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A hybrid based genetic algorithm for solving a capacitated
fixed-charge transportation problem
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ABSTRACT. This paper is focusing on an important transportation application encountered in supply chains,
namely the capacitated two-stage fixed-charge transportation problem. For solving this complex optimization
problem we described a novel hybrid heuristic approach obtained by combining a genetic algorithm based on a
hash table coding of the individuals with a powerful local search procedure. The proposed algorithm was imple-
mented and tested on an often used collection of benchmark instances and the computational results obtained
showed that our proposed hybrid heuristic algorithm delivered competitive results compared to the state-of-
the-art algorithms for solving the considered capacitated two-stage fixed-charge transportation problem.

1. INTRODUCTION

Supply chains (SCs) are universal networks containing the following individuals: supp-
liers, manufacturers, distribution centers, retailers and customers. The classic SC accom-
plishes the functions of acquisition of raw materials, transformation of those into inter-
mediate and finished products and finally the distribution of the resulted products to
customers and its main goal is to fulfill the customer requirements [13].

Supply chain management (SCM) concerns the management of the flow of products
starting from suppliers and ending to customers. SCM is an important and crucial process
for many companies, and many companies are struggling to achieve an optimized supply
chain because this translates to lower costs for the company.

Network design is playing an important and central role in realizing an efficient and
effective management of supply chain systems. Usually, the supply chains can be mode-
led and represented as a form of multi-stage based structure, whose optimal design has
been recognized as an NP-hard optimization problem [4].

The fixed cost transportation problems are natural extensions of the classical transpor-
tation problem described for the first time by Schaffer and O’leary [17]. These problems
have been motivated by the real world applications and their main characteristics are
presence of two kinds of costs: the distribution costs and the fixed charge costs. At the
beginning there have been considered single-stage problems and nowadays multi-stage
distribution problems are investigated.

The classical transportation problem is static in the sense that all the information re-
levant is known apriori, before the process begins. The dynamic version of the problem
is a transportation problem over time. A good survey on these problems was provided
by Bookbinder and Sethi [3]. A different dynamic transportation problem was studied by
Lupşa et al. [8]. Some other dynamic optimization problems have been investigated in
[14, 15].

The two-stage transportation problems have been introduced by Geoffrion and Graves
[6] in 1974, but even nowadays these complex transportation problems are representing
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a challenging research area. Since then several solution approaches based on exact and
heuristic algorithms have been proposed such as the tabu search approach described by
Sun et al. [18], a spanning tree-based genetic algorithm presented by Syarif et al. [19], a
genetic algorithm described by Raj and Rajendran [1], etc.

In the current paper, we are focusing on a particular supply chain network design
problem, namely the capacitated fixed-cost transportation problem in a two-stage supply
chain network involving one manufacturer, a set of distribution centers (DC’s) and a set
of customers and which consists on opening an optimal number of DC’s and finding the
distribution routes in order to meet the specific demands from customers such that the
total transportation costs are minimized. In this form, the problem was introduced by
Molla-Alizadeh-Zavardehi et al. [11]. The same authors presented as well an integer pro-
gramming model of the problem and proposed a spanning tree-based genetic algorithm
with a Prüfer number representation and an artificial immune algorithm for solving it.
Some comments concerning the mathematical model of the problem were published by
El-Sherniny [5]. Recently, Pintea and Pop [13] developed an improved hybrid algorithm
combining the Nearest Neighbor search heuristic with a powerful local search procedure,
which was tested on a collection of benchmark instances and in a preliminary version,
Pintea et al. [12] described some hybrid classical approaches for solving the problem and
Pop et al. [16] proposed an efficient reverse distribution system for solving the problem.

Our paper is organized as follows: in the second section we define the capacitated
fixed-cost transportation problem in a two-stage supply chain network with one manu-
facturer. Section 3 describes our novel developed hybrid based genetic algorithm for sol-
ving the problem. The proposed algorithm is applied in Section 4 to a set of benchmark
instances taken from Pintea and Pop [13] and the obtained results are presented and
analyzed. Finally, in the last section, we summarize the obtained results in this paper
and future research directions are presented.

2. DEFINITION OF THE FIXED-CHARGE TRANSPORTATION PROBLEM

The considerd capacitated fixed-cost transportation problem in a two-stage supply
chain network is defined as follows: given a manufacturer, a set of m distribution cen-
ters (DC’s) and a set of n customers satisfying the following properties:

• the manufacturer can ship to any distribution center at a transportation cost ci,
i ∈ {1, ...,m},
• each DC can ship to any customer at a transportation cost cij from DC i ∈ {1, ...,m}

to customer j ∈ {1, ..., n}, plus a fixed-cost fij for operating the route,
• the opening costs for a potential DC i are denoted by fi, i ∈ {1, ...,m},
• the manufacturer has a given number units of supply, each DC i ∈ {1, ...,m} has
SCi units of stocking capacity and each customer j ∈ {1, ..., n} has a demand Dj ,

we want to determine which DC’s and routes are going to be opened and the size of
the shipments on those routes such that the total distribution costs satisfying the supply
constraints in order to meet the demands of the customers is minimized.

An illustration of the considered fixed-cost transportation problem is presented in the
next figure.

3. THE HYBRID GENETIC ALGORITHM

In this section, we describe our novel hybrid genetic based algorithm for solving the
considered capacitated fixed-charge transportation problem.
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FIGURE 1. Illustration of the two-stage supply chain network design [13]

3.1. Genetic Representation. As the manufacturer is always the same and brings no in-
trinsic added value, actually only the distribution centers (DC’s) and the customers need
to be modeled in an individual, therefore a straightforward representation is a hash table
as defined in [20] and depicted in Figure 2, in which the keys are the DC’s and the values
are the customers. Each customer is allocated to a DC. If a key has no associated values,
it means that specific DC is not selected, therefore the costs associated with it are null.

FIGURE 2. The hash table representation of an individual

Mathematically, an individual can be denoted as:
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I = (DC1(C11, C12, ..., C1k1
), DC2(C21, C22, ..., C2k2

), ..., DCn(Cm1, Cm2, ..., Cmkm
))

(3.1)

where by Cpq , p ∈ {1, ...,m}, q ∈ {k1, ..., km} we denoted the customers served by a
specific DC and k1 + ...+ km = n.

Another possible representation of an individual is as a tree with the depth three, where
the root is the manufacturer, the second level consists of the distribution centers (DC) and
the leaves are the customers. The representation is very similar to the one proposed by
Koza in [7]. In Java, the implementation of an individual is a class implementing the
TreeModel. Another implementation is based on Prüfer numbers, as proposed by Molla
et al in [11]. Of course, for all individuals, the root is the same, therefore all the genetic
operators apply only from the root downwards. The main drawback of this representation
is that each individual carries a redundant root, with absolutely no added value. On the
other hand, the genetic operators for tree individuals are well defined in [7].

3.2. Genetic operators. Crossover

Two parents are selected from the population by the binary tournament method, i.e.
the individuals are chosen from the population at random and undergo recombination
(crossover).

Offspring are produced from two parent solutions using the following classic crossover
procedure (see for example [10]). It is implemented by selecting a random cut point be-
tween the keys (DC’s). The first offspring is made of the first part of the first parent,
respectively the second part of the second parent. The other offspring is made of the
second sequence of the first parent, respectively the first sequence of the first parent.

Given the two parents:

P1 =
(
DC1(C

1
11, ..., C

1
1k1
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2k2
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)
)

(3.2)
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(3.3)

and the cutting point defined by ”|”, the offspring are:

O1 =
(
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(3.5)

If any of the customers appears twice in one of the offspring, one of them is discarded
at random.

We emphasis the fact that the cutting point refers only the DC’s, not to the customers.
This means that the crossover operator just changes the associations between the DC’s
and the customers.

Mutation

The mutation is implemented as a swap of a random number of customers served by
a specific distribution center with a random number of customers served by another dis-
tribution center. If the following distribution centers are selected to undergo mutation
DCr(Cr1, Cr2, Cr3, ..., Crkr

) and DCs(Cr1, Cr2, Cr3, ..., Crkr
) and the two random num-

bers are Rr and Rs, then Rr values of the DCr are moved to DCs and Rs customers of
DCs are moved to DCr. The new number of customers of DCr is |DCr| = kr − Rr + Rs,
whereas the new number of customers of DCs is |DCs| = ks −Rs +Rr. The values of the
other keys (DC’s) are not affected.

There are several specific cases:
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• if Rr = Rs then the number of the associated customers is unchanged after muta-
tion;

• if the number of one of the DC’s is null, e.g. |DCs| = 0, then there is a chance that
after mutation |DCr| = 0, but not necessarily.

Of course, for a valid mutation, Ri < ki, where Ri is the random number of customers
to be moved out of the DCi and ki is the number of customers associated to DCi.

Selection

The selection process is deterministic. Usually there are two approaches, called (µ, λ),
respectively (µ+λ). In both cases, µ parents produce λ offspring. However, in the former
scenario, the next generation is constituted from the best µ individuals out of the λ off-
spring, which means that the parents die out after one epoch. The latter scenario, which
has been used also in our research, assumes that the parents and the offspring form a pool
of individuals out of which the best µ are selected to form the next generation. The advan-
tages of this process is that each population inherits the gain of the previous generation.
On the other hand, there is a high risk that the population gets stuck in local optima. For
avoiding this, when the next generation is created, only distinct individuals are selected,
so that the new population will have all individuals different. The method has proved its
efficiency in [9].

TABLE 1. The experimental results

Repli- Number of Number of Hybrid Proposed Genetic algorithm Proposed Hybrid algorithm

cation DC’s customers algorithm [13] Best Average Std. Best Average Std.

values values deviation values values deviation

1 10 10 21980 20450 21430 564,56 20400 21320 500,26

2 10 10 12160 11240 11850 401,09 11220 11740 398,33

3 10 10 14000 14100 14620 292,54 14040 14520 280,9

1 10 20 36000 35400 36200 461,27 35380 35860 240,83

2 10 20 39660 37840 38470 435,3 37800 38250 318,91

3 10 20 36060 36000 36110 118,27 36000 36000 0

1 10 30 55660 52700 54880 1085,67 52650 53700 606,1

2 10 30 55380 54650 55640 510,62 54540 54880 228,45

3 10 30 49860 48580 49470 699,1 48540 49240 431,92

1 15 15 26680 25420 27640 1052,22 25420 26710 819,16

2 15 15 29100 28600 29230 375,37 28600 28940 168,32

3 15 15 29200 28840 29470 338,24 28750 29120 218,87

1 50 50 92400 91550 92410 561,29 91500 92140 348,12

2 50 50 116500 114660 117440 2070,67 114150 115420 701,4

3 50 50 105000 105000 107400 1718,91 105000 106480 841,24

3.3. The fitness function. The fitness function is also the function to be optimized, namely
the total cost of the distribution (fixed costs and the transportation costs).

3.4. Genetic parameters. It is well known that the genetic parameters are very important
for the success of a GA, equally important as the other aspects, such as the representation
of the individuals, the initial population and the genetic operators. Based on preliminary
experiments, we have used the following parameter settings in our GA:
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• the population size µ has been set to twice the number of DC’s multiplied by the
number of customers, therefore µ = 2 ·m · n.
• the intermediate population size λ was chosen three times the size of the popula-

tion: λ = 3 · µ.
• the mutation probability was set at 10%.
• the maximum number of epochs to run our GA was set to 1000.

3.5. Local search. In order to improve the quality of the obtained solutions by the GA,
we consider a local search procedure. Our procedure consists on three LS operators intro-
duced by Pintea and Pop [13] and applied sequentially:

1. Insert DC. This operator replaces a distribution center from the network with an-
other one which was not open yet.

2. Relocate DC. Given two distribution centers i1, i2 ∈ {1, ...,m}, this operator inter-
changes the customers served by the DC i1 with the the customers served by the
DC i2.

3. Relocate customers. Given two customers j1 and j2 served by the DC’s i1 and i2,
this operator assigns the customer j1 to DC i2 and the customer j2 to DC i1.

Our proposed hybrid algorithm stops when there are no improvements in the popula-
tion over 15 consecutive generations or after the maximum number of epochs otherwise.

4. COMPUTATIONAL RESULTS

In order to asses the effectiveness of our proposed hybrid genetic algorithm, we con-
ducted our computational experiments on a set of 20 benchmark instances introduced by
Pintea and Pop [13]. These instances were generated randomly as in [11], but unfortu-
nately the data used by Molla-Alizadeh-Zavardehi et al. have not been available. Our
algorithm has run 10 times on each instance and the best value was recorded, respectively
the average and the standard deviation were computed.

The achieved results are summarized in Table 1. The first column represents the num-
ber of the instance (there are three for each combination of DC’s and customers). Column
Hybrid algorithm shows the best values reported by Pintea and Pop in [13]. The next six
columns provide the results achieved by our proposed approaches: the genetic algorithm
alone and the hybrid algorithm. The values in bold indicate the best existing solution with
respect to that problem instance.

Analyzing the computational results reported on Table 1, we can observe that both
proposed approaches compared favorably in terms of the provided quality solutions in
comparison to the hybrid algorithm described by Pintea and Pop [13]: in 14 out of 15
instances improving the best values and for the last instance achieving the same best so-
lution. As well, we remark that embedding the genetic algorithm with a local search
procedure the resulted hybrid algorithm improved the quality of the solutions in 11 out
of the 15 considered instances.

5. CONCLUSIONS

In this paper we consider a particular supply chain network design problem, namely
the capacitated fixed-cost transportation problem in a two-stage supply chain network
with one manufacturer. We provided a genetic algorithm for solving the problem, which
was embedded with a local search procedure, obtaining in this way an efficient hybrid
heuristic algorithm.
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The computational results for an often used collection of benchmark instances pro-
vided by Pintea and Pop [13] show that our proposed approaches delivered competitive
results compared to the state-of-the-art algorithms for solving the considered two-stage
fixed-charge transportation problem. In addition, the developed hybrid algorithm ob-
tained by incorporating within the GA a local search procedure, provides better solutions
than those of the genetic algorithm alone.

In the future we plan to strengthen our developed hybrid heuristic algorithm by con-
sidering some other local search operators and in addition in order to asses its generality
and scalability, we will test it on larger instances.
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