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Ricci solitons on CR submanifolds of maximal CR
dimension in complex projective space

MIRCEA CRASMAREANU and LAURIAN-IOAN PIŞCORAN

ABSTRACT. We study parallel and symmetric second order tensor fields on CR submanifolds of maximal CR
dimension of the complex projective space. Under some natural conditions, these tensors are scalar multiples of

the metric; an example of submanifold satisfying these assumptions is the geodesic hypersphere in P
n+1
2 (C).

The result is used for Ricci solitons on these CR submanifolds.

1. INTRODUCTION

In 1923, Eisenhart [11] proved that if a Riemannian manifold (M, g) admits a parallel
and symmetric second order covariant tensor which is not a constant multiple of the met-
ric tensor, then it is reducible. In 1926, Levy [15] proved that a parallel and symmetric
second order non degenerate tensor α in a space form is proportional to the metric ten-
sor. While both Eisenhart and Levy work locally, Ramesh Sharma gives in [18] a global
approach based on Ricci identities. In addition to space-forms, Sharma considered this
Eisenhart problem in contact geometry [19]-[21], for example for K-contact manifolds in
[20]. Since then, several other studies appeared in various almost contact manifolds, see
the bibliography of [2].

In this paper we propose a new framework for this problem, also from the almost con-
tact geometry, namely CR submanifolds of maximal CR dimension in a complex projective
space, introduced by M. Djoric and M. Okumura in [9] and intensively studied in [10]. In
order to obtain a similar result with the previous studies, namely a constant multiple of
metric, we impose a number of four hypothesis, two of them about the manifold and other
two about the given tensor field. An example satisfying these first two assumptions is the
geodesic hypersphere which is discussed as the end of Section 2.

Our main result is then connected with the recent theory of Ricci solitons ([7]), a subject
included in the Hamilton-Perelman approach (and proof) of Poincaré Conjecture. So, in
case of existence, a Ricci soliton on these submanifolds having the structural vector field as
soliton generator must be shrinking. A study on eta-Ricci solitons on Hopf hypersurfaces
(a setting similar but different to the present one) is done in [3], while for the notion of
∗-Ricci solitons of real hypersurfaces in non-flat complex space forms see [14].

Our work is structured as follows. The first section is a very brief review of CR sub-
manifolds of maximal CR dimension and Ricci solitons. The next section is devoted to
the (symmetric case of) Eisenhart problem in this framework, while the relationship with
the Ricci solitons is pointed out in the last section. Let us remark that there are corre-
spondences between our present results in Ricci solitons and some previous papers from
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2. A REVIEW OF CR SUBMANIFOLDS OF MAXIMAL CR DIMENSION AND RICCI SOLITONS

Let p and n be two integer numbers with p ≥ 1 and n > 2p − 1 and let us consider
(P

n+p
2 (C), J) the complex projective space equipped with the Fubini-Study metric of con-

stant holomorphic sectional curvature 4k, k > 0. In all what follows we use the notions
and notations of [10].

Fix M an oriented CR submanifold of P
n+p
2 (C) of maximal CR dimension n−1

2 ; then
M has dimension n. From [10, p. 95] n is necessarily odd and therefore there exists a
unit vector field ξ normal to M (i.e. ξ ∈ T⊥M ) such that for every x ∈ M we have
JTxM ⊂ TxM ⊕ span(ξx). Let g be the induced Riemannian metric on M and A be the
shape operator corresponding to ξ; let us also consider on M the tangent vector field
U = −Jξ and the associated 1-form u = U#. U is the structural vector field of M .

From Lemma 15.1. of [10, p. 96] an orthonormal basis of T⊥M is:
ξ, ξ1, ..., ξq, Jξ1, ..., Jξq where q = p−1

2 . Denotes Aa and Aa∗ the shape operator of ξa re-
spectively Jξa for 1 ≤ a ≤ q. From [10, p. 98] we define for a vector field X :

sa(X) = −g(Aa∗U,X) sa∗(X) = g(AaU,X)

and then the normal connection D of M is [10, p. 97]:

DXξ =

q∑
a=1

{sa(X)ξa + sa∗(X)ξa∗}.

At this moment we need two supplementary assumptions:
P1) ξ is parallel with respect to the normal connection; therefore Aa(U) = Aa∗(U) = 0,
P2) the shape operator A has two distinct eigenvalues; then these eigenvalues are con-
stant, [10, p. 126], and A = σI + (ρ − σ)U ⊕ u as formula (19.17) of [10, p. 129], ρ and σ
being different to zero.
Let us remark that from Theorem 19.2. of [10, p. 131] the properties P1 and P2 implies for
p ≥ 2 the existence of a geodesic hypersphere S of P

n+p
2 (C) such that M lies in S.

A straightforward application of formula (15.28) of [10, p. 99] gives the curvature ofM
in the direction of U :

(2.1) R(X,Y )U = k{u(Y )X − u(X)Y }+ ρ[u(Y )AX − u(X)AY ].

Let us introduce also the structural tensor field F provided by the decomposition of JX
into tangent and normal components: JX = FX + u(X)ξ.

In the last part of this section we recall the notion of Ricci solitons according to [22, p.
139]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V
a vector field and λ a real scalar such that:

(2.2) LV g + 2Ricg + 2λg = 0

where LV is the Lie derivative with respect to the vector field V and Ricg is the Ricci
tensor field of g. The Ricci soliton is said to be shrinking, steady or expanding according as
λ is negative, zero or positive.

3. PARALLEL AND SYMMETRIC SECOND ORDER TENSOR FIELDS

Fix α a symmetric covariant tensor field of order 2 on M . If we suppose α to be parallel
on M ,∇α = 0, then:
i) α(U,U)=constant; is a quickly consequence of the fact that U is unitary,
ii) for every vector field X,Y, Z,W of M we have [18]:

(3.3) α(R(X,Y )Z,W ) + α(Z,R(X,Y )W ) = 0.
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With Z = W = U in (1.1) we get:

(3.4) k{u(Y )α(X,U)− u(X)α(Y, U)}+ ρ[u(Y )α(AX,U)− u(X)α(AY,U)] = 0.

In order to make α similar to g we consider two new hypothesis:
P3) the shape operator A is α-symmetric: α(AX,Y ) = α(X,AY ),
P4) the structural tensor field F is α-skew-symmetric: α(FX, Y ) = −α(X,FY ).

Theorem 3.1. Let:
i) M be a CR submanifold of maximal CR dimension in P

n+p
2 (C) with P1 and P2,

ii) α be a parallel and symmetric tensor field of (0, 2)-type on M satisfying P3 and P4.
Then α is a constant multiple of g:

(3.5) α(X,Y ) = α(U,U)g(X,Y ).

Proof. With P3 plugged into (3.4) we derive:

(k + ρ2)[u(Y )α(X,U)− u(X)α(Y, U)] = 0

which means for X = U :

(3.6) α(Y,U) = α(U,U)u(Y ) = α(U,U)g(Y,U).

Let us apply∇X to the last relation and use the parallelism of g and α:

α(∇XY,U) + α(Y,∇XU) = α(U,U)[g(∇XY, U) + g(Y,∇XU)]

which means, via (3.6) with Y → ∇XY and the formula (15.27) of [10, p. 98]:

α(Y, FAX) = α(U,U)g(Y, FAX)

or, with P4:
α(FY,AX) = α(U,U)g(FY,AX).

In this last equation let Y → FY and use the formula F 2 = −I +u⊗U of [10, p. 96]; then:

(3.7) −α(Y,AX) + u(Y )α(U,AX) = α(U,U)[−g(Y,AX) + u(Y )g(U,AX)].

From (3.7) we get:
α(AX,Y ) = α(U,U)g(AX,Y )

and we use the expression of A given by P2 and the remark that σ 6= 0 in order to obtain
(3.5). �

In the following we search for an example concerning the above setting and a com-
parison with the papers [1]-[3] and [7] reveals the complexity of the present framework.

Let Sn+p+1 be the unit sphere defined by
∑n+p

2
i=0 z

iz̄i = 1 in C
n+p
2 +1 = C2r+1 ⊕ C2s+1

with 2r + 2s = n+p
2 − 1. In Sn+p+1 we choose two spheres, S4r+1 and S4s+1, in such

a way that they lie respectively in the complex subspaces C2r+1 and C2s+1 of C
n+p
2 +1.

Then the product S4r+1 × S4s+1 is a hypersurface of Sn+p+1 and the quotient manifold
MC

2r,2s = (S4r+1 × S4s+1)/S1 is a real hypersurface of P
n+p
2 (C).

The Theorem 19.3. of [10, p. 132] assures that for p = 1 the real hypersurface M with
condition P2 of our Theorem 3.1 is congruent with MC

0,2s for s = n−1
4 . Obviously, the

codimension p = 1 assures also the hypothesis P1 and then we have MC
0,n−1

2

= (S1 ×

Sn)/S1 as real hypersurface in P
n+1
2 (C) satisfying both P1 and P2. Hence, every parallel

and symmetric tensor field α of (0, 2)-type on (MC
0,n−1

2

= (S1 × Sn)/S1, g) satisfying P3
and P4 is a constant multiple of the metric g.
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4. RICCI SOLITONS

Let α = LUg + 2Ricg . Obviously, α is symmetric and in order to obtain P3 and P4 we
adapt the formula (23.1) of [10, p. 163]:

Ricg(X,Y ) = k{(n+2)g(X,Y )−3u(X)u(Y )}+(traceA)g(AX,Y )−g(A2X,Y )+ ... (3.1)

where the remaining terms are expressed with Aa and Aa∗ . For P3 is necessary a com-
mutation formula between A and Aa, Aa∗ while for P4 we need a commutation formula
between F and A,Aa, Aa∗ .

The case p = 1 is more simple since Aa = Aa∗ = 0 but in [5] it is proved that a real
hypersurface in a non-flat complex space form does not admit a Ricci soliton with U as
soliton vector field; the same problem but in terms of eta-Ricci solitons is treated in [12].
Other two results of non-existence with respect to the Ricci tensor are as follows:

i) ([13]) there are no real hypersurfacesM in P ∗(C) with recurrent Ricci tensor and such
that the structure vector field of M is a principal curvature vector everywhere,

ii) ([16]) there are no real hypersurfaces with recurrent Ricci tensor in non-flat complex
space forms of complex dimension ≥ 3.
It remains then p ≥ 2 which yields n > 3.

We are interested in computing the scalar λ of a possible Ricci soliton for p ≥ 2. From
λ = − 1

2α(U,U) and Aa(U) = Aa∗(U) = 0 we get:

(4.8) λ = −Ricg(U,U) = −(n− 1)(ρσ + k)

since traceA = ρ+ (n− 1)σ. For n > 3 we have [10, p. 127]:

(4.9) σ =
2k + ρ2

ρ

which yields:

(4.10) λ = −(n− 1)(3k + ρ2) < 0.

Proposition 4.1. Let M be a CR submanifold of maximal CR dimension in P
n+p
2 (C) with P1

and P2. If (M, g) admits a Ricci soliton with U as soliton vector field then this is shrinking with
λ < −2(3k + ρ2).

A result of non-existence is:

Proposition 4.2. Let Mn be a compact, minimal CR submanifold of maximal CR dimension in
P

n+p
2 (C) with the scalar curvature r ≥ (n+ 2)(n− 1) > 10. Then U is a Killing vector field on

M but (g, U) is not a Ricci soliton on M which means that M is not an Einstein manifold.

Proof. The first part of the conclusion results from Lemma 23.1 of [10, p. 163]. According
to Theorem 23.1 of [10, p. 166] we get that M is a real hypersurface of P

n+1
2 (C) and then

we apply the last result of the paper [5]. �

Let us remark that the Propositions 4.1 and 4.2 correspond to the Corollary 3.1 respec-
tively Theorem 3.2 of [8]. Also, recall from [10] that a CR submanifold of maximal CR
dimension is equipped with an almost contact structure which is naturally induced from
the almost complex structure of the ambient manifold. Then, our Proposition 4.1 agrees
with Theorem 1.1. of [4, p. 48] which states that a contact Ricci soliton is shrinking. More-
over, our Proposition 4.2 can be put in correspondence with Theorem 1.2 of [6, p. 1386]
which states the non-existence of Ricci solitons on compact Hopf hypersurfaces of a non-
flat complex space form. Also, concerning the example MC

0,n−1
2

= (S1×Sn)/S1 discussed

in the previous Section we point out the non-Einstein ambient manifold S1 × Sn for our
n > 3, [17, p. 65].
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