d(2, 2−n) and {2−n : n ∈ N} is a Cauchy sequence convergent to 0. Hence the
quasimetric d is not balanced and the topology T (d) generate by d is a compact metric
topology on X .

Fix a mapping ϕ : X −→ X . For any point x ∈ X we put ϕ0(x) = x, ϕ1(x) =
ϕ(x), ..., ϕn(x) = ϕ(ϕn−1(x)),... . The sequence O(ϕ, x) = {xn = ϕn(x) : n ∈ N} is called
the orbit of ϕ with respect to the point x or the Picard sequence of the point x.

Fix a distance space (X, d) and a mapping ϕ : X −→ X . We say that the mapping ϕ:
- is contractive if d(ϕ(x), ϕ(y)) < d(x, y) provided d(x, y) > 0;
- is a contraction if there exists λ ∈ [0, 1) such that d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all x, y ∈

X ;
- is strongly asymptotically regular if limn→∞(d(ϕn(x), ϕn+1(x) +d(ϕn+1(x), ϕn(x)))) = 0

for each x ∈ X .
Any contraction is strongly asymptotically regular.

Proposition 1.1. Let (X, d) be a symmetric space with the following property:
(AF) for any ε > 0 there exists δ = δ(ε) > 0 such that from d(x, y) ≥ ε it follows that ρ(x, y)

= inf{Σ{d(zi, zi+1) : i ≤ n} : z1, z2, ..., zn ∈ X,n ∈ N, x = z1, y = zn} ≥ δ. Then:
1. d is a symmetric with the condition (F ).
2. ρ is a metric on X and ρ(x, y) ≤ d(x, y) for all x, y ∈ X .
3. T (ρ) = T (d).
4. The distance space (X, d) is complete if and only if the metric space (X, ρ) is complete.
5. If ϕ : X −→ X is a mapping, λ is a positive number and d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all

x, y ∈ X , then ρ(ϕ(x), ϕ(y)) ≤ λρ(x, y) for all x, y ∈ X . In particular, if the space (X, d) is
complete and λ < 1, then ϕ is strongly asymptotically regular, any Picard sequence is a Cauchy
sequence, and ϕ has a unique fixed point.

Proof. Obviously from d(x, y) < δ(ε) and d(y, z) < δ(ε) it follows that d(x, z) < ε. Hence
d is a symmetric with the condition (F ).

By construction, ρ(u, v) ≤ d(u, v), ρ(x, y) = 0 if and only if x = y and ρ(u,w) ≤ ρ(u, v)+
ρ(v, w) for all u, v, w ∈ X . Hence ρ is a metric on X . Fix ε > 0 and δ = δ(ε). Then
B(x, d, ε) ⊆ B(x, ρ, ε) and B(x, ρ, δ) ⊆ B(x, d, ε). Therefore:

- T (ρ) = T (d);
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- the sequential spaces (X, T (ρ)) and (X, T (d)) have the same convergent sequences;
- the sequential spaces (X, T (ρ)) and (X, T (d)) have the same Cauchy sequences;
- the space (X, d) is complete if and only if the space (X, ρ) is complete.
Let ϕ : X −→ X be a mapping, λ be a positive number and d(ϕ(x), ϕ(y)) ≤ λd(x, y)

for all x, y ∈ X . Fix µ > 0 and x = z1, z2, ..., zn, zn+1 = y in X such that ρ(x, y) ≤
Σ{d(zi, zi+1) : i ≤ n} ≤ ρ(x, y) + µ. Then ρ(ϕ(x), ϕ(y)) ≤ Σ{d(ϕ(zi), ϕ(zi+1)) : i ≤ n} ≤
Σ{λd(zi, zi+1) : i ≤ n} ≤ λρ(x, y) + λµ. Hence ρ(ϕ(x), ϕ(y)) ≤ λρ(x, y) for all x, y ∈ X .
The Banach Contraction Principle [25, 38, 36] completes the proof. �

Example 1.4. Let X = {2−n : n ∈ N}, d(x, x) = 0, d(x, y) = d(y, x) for all x, y ∈ X and
d(2−n, 2−m) = min{2−n, 2−m} for all distinct n,m ∈ N. The topology T (d) generated by
d is a compact T1-topology on X , {2−n : n ∈ N} is a Cauchy sequence convergent to any
point x ∈ X . On X consider the continuous mapping ϕ : X −→ X , where ϕ(2−n) =
2−n−1 for any n ∈ N. Hence:

- d is not an N -distance on X ;
- d is not a balanced distance on X ;
- T (d) = {∅} ∪ {X \ F : F is a finite subset of X};
- d(ϕ(x), ϕ(y)) = 2−1d(x, y) for all x, y ∈ X ;
- Fix(ϕ) = ∅.

2. SPACES WITH H -DISTANCES

A distance space (X, d) is called an H-distance space if for any two distinct points x, y ∈
X there exists δ = δ(x, y) > 0 such that B(x, d, δ) ∩B(y, d, δ) = ∅.

Remark 2.4. Let (X, d) be a distance space. Then (X, d) is an H-distance space if and only
if any convergent sequence has a unique limit point.

Lemma 2.3. Let (X, d) be a distance space and the space (X, T (d)) is Hausdorff. Then d is an
H-distance.

Proof. Fix two distinct points x, y ∈ X . Then there exist two d-open sets U, V ∈ T (d) such
that x ∈ U , y ∈ V and U ∩ V = ∅. By definition of d-open sets, there exists r > 0 such that
B(x, d, r) ⊆ U and B(y, d, r) ⊆ V . Hence B(x, d, r) ∩B(y, d, r) = ∅. �

Example 2.5. Let X = [0, 1]∪ {s}, where s 6∈ [0, 1], and D = {n−1 : n ∈ N}. Consider on X
the symmetric d, where d(x, y) = |x−y| if 0, s 6∈ {x, y}, d(0, n−1) = d(0, s) = 1 and d(s, n−1)
= n−1 for each n ∈ N, d(0, x) = x if x ∈ [0, 1] \D, and d(s, x) = 1 if x ∈ [0, 1] \D. The set B
=B∪{s} is a metrizable compact closed subset of the space (X, d). Let U, V ∈ T (d), 0 ∈ U
and s ∈ V . There exists n ∈ N such that B(0, d, (n− 1)−1) ⊆ U and B(s, d, (n− 1)−1) ⊆ V .
Then ((m+ 1)−1,m−1) ⊆ U for each m ≥ n. For each m ≥ n we have m−1 ∈ V and there
exists δm ∈ (0,m−1−(m+1)−1) such that (m−1−δm,m−1+δm) ⊆ V . HenceU∩V 6= ∅ and
the space (X, T (d)) is not Hausdorff. Since B(0, d, 1) ∩ B(s, d, 1) = ∅ and the subspaces
X \ {0}, X \ {s} of (X, T (d)) are open and Hausdorff, d is an H-distance. The space (X, d)
is a compact T1-space in which any convergent sequence has a unique limit.

We observe that for δ < 2−1, n−1 < δ and x ∈ (0, n−1) \ D we have d(0, x) < δ,
d(x, n−1) < δ, d(0, n−1) = 1 and d(s, n−1) < δ, d(n−1, x) < δ, d(s, x) = 1. Therefore
on X ,R = [0, 1] and S = (0, 1] ∪ {s} the symmetric d is not an N -symmetric and is not a
balanced distance.

The subspace S of (X, d) is a normal Lindelöf non-metrizable space. The subspace R
is Hausdorff and not regular. The space R is the first example of H-closed non-compact
space which was constructed by P. Alexandroff and P. Urysohn ([2], Chapter 1, Section
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1.5). A Hausdorff space Y is called an H-space or an absolutely closed space if Y is a closed
subspace of every Hausdorff space in which it is contained [2, 23].

Proposition 2.2. Let (X, d) be an H-distance space, ϕ : X −→ X be a continuous mapping.
Then:

1. The set Fix(ϕ) of fixed points of ϕ is closed.
2. If for some point x ∈ X the Picard sequence O(ϕ, x) is convergent, then the set of fixed

points Fix(ϕ) of the mapping ϕ is non-empty.

Proof. Assume that {xn ∈ Fix(ϕ) : n ∈ N}, b ∈ X and xn → b. Then b = limn→∞xn =
limn→∞ϕ(xn) = ϕ(b). Hence b ∈ Fix(ϕ) and Assertion 1 is proved.

Let {xn = ϕn(x) ∈ X : n ∈ N} be the Picard sequence of the given point x ∈ X
which is a convergent to a point a ∈ X . Then, since the mapping ϕ is continuous
and limn→∞d(a, xn) = 0, we have limn→∞d(ϕ(a), ϕ(xn)) = limn→∞d(ϕ(a), xn) = 0 and
limn→∞xn = ϕ(a). Hence ϕ(a) = a. �

Example 2.6. Let A = {0} ∪ {2−n : n ∈ N} and X = {0, 1} × A. Consider on X the metric
d, where d((x, y), (u, v)) = |x−u|+ |y− v|, and the mapping ϕ : X −→ X , where ϕ(x, 0) =
(x, 0) and ϕ(x, 2−n) = (x, 2−n−1) for each x ∈ {0, 1} and n ∈ N. The space (X, T (d)) is a
metric compact space. Any Picard sequence is a convergent Cauchy sequence and Fix(ϕ)
= {(0, 0), (1, 0)}. The mapping ϕ is not contractive. It is a contraction along each Picard
sequence with its limit. The article [11] contained some applications of such mappings.

Proposition 2.3. Let (X, d) be a balanced distance space. Then:
1. d(x, y) > 0 for any two distinct points x, y ∈ X .
2. If {xn ∈ X : n ∈ N} is a Cauchy sequence convergent to a ∈ X , then:
- a is the unique limit point of the sequence {xn ∈ X : n ∈ N};
- for each point y ∈ X there exists the limit limn→∞d(y, xn) = d(y, a).
3. If each convergent sequence is a Cauchy sequence, then (X, d) is an H-distance space.

Proof. Assume that a, b are two distinct points of X and d(a, b) = 0. Since d(a, b) +
d(b, a) > 0, we have d(b, a) > 0. We put bn = b for each n ∈ N. Then b = limn→∞bn,
a = limn→∞bn and {bn : n ∈ N} is a Cauchy sequence. Since a = limn→∞bn, we have
d(b, a) = limn→∞d(b, bn) = 0, a contradiction. Hence d(x, y) > 0 for any two distinct
points x, y ∈ X . Assertion 1 is proved.

Let {xn ∈ X : n ∈ N} be a Cauchy sequence convergent to a ∈ X and y 6= a. Then
limn→∞d(y, xn) = d(y, a) > 0 and y is not a limit of the sequence {xn : n ∈ N}. Assertions
2 are proved.

Assertion 3 follows from Assertions 2. The proof is complete. �

Corollary 2.1. Let (X, d) be a balanced complete distance space and ϕ : X −→ X be a mapping
with properties:

- there exists λ > 0 such that d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all x, y ∈ X ;
- if x ∈ X , then the Picard sequence {xn ∈ X : n ∈ N}, generated by the point x, is a Cauchy

sequence.
Then:
1. The mapping ϕ is continuous.
2. The set Fix(ϕ) of fixed points of ϕ is closed and non-empty.
3. If d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X , then ϕ has a unique fixed point.

Remark 2.5. By virtue of Example 1.4, the requirement in Proposition 2.3 that d is an H-
distance is essential. The assertions of Corollary 2.1 remains true if the conditions ”d is
an balanced distance” is replaced by the condition ”d is an H-distance”. Moreover, the
assertions of Corollary 2.1 remains true for the distance spaces (X, d) with property:



178 Mitrofan M. Choban

(UFL): Any convergent Cauchy sequence has a unique limit.

3. ON BOUNDED DISTANCE SPACES

Fix a distance space (X, d) and a mapping ϕ : X −→ X . We say that the space (X, d)
is ϕ-bounded if for each x ∈ X there exists a positive number λ(x) such that d(ϕn(x), x) +
d(x, ϕn(x)) ≤ λ(x) for each n ∈ N. The space (X, d) is weakly ϕ-bounded if for each x ∈
X there exist a positive number λ(x) and p = p(x) ∈ N such that d(ϕn(x), ϕp−1(x) +
d(ϕp−1(x), ϕn(x)) ≤ λ(x) for each n ≥ p. Some orbital conditions involved in common
fixed point theorems were examined in [6] and [11].

We say that a subset L of a distance space (X, d) is bounded if there exists a positive
number λ such that d(x, y) ≤ λ for all x, y ∈ L. If the set X is bounded, then we say that
(X, d) is a bounded distance space.

Example 3.7. Let X = {0, 1} ∪ {2−n : n ∈ N}. Consider on X the F -symmetric d, where
d(0, x) = x, d(1, 2−n) = n and d(2−m, 2−n) = |2−m − 2−n| for all n,m ∈ N. Now consider
the mapping ϕ : X −→ X , where ϕ(0) = 0, ϕ(1) = 2−1 and ϕ(2−n) = 2−n−1 for each
n ∈ N. The space (X, T (d)) is a metric compact space and limn→∞d(1, 2−n) = ∞. Any
Picard sequence is a convergent Cauchy sequence and Fix(ϕ) = {0}. The mapping ϕ is a
contraction and d(ϕ(x), ϕ(y)) ≤ 2−1d(x, y). The space (X, d) is weakly ϕ-bounded and is
not ϕ-bounded.

If (X, d) is a distance space, f : X −→ X is a mapping and any Picard sequenceO(ϕ, x),
x ∈ X , is a Cauchy sequence, then the space (X, d) is weakly ϕ-bounded.

Proposition 3.4. Let (X, d) be a distance space and the mapping ϕ : X −→ X be a contraction.
If the space (X, d) is weakly ϕ-bounded, then:

1. For each point x ∈ X the Picard sequence O(ϕ, x) is Cauchy.
2. The mapping ϕ has a unique fixed point provided (X, d) is a complete H-distance space.
3. The mapping ϕ has a unique fixed point provided (X, d) is a complete balanced distance

space.

Proof. Fix a point x ∈ X and the numbers k ∈ (0, 1), p ∈ N and λ > 0 such that:
- d(ϕ(z), ϕ(y)) ≤ kd(z, y) for all z, y ∈ X ;
- d(ϕn(x), ϕp−1(x) + d(ϕp−1(x), ϕn(x)) ≤ λ for each n ≥ p.
Obviously, d(ϕn+p(x), ϕn+p+m(x))+d(ϕn+p+m(x), ϕn+p(x)) ≤ kn+1 ·λ for all n,m ∈ N.

Hence limn,m→∞(d(ϕn(x), ϕm(x)) = 0. Assertion 1 is proved. Corollary 2.1 completes the
proof. �

Corollary 3.2. Let (X, d) be a bounded complete H-distance space or a bounded complete balanced
distance space. Then any contraction ϕ : X −→ X has a unique fixed point. Moreover, for each
ε > 0 there exists n0 ∈ N such that d(ϕn(x), ϕmx) < ε for all x ∈ X and n,m ≥ n0.

A function λ : [0,∞) −→ [0,∞) is called a comparison function ([38], Section 3.0.3) if it
satisfies the following conditions:

(i) λ is is increasing;
(ii) limn→∞λ

n(t) = 0 for each t ∈ [0,∞).

Remark 3.6. If λ : [0,∞) −→ [0,∞) is a comparison function, then satisfies the following
conditions: λ(0) = 0 and λ(t) < t for each t ∈ (0,∞).

The following assertions for complete metric spaces were proved by J. Matkowski ([38],
p. 31).
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Proposition 3.5. Let (X, d) be a distance space, ϕ : X −→ X be a mapping and the space (X, d)
is weakly ϕ-bounded. If there exists a comparison function λ such that d(ϕ(x), ϕ(y)) ≤ λ(d(x, y))
for all x, y ∈ X , then:

1. For each point x ∈ X the Picard sequence O(ϕ, x) is Cauchy.
2. The mapping ϕ has a unique fixed point provided (X, d) is a complete H-distance space.
3. The mapping ϕ has a unique fixed point provided (X, d) is a complete balanced distance

space.

Proof. The proof for a weakly ϕ-bounded space is as for a ϕ-bounded space. Assume
that the space (X, d) is ϕ-bounded. Fix a point x ∈ X and the number k > 0 such
that d(ϕn(x), x) + d(x, ϕn(x)) ≤ k for each n ∈ N. Obviously, d(ϕn(x), ϕn+m(x) +
d(ϕn+m(x), ϕn(x)) ≤ λn(d(x, ϕmx)) + λn(d(ϕmx, x)) ≤ 2λn(k) for all n,m ∈ N. Hence
limn,m→∞(d(ϕn(x) + ϕm(x)) = 0. Assertion 1 is proved. Proposition 2.3 completes the
proof. �

Corollary 3.3. Let (X, d) be a bounded complete H-distance space or a bounded balanced dis-
tance space, ϕ : X −→ X be a mapping and there exists a comparison function λ such that
d(ϕ(x), ϕ(y)) ≤ λ(d(x, y)) for all x, y ∈ X . Then ϕ has a unique fixed point. Moreover, for each
ε > 0 there exists n0 ∈ N such that d(ϕn(x), ϕmx) < ε for all x ∈ X and n,m ≥ n0.

4. ON N -DISTANCES

Theorem 4.1. Let (X, d) be an N -symmetric space and ϕ : X −→ X be a mapping with proper-
ties:

- d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X ;
- for each point x ∈ X the Picard sequence O(ϕ, x) = {xn = ϕn(x) : n ∈ N} has an accumu-

lation point and the mapping ϕ is strongly asymptotically regular: limn→∞d(xn, xn+1) = 0.
Then the mapping ϕ has a unique fixed point. Moreover, d is an H-distance and any Picard

sequence has a unique accumulation point.

Proof. For each ε > 0 and every x ∈ X there exists δ = δ(x, ε) > 0 such that from d(x, y) ≤
δ and d(y, z) ≤ δ it follows d(x, z) ≤ ε. We assume that 2δ(x, ε) < ε.

Fix two distinct points x, y ∈ X . We put 2ε = d(x, y) = d(y, x). Since ε > 0, there exists
δ > 0 such that 3δ < ε and for u ∈ {x, y} and v, w ∈ X from d(u, v) < δ and d(v, w) < δ it
follows that d(u,w) < ε. Then B(x, d, δ) ∩B(y, d, δ) = ∅. Hence d is an H-symmetric.

From the condition d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X it follows
that:

- the mapping ϕ is continuous;
- the mapping ϕ does not have two distinct fixed points;
- the mapping ϕ does not have periodic non-fixed points.
Fix x ∈ X . Let O(ϕ, x) = {xn = ϕn(x) : n ∈ N} be the Picard sequence generated by the

point x.
If a ∈ X and a = xn = xn+1 for some n ∈ N, then a is the unique fixed point of the

mapping ϕ and O(ϕ, x) is a Cauchy sequence with the unique accumulation point a.
Assume now that xn 6= xn+1 for any n ∈ N. Then xn 6= xn+m for all n,m ∈ N. In

this case the set O(ϕ, x) is infinite and non-closed in the sequential space (X, T (d)). Then
there exist a point b ∈ X and a sequence {nk ∈ N : k ∈ N} such that b = limk→∞xnk

,
nk < nk+1 and d(b, xnk+1

) < d(b, xnk
) < 2−k for each k ∈ N.

We put c = ϕ(b), yk = xnk
and zk = ϕ(yk). Then b = limk→∞yk and, since the mapping

ϕ is continuous, c = limk→∞zk.
Claim 1. b = c.
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Assume that b 6= c and d(b, c) = 4ε > 0. Let ε1 = min{δ(b, ε), δ(c, ε)} and δ = δ(b, ε1).
Since limn→∞d(xn, xn+1) = 0, there exists m0 ∈ N such that d(xn, xn+1) < δ, d(b, yn) < δ
and d(c, zn) < δ for each n ≥ m0. Since k ≤ nk, for any k ≥ m0 we have d(c, zk) <
d(b, yk) < δ and d(yk, zk) < δ. From d(b, yk) < δ and d(yk, zk) < δ it follows that d(b, zk) ≤
ε1. From d(b, zk) ≤ ε1 and d(zk, c) ≤ δ ≤ ε1 it follows that d(b, c) ≤ ε, a contradiction.
Therefore b = c.

Claim 2. b ∈ Fix(ϕ).
It follows from Claim 1.
Claim 3. b = limn→∞xn.
Fix ε > 0. There exists m0 = nk ∈ N such that 2−k < ε. Then d(b, xn) < d(b, xm0) < ε

for each n > m0. Hence b = limn→∞xn.
Since b is the unique fixed point of the mapping ϕ, the proof is complete. �

Corollary 4.4. Let (X, d) be a N-symmetric compact space, ϕ : X −→ X be a mapping,
d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X and the mapping ϕ is strongly asymptot-
ically regular: limn→∞d(ϕn(x), ϕn+1(x)) = 0 for each point x ∈ X .

Then the mapping ϕ has a unique fixed point. Moreover, any Picard sequence is convergent to
the fixed point.

Corollary 4.5. Let (X, d) be a N-symmetric compact space, 0 < λ < 1 and ϕ : X −→ X be a
mapping such that d(ϕ(x), ϕ(y)) ≤ λ · d(x, y) for all points x, y ∈ X .

Then the mapping ϕ has a unique fixed point. Moreover, any Picard sequence is convergent to
the fixed point.

Corollary 4.6. Let (X, d) be an F-symmetric space and ϕ : X −→ X be a mapping with proper-
ties:

- d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X ;
- for each point x ∈ X the Picard sequenceO(ϕ, x) = {xn = ϕn(x) : n ∈ N} has an accumula-

tion point and the mapping ϕ strongly asymptotically regular mapping: limn→∞d(xn, xn+1) = 0
for any point x ∈ X .

Then the mapping ϕ has a unique fixed point. Moreover, d is an H-distance and any Picard
sequence is a Cauchy sequence and has a unique accumulation point.

Example 4.8. Let X = {b} ∪ {bn : n ∈ N}, d(x, x) = 0, d(x, y) = d(y, x) for all x, y ∈ X ,
d(b, bn) = 2−n for each n ∈ N and d(bn, bn+m) = 2−nm for all n,m ∈ N. On X consider
the continuous mapping ϕ : X −→ X , where ϕ(b) = b and ϕ(bn) = bn+1 for any n ∈ N.
Hence:

- d is an N -symmetric on X ;
- d is not an F -symmetric on X ;
- the topology T (d) generated by d is a compact metrizable topology on X ;
- O(ϕ, b1) = {bn : n ∈ N, n ≥ 2} is convergent to the point b and is not a Cauchy

sequence;
- d(ϕ(x), ϕ(y)) ≤ 2−1d(x, y) for all points x, y ∈ X and ϕ is a contraction;
- Fix(ϕ) = {b}.

The following notion do to P. Alexandroff and P. Urysohn [1], A. H. Frink [24], S. Czer-
wik [22], I. A. Bakhtin [4], V. Berinde [7] (see [38]).

Let s, q > 0. We say that d is an (s, q)-distance on a spaceX if d(x, y) ≤ s(d(x, z)+d(z, y))
and d(y, x) ≤ qd(x, y) for all points x, y, z ∈ X . If d(x, y) ≤ s(d(x, z)+d(z, y)) for all points
x, y, z ∈ X , then we say that d is an s-distance.

Any s-distance is an F -distance.
E. W. Chittenden [15] proved that a space with F -symmetric is metrizable. Then P.

Alexandroff and P. Urysohn [1], using Chittenden’s theorem, introduced a 2-symmetric.
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The Chittenden’s proof is complicated. A simple and elegant proof of Chittenden’s the-
orem was found by A. H. Frink [24]. A. H. Frink [24] observed that a 2-symmetric has
Property (AF ) and proved that a space with an F -symmetric has a 2-symmetric. These
facts were applied by J. W. Tukey in the theory of uniform spaces (see [23], Theorem
8.1.10).

Lemma 4.4. Let (X, d) be an (s, q)-distance space. Then d is a H-distance.

Proof. Assume that x, y ∈ X and x 6= y. Obviously, s ≥ 1 and q ≥ 1. Let b = min{d(x, y),
d(y, x)}. We put 2r = b : (s+ q). Suppose that z ∈ B(x, dr)∩B(y, d, r). Then b ≤ d(x, y) ≤
s(d(x, z) + d(z, y)) < (r + qd(y, z)) < r(1 + q) ≤ b(1 + q)/2(s + q) ≤ b/2, a contradiction.
Thus B(x, d, r) ∩B(y, d, r) = ∅. The proof is complete. �

The following assertion for symmetric spaces was proved by S. Czerwik [22] and I. A.
Bakhtin [4] (see [38]).

Lemma 4.5. Let (X, d) be an s-distance space, 0 ≤ sλ < 1, ϕ : X −→ X and d(ϕ(x), ϕ(y)) ≤
λd(x, y) for all points x, y ∈ X . Then any Picard sequence is a Cauchy sequence.

Proof. Assume that ρ(x, y) = d(x, y) + d(y, x) for all x, y ∈ X . Obviously, ρ is a symmetric
on X and ρ(ϕ(x), ϕ(y)) ≤ λρ(x, y) for all x, y ∈ X .

Fix x ∈ X and put k = sλ < 1. Let O(ϕ, x) = {xn = ϕn(x) : n ∈ N} be the Pi-
card sequence generated by the point x. We put b = d(x, x1) + d(x1, x) = ρ(x, x1). Then
ρ(xn, xn+1) ≤ λnb and ρ(xn, xn+m) ≤ sρ(xn, xn+1) + s2ρ(xn+1, xn+2)+ ... +sm−1ρ(xn+m−2,
xn+m−1) + sm−1ρ(xn+m−1, xn+m) ≤ b(sλn + s2λn+1 + ... + sm−1λn+m−1 + sm−1λn+m)
≤ bsλn(1− km) : (1− k) < bsλn : (1− k). Hence O(ϕ, x) is a Cauchy sequence. �

The problem of existence of fixed points for contracting mappings of F -symmetric
spaces was arised in [12]. The following statement improved the fixed point theorem
of S. Czerwik [22] and I. A. Bakhtin [4] (see [38]).

Theorem 4.2. Let (X, d) be a s-distance space, 0 ≤ λ < 1, ϕ : X −→ X be a mapping and
d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all points x, y ∈ X . Then:

1. Any Picard sequence O(ϕ, x) is a Cauchy sequence.
2. The space (X, d) is ϕ-bounded.
3. If d is a complete H-distance, then the mapping ϕ has a unique fixed point.
4. If d is a balanced complete distance, then the mapping ϕ has a unique fixed point.
5. If d is a complete symmetric, then the mapping ϕ has a unique fixed point.
6. If any Cauchy sequence has a unique limit, then the mapping ϕ has a unique fixed point.

Proof. Since limn→∞sλ
n = 0, there exists a number k ∈ N such that sλk < 1. We put µ = λk

and ψ = ϕk. By construction, sµ < 1 and d(ψ(x), ψ(y)) ≤ µd(x, y) for all points x, y ∈ X .
Fix x ∈ X and c = sµ < 1. Let O(ψ, x) = {xn = ψn(x) : n ∈ N} be the Picard

sequence generated by the point x. Then, by virtue of Lemma 4.5, O(ψ, x) is a Cauchy
sequence. There exists p ∈ N such that p ≥ k and d(ψm(x), ψn(x)) < 1 for all n,m ≥ p.
We put A1 = {x, x1, x2, ..., xk+p} and q = max{d(x, y) + 1 : x, y ∈ A1}. Let An+1 = ψn(A1).
Then d(x, y) < q for all n ∈ N and x, y ∈ An. Let yn = ψn(x). Then yn ∈ An and
d(u, v) ≤ s(d(u, yn) + s(d(yn, ym) + d(ym, v)) ≤ s(q + s(1 + q)) for all n,m ∈ N, u ∈ An
and v ∈ Am. Hence the space (X, d) is ϕ-bounded. From Proposition 3.4 it follows that
any Picard sequence O(ϕ, x) is a Cauchy sequence. Assume that any Cauchy sequence
has a unique limit. Let b be the limit of the sequence O(ϕ, x). Then ϕ(b) = limn→∞ϕ(xn)
= limn→∞xn = b. Thus b ∈ Fix(ϕ). By virtue of Lemma 1.2, the fixed point is unique.
Assertions 1, 2, 6 are proved. Assertions 3, 4 and 5 follows from Assertion 6. The proof is
complete. �
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Corollary 4.7. Let (X, d) be a complete (s, q)-distance space, 0 ≤ λ < 1, ϕ : X −→ X be a
mapping and d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all points x, y ∈ X . Then the mapping ϕ has a unique
fixed point.

Example 4.9. Let X = N, d(x, x) = 0, ρ(x, x) = 0, d(x, y) = d(y, x) and ρ(x, y) = ρ(y, x)
for all x, y ∈ X . If n,m ∈ X and n < m, then d(n,m) = (m − n)2−n and ρ(n,m) =
(m − n) + (n−1 − m−1). On X consider the continuous mapping ϕ : X −→ X , where
ϕ(n) = n+ 1 for any n ∈ N. Then:

- d is a complete N -symmetric on X ;
- d is not an F -symmetric on X ;
- ρ is a complete metric on X ;
- the topology T (d) = T (ρ) is the discrete topology on X ;
- O(ϕ, n) = {n + i : i ∈ N} is not a Cauchy sequence of the distance spaces (X, d) and

(X, ρ);
- ρ(ϕ(x), ϕ(y)) < ρ(x, y) for all distinct points x, y ∈ X , i.e. ϕ is a contractive mapping

of the metric space (X, ρ);
- d(ϕ(x), ϕ(y)) = 2−1d(x, y) for all points x, y ∈ X , i.e. ϕ is a contraction of the distance

space (X, d);
- Fix(ϕ) = ∅.

5. BERINDE’S TRANSFORMATION OF DISTANCES

As in [5, 26], we denote by F the non-empty set of functions f : [0,∞) → [1,∞)
satisfying the following conditions:

(i) f is non-decreasing and f(t) = 1 if and only if t = 0;
(ii) for each sequence {tn ∈ (0,∞) : n ∈ N} we have limn→∞tn = 0 if and only if

limn→∞f(tn) = 1;
(iii) there exist r ∈ (0, 1) and l ∈ (1,∞] such that limt→0+((f(t)− 1) : tr) = l.
If f ∈ F , then we say that f is a logarithmic comparison function. This denomination was

suggested by the following three statements.

Proposition 5.6. Let d be a distance on X , f ∈ F and ρ(x, y) = ln(f(d(x, y))) for all x, y ∈ X .
Then:

1. ρ is a distance on X and T (ρ) = T (d).
2. The space (X, d) is complete if and only if the space (X, ρ) is complete.
3. If d is a symmetric, then ρ is a symmetric too.
4. If f is continuous and d is balanced, then ρ is balanced too.

Proof. Let x ∈ X and {xn ∈ X : n ∈ N} be a sequence. Then:
1. limn→∞d(x, xn) = 0 if and only if limn→∞ρ(x, xn) = 0.
Hence the sequential spaces (X, T (ρ)) and (X, T (d)) have the same convergent se-

quences. Thus T (ρ) = T (d).
2. limn,m→∞d(xn, xm) = 0 if and only if limn,m→∞ρ(xn, xm) = 0.
Hence the sequential spaces (X, T (ρ)) and (X, T (d)) have the same Cauchy sequences.

Therefore the space (X, d) is complete if and only if the space (X, ρ) is complete. Assertion
3 is obvious. Assertion 4 follows from the continuity of the functions f and ln. The proof
is complete. �

Proposition 5.7. (V. Berinde [5]) Let (X, d) be a distance space, ϕ : X −→ X be a mapping, f ∈
F , k ∈ (0,∞), ρ(x, y) = ln(f(d(x, y))) and f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))k for all x, y ∈ X .
Then:

1. ρ(ϕ(x), ϕ(y)) ≤ kρ(x, y)) for all x, y ∈ X .
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2. The mapping ϕ is a ρ-contraction provided k < 1.

Proof. Really, let x, y ∈ X and d(ϕ(x), ϕ(y)) > 0. Then ρ(ϕ(x), ϕ(y)) > 0 and
f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))k. Hence ρ(ϕ(x), ϕ(y)) = lnf(d(ϕ(x), ϕ(y))) ≤ ln(f(d(x, y))k

= kρ(x, y). The proof is complete. �

Proposition 5.8. Let (X, d) be a distance space, ϕ : X −→ X be a mapping, f ∈ F , k ∈ (0,∞)
and ρ(x, y) = ln(f(d(x, y))), f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))k for all x, y ∈ X . Then:

1. The distance space (X, d) is bounded if and only if the distance space (X, ρ) is bounded.
2. The distance space (X, d) is ϕ-bounded if and only if the distance space (X, ρ) is ϕ-bounded.

Proof. Let q > 0 and p = lnf(q). Since the mapping ϕ is non-decreasing (f(u) ≤ f(v)
provided u ≤ v and u, v ∈ (0,∞)), we have ρ(x, y) ≤ p if and only if d(x, y) ≤ q. The proof
is complete. �

Remark 5.7. Let d be a distance on X and f ∈ F . The distance ρ(x, y) = ln(f(d(x, y))) for
all x, y ∈ X is called the Berinde transformation of the distance d.

In [5] V. Berinde has proved:
1. If d is a metric and f(u+ v) ≤ f(u) · f(v), then ρ is a metric too.
2. If d is a quasimetric and f(u+ v) ≤ f(u) · f(v), then ρ is a quasimetric too.

The next concept was examined by M. Jleli and B. Samet [26] for special distance spaces.
Let (X, d) be a distance space. A mapping ϕ : X −→ X is called a log-contraction if

there exist f ∈ F and k ∈ (0, 1) such that f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))k for all x, y ∈ X .
In [5] V. Berinde arose the the following problems:
Problem 1. Let ρ be the Berinde transformation of the distance d onX . Under which conditions

the distance space (X, ρ) is complete?
Problem 2. Let d be a complete distance on X . Under which conditions on d the log-

contraction ϕ : X → X has fixed points?
Proposition 5.6 contains a complete solution of the Problem 1. Obviously, the Problem

2 is large and general. The following results highlight some positive responses to the
Problem 2.

Proposition 5.9. Let (X, d) be a distance space and ϕ : X → X be a given mapping. Suppose
that there exist f ∈ F and λ ∈ (0, 1) such that f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))λ for all x, y ∈ X .
We put ρ(x, y) = lnf(d(x, y). Then:

(1) ρ(ϕ(x), ϕ(y)) ≤ λρ(x, y) for all x, y ∈ X and ρ(ϕ(x), ϕ(y)) < ρ(x, y) provided ρ(x, y) >
0;

(2) limn→∞d(xn, xn+k) = limn→∞d(xn+k, xn) = 0 and limn→∞ρ(xn, xn+k) =
limn→∞ρ(xn+k, xn) = 0 for any x ∈ X and each k ∈ N.

(3) If x ∈ X , p ∈ R, p > 0 and max{d(x, ϕn(x), d(ϕn(x), x)<} ≤ p for each n ∈ N, then the
Picard sequence O(x, ϕ) is a Cauchy sequence.

(4) If the distance d is ϕ-bounded, then any Picard sequence of the mapping ϕ is a Cauchy
sequence.

(5) The mapping ϕ does not have two distinct fixed points.
(6) The mapping ϕ does not have periodic non-fixed points.

Proof. By virtue of Proposition 5.7, we have ρ(ϕ(x), ϕ(y)) ≤ λρ(x, y) for all x, y ∈ X .
Assertion (1) is proved. From Propositions 1.1 and 1.2 it follows that:

- the mapping ϕ is continuous;
- the mapping ϕ does not have two distinct fixed points;
- the mapping ϕ does not have periodic non-fixed points.
From Proposition 5.6 it follows that:
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- ρ is a distance on X and T (ρ) = T (d);
- the sequential spaces (X, T (ρ)) and (X, T (d)) have the same convergent sequences;
- the sequential spaces (X, T (ρ)) and (X, T (d)) have the same Cauchy sequences.
Let x ∈ X be the given point. We put x1 = ϕ(x) and xn+1 = ϕ(xn) for each n ∈ N.

Then O(x, ϕ) = {xn : n ∈ N} is the Picard sequence of the point x.
Fix k ∈ N. We put qk = max{d(xk, x), d(x, xk)} and pk = f(qk). By construction,

max{ρ(xk, x), ρ(x, xk)} ≤ pk. Hence ρ(xn, xn+k) ≤ pkλ
n and limρ(xn+k, xn) ≤ pkλ

n for
each n ∈ N. Therefore limn→∞ρ(xn, xn+k) = 0 and limn→∞ρ(xn+k, xn) = 0. Assertion (2)
is proved.

Assume that p ∈ R, p > 0 and max{d(x, ϕn(x), d(ϕn(x), x)} ≤ p for each n ∈ N. Then
ρ(xn, xm) ≤ pkmin{n,m}. Therefore limn,m→∞ρ(xn, xm) = 0. Hence the Picard sequence
O(x, ϕ) is a Cauchy sequence of the distance spaces (X, d) and (X, ρ). Assertion (3) is
proved. Assertion (4) follows from Assertion (3). The proof is complete. �

The following assertion is well known and elementary.

Lemma 5.6. Let p > 1, and k, c ∈ (0, 1). Then there exists n(p, r, c) ∈ N such that 0 <
n(pk

n − 1) < c for each n ≥ n(p, k, c).

Proof. Denote by g(t)′ the derivative of the real-valued function g(t). In the first we ob-
serve that limn→∞n(pk

n−1) = limt→0+(lnt/lnk)(pt−1) = (1/lnk)limt→0+((pt−1)/t)·t·lnt
= (lnp/lnk) · limt→0+(lnt/(1 : t)) = (lnp/lnk) · limt→0+((lnt)′/(1 : t)′) = (lnp/lnk) ·
limt→0+(1 : t)/(−1 : t2) = −(lnp/lnk) · limt→0+t = 0. Hence for each c > 0 there ex-
ists n(p, k, c) ∈ N such that 0 < n(pk

n − 1) < c for each n ≥ n(p, k, c). �

In [26] for log-contraction of special symmetric spaces were proposed special estima-
tion of the distance d(ϕn(x), ϕn+m(x)). The following is a more general result.

Proposition 5.10. Let (X, d) be a distance space and ϕ : X → X be a given mapping. Suppose
that there exist f ∈ F and k ∈ (0, 1) such that f(d(ϕ(x), ϕ(y))) ≤ (f(d(x, y))k for all x, y ∈ X .
Then for each positive number q ∈ (0,∞) there exist r ∈ (0, 1) and n(f, q) ∈ N such that from
x, y ∈ X and d(x, y) ≤ q it follows that d(ϕn(x), ϕn(y)) < 1/n1/r for each n ≥ n(f, q).

Proof. Fix two distinct points a, b ∈ X for which d(a, b) ≤ q. Let p = f(q) and an = ϕn(a),
bn = ϕn(b) for any n ∈ N.

Claim 1. 1 ≤ f(d(an, bn)) ≤ pkn for each n ∈ N.
The assertion of Claim 1 is true for n = 1. Assume that n ≥ 1 and f(d(an, bn)) ≤ pk

n

.
Then f(d(an+1, bn+1)) = f(d(ϕ(an), ϕ(bn))) ≤ f(d(an, bn))k ≤ pkn+1

. Claim is proved.
Claim 2. limn→∞f(d(an, bn)) = 1 and limn→∞d(an, bn) = 0.
The equality limn→∞f(d(an, bn)) = 1 follows from Claim 1. The equality limn→∞d(an,

bn) = 0 follows from the proprieties of the functions F .
Claim 3. There exist a number r ∈ (0, 1), a number c = c(f, q) > 0 and a natural number

m(f, q) ∈ N such that (d(an, bn))r ≤ c(pkn − 1) for each n ≥ m(f, q), n ∈ N.
Since f ∈ F , there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+((f(t) − 1) : tr) = l.

Thus, there exist two positive numbers c, t0 > 0 such that ((f(t) − 1) : tr) > c−1 for
each t ∈ (0, t0]. Hence tr < c(f(t) − 1) for each t ∈ (0, t0]. Since f(t0) > 1, there exists
m(f, q) ∈ N such that pk

n ≤ f(t0) for each n ≥ m(f, q). Therefore for n ≥ m(f, q) we have
(d(an, bn))r ≤ c(f(d(an, bn))− 1) ≤ c(pkn − 1).

Claim 4. There exists a natural number n(f, q) ∈ N such that d(ϕn(x), ϕn(y))r < 1/n for
each n ≥ n(f, q).

From Claim 3 it follows that there exists m(f, q) ∈ N such that (d(an, bn))r ≤ c(pkn − 1)
for each n ≥ m(f, q). By virtue of Lemma 5.6, there exists n(p, k, c−1) ∈ N such that
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0 < n(pk
n − 1) < c−1 for each n ≥ n(p, k, c−1). Let n(f, q) = max{m(f, q), n(p, k, c−1)}.

For n ≥ n(f, q) we have (d(an, bn))r ≤ c(pk
n − 1) < c · c−1 · n−1 = 1/n. Claim 4 and

Proposition 5.10 are proved. �

Corollary 5.8. Let ϕ : X → X be a given mapping and (X, d) be a ϕ-bounded complete H-
distance space. If the mapping ϕ is log-contractive, then:

1. The mapping ϕ has a unique fixed point.
2. Any Picard sequence O(ϕ, x) is a Cauchy sequence.

Corollary 5.9. Let ϕ : X → X be a given mapping and (X, d) be a ϕ-bounded complete balanced
distance space. If the mapping ϕ is log-contractive, then:

1. The mapping ϕ has a unique fixed point.
2. Any Picard sequence O(ϕ, x) is a Cauchy sequence.

Corollary 5.10. Let (X, d) be an N-symmetric compact space and ϕ : X −→ X be a log-
contractive mapping. Then:

1. d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ X .
2. limn→∞d(ϕn(x), ϕn+1(x)) = 0 for each point x ∈ X .
3. The mapping ϕ has a unique fixed point.
4. Any Picard sequence O(ϕ, x) is a Cauchy sequence.

6. ON B-SYMMETRIC SPACES

LetX be a non-empty set. A distance d onX is called a Branciari metric or a B-symmetric
and (X, d) is called a B-symmetric space, if:

(i) d is a symmetric;
(iii) d(x, y) ≤ d(x, u)+d(u, v)+d(v, y) for all x, y ∈ X and for all distinct points u, v ∈ X ,

each of them different from x and y.
The concept of a B-symmetric was introduced by A. Branciari [13] as a generalized

metric. We called them B-symmetrics, since there are many distinct distances with that
name and, in general, any distance function is a generalized metric (see [38, 36, 30, 31, 32]).

Example 6.10. Let X = {2−n : n ∈ N} ∪ {0}, d(x, x) = 0 and d(x, y) = d(y, x) for all
x, y ∈ X , d(2−n, 2−m) = 1 for all distinct n,m ∈ N and d(2−n, 0) = 2−n for each n ∈ N.
The symmetric d is a B-symmetric and an N -distance on X , the topology T (d) generate
by d is a compact metric topology on X , {2−n : n ∈ N} is a convergent to 0 not Cauchy
sequence. Hence d is not an F -distance on X .

Lemma 6.7. Let d be a B-symmetric on X . Then d is balanced.

Proof. Assume that {xn : n ∈ N} convergent to x ∈ X Cauchy sequence and y ∈ X .
We can suppose that x 6= y, x 6= xn, xn 6= y and xn 6= xm for all distinct n,m ∈ N.
By assumptions, we have d(x, y) ≤ d(x, xn) + d(xn, xn+1) + d(xn+1, y) and d(xn+1, y) ≤
d(xn+1, xn) +d(xn, x) +d(x, y). Hence for each ε > 0 there exists k ∈ N such that d(x, y) <
d(xn, y) + ε and d(xn, y) < d(x, y) + ε for every n > k. Thus d(x, y) = limn→∞d(xn, y). The
proof is complete. �

Corollary 6.11. Let d be a B-symmetric on X . Then any convergent Cauchy sequence has a
unique limit point in X .

Example 6.11. Let X = {2−n : n ∈ N}∪{0, 2}, d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈
X , d(0, 2) = 1, d(2−n, 2−m) = 1 for all distinct n,m ∈ N and d(2−n, 0) = d(2−n, 2) = 2−n for
each n ∈ N. The symmetric d is a balanced B-symmetric and the topology T (d) generate
by d is a compact T1-topology and is not a T2-topology. Moreover, d is not an H-distance,
since B(0, d, r) ∩ B(2, d, r) 6= ∅ for any r > 0. Consider the mapping ϕ : X −→ X , where
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ϕ(0) = 2, ϕ(2) = 0 and ϕ(2−n) = 2−n−1 for each n ∈ N. Then d(ϕ(x), ϕ(y)) ≤ d(x, y) for
all x, y ∈ X , {0, 2} is the set of periodic points of ϕ and the set of fixed points is empty. By
virtue of Proposition 5.6, ϕ is not a log-contraction.

Proposition 6.11. Let d be a B-symmetric on X and ϕ : X −→ X be a log-contraction of the
distance space (X, d). Then:

1. The distance space (X, d) is ϕ-bounded.
2. Any Picard sequence O(ϕ, x) is a Cauchy sequence.

Proof. Let x ∈ X be the given point. We put x1 = ϕ(x) and xn+1 = ϕ(xn) for each
n ∈ N. Then O(x, ϕ) = {xn : n ∈ N} is the Picard sequence of the point x. We put
q = max{d(x, x1), d(x, x2), d(x, x3)}. By virtue of Proposition 5.10, there exist r ∈ (0, 1)

and n0 ∈ N such that from y ∈ X and d(x, y) ≤ q it follows that d(ϕn(x), ϕn(y)) < 1/n1/r

for each n ≥ n0. In this case we have b = d(x, x1) + Σ{d(xn, xn+1) : n ∈ N} <∞.
We have two possible cases.
Case 1. xm = xm+1 for some m ∈ N.
In this case xm is a fixed point, the Picard sequence O(ϕ, x) is a Cauchy sequence and

sup{d(x, xn) : n ∈ N} = sup{d(x, xn) : n ≤ m} <∞.
Case 2. xn 6= xn+1 for each n ∈ N.
By virtue of Proposition 5.9, the mapping ϕ does not have two distinct fixed points

and the mapping ϕ does not have periodic non-fixed points. Hence x 6= xn 6= xm for all
distinct n,m ∈ N. In this case d(x, x2n+1) ≤ d(x, x1) + Σ{d(xi, xi+1) : i ≤ 2n} < b and
d(x, x2n+2) ≤ d(x, x2) + Σ{d(xi, xi+1) : 2 ≤ i ≤ 2n + 1} < q + b for each n ∈ N. Hence
sup{d(x, xn) : n ∈ N} < q + b <∞. Assertion 1 is proved.

By virtue of Proposition 5.9, any Picard sequence of the mapping ϕ is a Cauchy se-
quence. The proof is complete. �

Corollary 6.12. Let (X, d) be a complete B-symmetric space and ϕ : X −→ X be a log-
contractive mapping. Then:

1. The mapping ϕ has a unique fixed point.
2. Any Picard sequence of the mapping ϕ is a Cauchy sequence convergent to the fixed point of

ϕ.

Corollary 6.13. Let (X, d) be a complete metric space and ϕ : X −→ X be a log-contractive
mapping. Then:

1. The mapping ϕ has a unique fixed point.
2. Any Picard sequence of the mapping ϕ is a Cauchy sequence convergent to the fixed point of

ϕ.

Remark 6.8. Corollaries 6.12 and 6.13 were formulated in ([26], Theorem 2.1 and Corollary
2.1). We mention that the Lemma 2.1 from [26] is not true (see the following Example 6.12)
and that lemma was using in the proof of Theorem 2.1 from [26]. Corollary 2.2 from [26]
remain true to.

Example 6.12. Let R be the real line with the metric d(x, y) = |x− y|. Consider the points
x = −2, y = 2 and the sequence {xn = 2−n : n ∈ N}. By construction:

(i) xn 6= xm for all distinct n,m ∈ N;
(ii) xn 6= x for each n ∈ N;
(iii) xn 6= y for each n ∈ N;
(iv) limn→∞d(xn, x) = limn→∞d(xn, y) = 2.
Lemma 2.1 [3] affirms that x = y, a contradiction. Hence Lemma 2.1 from [3] is not

true.
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7. CONDITIONS OF EXISTENCE OF DISTANCES ON SPACES

As in [3] we say that X is a space with a weak axiom of countability if there exists a
family B = {Qnx : n ∈ N, x ∈ X} of subsets of X with the following properties:

- x ∈ Qn+1x ⊆ Qnx for all n ∈ N and x ∈ X ;
- for each open subset U of X and for any point x ∈ U there exists n ∈ N such that

Qnx ⊆ U .
The family B = {Qnx : n ∈ N, x ∈ X} is called a weak base of the space. Every weak

base is a network of the space.
A sequence {Ln : n ∈ N} of subsets of a space X is a sequential base of the space X at

the point x if:
- x ∈ Ln+1 ⊆ Ln for each n ∈ N;
- if A = {xn : n ∈ N} is a sequence of points in X convergent to x, then the set A \ Ln is

finite for each n ∈ N;
- for each open subset U of X for which x ∈ U there exists n ∈ N such that Ln ⊆ U .
The proof of the following assertion is similar as for T1-spaces.

Theorem 7.3. (S. I. Nedev [29], Theorem 5, for T1-spaces). For a T0-space X the following
assertions are equivalent:

1. There exists a distance d on X such that T (d) is the topology of the space X .
2. X is a space with a weak axiom of countability.
3. The space X is sequential and for each point x ∈ X there exists a sequential base of the space

X at the point x.
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and Prešić-Chatterjea mappings in partially ordered metric spaces, Creat. Math. Inform, 23 (2014), No. 2, 223–234
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