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About division quaternion algebras and division symbol
algebras

DIANA SAVIN

ABSTRACT. In this paper, we find a class of division quaternion algebras over the field Q (i) and a class of
division symbol algebras over a cyclotomic field.

1. INTRODUCTION

Let K be a field with char K 6= 2. Let A be a simple K-algebra and Z (A) be the center
of A. We recall that the K- algebra A is called central simple if Z (A) = K.
Let n be an arbitrary positive integer, n ≥ 3 and let ξ be a primitive n-th root of unity. If
char(K) does not divide n and ξ∈K, let K∗ = K\{0}, a, b ∈ K∗ and let A be the algebra
over K generated by elements x and y where

xn = a, yn = b, yx = ξxy.

This algebra is called a symbol algebra (also known as a power norm residue algebra) and it
is denoted by

(
a, b
K,ξ

)
. J. Milnor, in [20], calls it the symbol algebra. For n = 2,we obtain the

quaternion algebra. Quaternion algebras and symbol algebras are central simple algebras.
Quaternion algebras and symbol algebras have many applications in number theory (see
[8], [10], [13], [14], [21], [23], [24], [25], [26]). Conditions of some algebras to be split or with
division were intensively studied in various papers, as for example in the papers [6], [7],
[8], [10], [24], [25], in which the authors found some interesting examples of quaternion
division algebras and quaternion algebras, respectively symbol algebras which split. In
this paper, using some of these results and some properties of quadratic fields, cyclotomic
fields and p− adic fields, we find a class of division quaternion algebras over the field
Q (i) (Theorem 3.6) as well as a class of division symbol algebras over a cyclotomic field
(Theorem 3.7).

2. PRELIMINARIES

In the following, we assume thatK is a commutative field andA is a finite dimensional
algebra over K. If A is a central simple K− algebra, then the dimension n of A over K is
a square. The positive integer d =

√
n is called the degree of the algebra.

We recall some definitions and properties of the theory of associative algebras, cyclotomic
fields and p− adic fields, which will be used in our paper.
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Definition 2.1. Let A 6= 0 be an algebra over the field K. If the equations ax = b, ya =
b,∀a, b ∈ A, a 6= 0, have unique solutions, then the algebra A is called a division algebra. If
A is a finite-dimensional algebra, then A is a division algebra if and only if A is without
zero divisors (x 6= 0, y 6= 0⇒ xy 6= 0).

Definition 2.2. LetK ⊂ L be a fields extension and let A be a central simple algebra over
the field K. We recall that:
i) A is called split by K if A is isomorphic with a matrix algebra over K.
ii) A is called split by L and L is called a splitting field for A if A⊗K L is a matrix algebra
over L.

Let α, β ∈ K∗. We will denote by HK (α, β) the generalized quaternion algebra over the
field K, the algebra of the elements of the form a = a1 · 1 + a2 · e2 + a3 · e3 + a4 · e4, where
ai ∈ K, i ∈ {1, 2, 3, 4}, and the elements of the basis {1, e2, e3, e4} satisfy the following
multiplication table:

· 1 e2 e3 e4
1 1 e2 e3 e4
e2 e2 α e4 αe3
e3 e3 −e4 β −βe2
e4 e4 −αe3 βe2 −αβ

We denote by n (a) the norm of a generalized quaternion a. This norm has the following
expression n (a) = a21 − αa22 − βa23 + αβa24.This algebra is a division algebra if and only if
for x ∈ HK (α, β) we have n (x) = 0 if and only if x = 0. Otherwise, the algebra HK (α, β)
is called a split algebra. In the books [9], [14], [19], [22], [27] appear the following criterions
to decide if a quaternion algebra or a symbol algebra is split.

Proposition 2.1. ([19]) The quaternion algebra HK (α, β) is a split algebra if and only β is a
norm from the extension K ⊆ K(

√
α).

Proposition 2.2. ([9]) The quaternion algebra HK (α, β) is split if and only if the conicC (α, β) :
αx2 + βy2 = z2 has a rational point over K(i.e. if there are x0, y0, z0 ∈ K such that αx20 + βy20
= z20).

Theorem 2.1. ([9]) Let K be a field such that ζ ∈ K, ζn = 1, ζ is a primitive root, and let
α, β ∈ K∗. Then the following statements are equivalent:
i) The cyclic algebra A =

(
α,β
K,ζ

)
is split.

ii) The element β is a norm from the extension K ⊆ K( n
√
α).

Theorem 2.2. (The Wedderburn norm criterion) ([16]) Let n be a positive integer, n ≥ 3 and
let L/K be a cyclic fields extension of order n. Let σ be a generator of the Galois group Gal(L/K).
Then (M,σ, a) is a division algebra if ad is not a norm in L/K for d|n, d < n.

Theorem 2.3. (Wedderburn ) ([19]) LetA be a central simple algebra over the field K. Therefore
there are n ∈ N∗ and a division algebra D, K ⊆ D, such that A 'Mn (D) . The division algebra
D is unique up to an isomorphism.

Theorem 2.4. ([15]) Let K be a field, n be an arbitrary positive integer such that g.c.d. (n, charK)
= 1 and K contains a primitive root of order n of unity.
i) Let L be a cyclic extension of degree n. Then, there is α ∈ K such that L = K (α) and α satisfies
the equation xn − a = 0 for some a ∈ K.
ii) Conversely, let a ∈ K and α be a root of the equation xn − a. Then K (α) is cyclic over K, of
degree d, d|n and αd ∈ K.
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In [4] E. Brown and J. Parry determined all imaginary bicyclic biquadratic fields
K = Q

(√
l,
√
d
)

with class number 1. From these fields, we use in section 3 the ima-

ginary biquadratic number fields K = Q
(√

l,
√
d
)

with l = −1.

Theorem 2.5. ([4]) Let d < −1 be a square free integer and the biquadratic fieldK = Q
(
i,
√
d
)
.

Then, the only values of d for which K has class number 1 are:

d ∈ {−163,−67,−43,−37,−19,−13,−11,−7,−5,−3,−2} .

3. DIVISION QUATERNION ALGEBRAS AND SYMBOL ALGEBRAS, OVER A QUADRATIC
FIELD OR OVER A CYCLOTOMIC FIELD

It is known that a quaternion algebra or a symbol algebra of degree p (with p a prime
number) is either split or a division algebra (see [14], [16]).

In the papers [8], [24], we found some examples of split quaternion and symbol alge-
bras over a quadratic field or over a cyclotomic field. We obtained the following results:

Proposition 3.3. ([24]) Let p be a prime positive integer, p ≡ 1( mod 3) and let K = Q
(√

3
)
.

Then the quaternion algebra HK (−1, p) is a split algebra.

Proposition 3.4. ([24]) Let ε be a primitive root of order 3 of the unity. Then the algebras A =(
α,β

Q(ε),ε

)
, for α, β ∈ {−1, 1} are split algebras.

Let ε be a primitive root of order 3 of the unity and Q (ε) be the cyclotomic field. In the paper
[8] using the computer algebra system MAGMA, we obtained that the symbol algebras

(
7,113

Q(ε),ε

)
,(

7,(11+ε)3

Q(ε),ε

)
,
(

7,53

Q(ε),ε

)
are split algebras and the class number of the Kummer field Q

(
ε, 3
√
7
)

is 3.
Moreover, in the paper [8], we found a class of split symbol algebras, over a cyclotomic field.

Proposition 3.5. ([8]) Let q be an odd prime positive integer and ξ be a primitive root of order
q of unity and let K = Q (ξ) be the cyclotomic field. Let α ∈ K∗, p be a prime rational integer,
p 6= 3 and let L = K ( q

√
α) be the Kummer field such that α is a q power residue modulo p. Let hL

be the class number of L. Then, the symbol algebras A =
(
α,phL

K,ξ

)
are split.

In this paper we find a class of quaternion division algebras or division symbol algebras
over a p-adic field, over a quadratic field or over a cyclotomic field.

We consider the quadratic field Q (i) (i2 = −1) and the cyclotomic field Q (ε) , where ε
is a primitive root of order 3 of the unity . Using the computer algebra system MAGMA,
we found some examples of division quaternion algebras over the quadratic field Q (i)
and some examples of division symbol algebras over the cyclotomic field field Q (ε) .
For example, we declare (in input) the quadratic field E := Q (i) , the biquadratic field
K := Q

(
i,
√
10
)

and the quaternion algebraA := HQ(i) (10, 29) . In output, with the proce-
dure NormEquation(K, 29) we test if 29 is or not a norm of an element from the biquadratic
field K. We obtain that 10 is not a quadratic residue modulo 29, 29 ≡ 1 (mod 4) and 29 is
not a norm from the extension Q (i) ⊆ Q

(
i,
√
10
)
. Using similar calculations in Magma

we obtain that 15 is not a quadratic residue modulo 29, 29 is not a norm from the extension
Q (i) ⊆ Q

(
i,
√
15
)

and 5 is a quadratic residue modulo 29, 29 is a norm from the exten-
sion Q (i) ⊆ Q

(
i,
√
5
)
. So, applying Proposition 2.1 it results that the quaternion algebras

HQ(i) (10, 29) , HQ(i) (15, 29) are division algebras and the quaternion algebra HQ(i) (5, 29)
is a split algebra.
Using similar calculations in Magma (for symbol algebras), it results that 29 is a norm
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from the extension Q (ε) ⊆ Q
(
ε, 3
√
7
)
, but 43; 13; 19 are not norms from the extension

Q (ε) ⊆ Q
(
ε, 3
√
7
)
. So, applying Theorem 2.1 or Theorem 2.2, it results that the symbol

algebra
(

7,29
Q(ε),ε

)
is a split algebra, but

(
7,43
Q(ε),ε

)
,
(

7,13
Q(ε),ε

)
,
(

7,19
Q(ε),ε

)
are division algebras.

We remark that 29 ≡ 2 (mod 3), but 43; 13; 19 ≡ 1 (mod 3).
Let ω be a primitive root of order 5 of the unity and let the cyclotomic field Q (ω). Similarly
with previous examples, using the computer algebra system MAGMA, we obtain that the
symbol algebra

(
19,37
Q(ω),ω

)
is a split symbol algebra, but

(
19,11
Q(ω),ω

)
,
(

19,31
Q(ω),ω

)
are division

symbol algebras. We remark that 37 ≡ 2 (mod 5), but 11; 31 ≡ 1 (mod 5).
Considering these things, we obtain the following results. In these results we use the no-
tations: (·, ·)p for the Hilbert symbol in the p− adic field Qp, ε

( ·,·
K

)
v

for the Hasse invariant

at a place v of a fieldK,
(
·
p

)
for the Legendre symbol in Z, respective

[
·
p

]
for the Legendre

symbol in Z [i] .

Theorem 3.6. Let p be a prime positive integer such that p ≡ 1 (mod 4) and let the quadratic
field Q (i) (i2 = −1). Let α be an integer which is not a quadratic residue modulo p. Then the
quaternion algebra HQ(i) (α, p) is a division algebra.

Proof. Since α is not a quadratic residue modulo p, it results that α/∈
(
F∗p
)2
. Therefore,

Fp (
√
α) /Fp is a cyclic extension of degree 2. From Hensel ’s lemma ([1], [3]), we know

that the p− adic field Qp contains the roots of order p − 1 of the unity. Since p ≡ 1
(mod 4), we have that i∈Qp, therefore Q (i) ⊂ Qp. We consider the quaternion algebra
HQ(i) (α, p)⊗Q(i) Qp = HQp (α, p) .

We consider the equation αx2 + py2 = z2. We calculate the Hilbert symbol in Qp : (α, p)p .
Since α is not a quadratic residue modulo p, it results that p does not divide α. There-
fore (α, p)p =

(
α
p

)
= −1. This implies that the equation αx2 + py2 = z2 does not have

solutions in the p-adic field Qp. Applying Proposition 2.2, it results that HQp
(α, p) is not

split, therefore HQp (α, p) is a division algebra. This implies that HQ(i) (α, p) is a division
algebra. �

A question which appears in the following is: what happens with the quaternion alge-
bra HQ(i) (α, p) when α is a quadratic residue modulo p.Using Theorem 2.5, the decompo-
sition of a prime integer in the ring of integers of a biquadratic field (see [18], [17] ) and a
reasoning similar to that which we used in the proof of Proposition 3.5 (see [8]) we obtain:

Proposition 3.6. Let α∈ {±2,±3,±5,±7,±11,±13,±19,±37,±43,±67,±163} and let p be
an odd prime positive integer such that |α| is a quadratic residue modulo p and let the quadratic
field Q (i) (i2 = −1). Then the quaternion algebra HQ(i) (α, p) is a split algebra.

Proof. Our first remark is the fact that for every α from the set
{±2,±3,±5,±7,±11,±13,±19,±37,±43,±67,±163} there exists an odd prime positive
integer p such that |α| is quadratic residue modulo p.
Let OK be the ring of integers of the biquadratic field K = Q (i,

√
α) = Q

(
i,
√
−α
)
. From

Theorem 2.5 follows immediately thatOK is a principal ring. We know that, if p ≡ 1 (mod
4), then p splits in the ring Z [i] in a product of two primes from Z [i] , respective, if p ≡ 3
(mod 4), then p is inert in the ring Z [i] .
Case 1: if p ≡ 1 (mod 4). We know that Z [i] is a principal ring. So, we have:

pZ [i] = p1Z [i] p2Z [i] ,
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where p1, p2 are prime elements from Z [i] . Since |α| is a quadratic residue modulo p, it
results that |α| is a quadratic residue modulo p1, p2. So, we obtain the following decom-
position of the ideal pOK :

pOK = P11P12P21P22,

where Pi1 and Pi2, i = 1, 2 are prime, principal conjugate ideals from the ring OK . It
results that p = NK/Q(i) (P11) . But P11 is a principal ideal, therefore, there exists a ∈ K
such that p = NK/Q(i) (a) . Applying Proposition 2.1 it results that the quaternion algebra
HQ(i) (α, p) is a split algebra.
Case 2: if p ≡ 3 (mod 4), we know that p is inert in the ring Z [i] and having in view that |α|
is quadratic residue modulo p, we obtain that pOK = P1P2, where Pi, i = 1, 2 are prime,
principal conjugate ideals from the ring OK . Similarly with the case 1, we obtain that the
quaternion algebra HQ(i) (α, p) is a split algebra. �

In the case when p
′

is a prime positive integer, p
′ ≡ 1 (mod 4), we obtain the result:

Proposition 3.7. Let p
′

be a prime positive integer such that p
′ ≡ 1 (mod 4) and let the quadratic

field Q (i) (i2 = −1). Let α be an integer such that each divisor of α is a quadratic residue modulo
p

′
. Then the quaternion algebra HQ(i)

(
α, p

′
)

is a split algebra.

Proof. We prove that the equation αx2 + p
′
y2 = z2 has solutions over Q (i) . For this we

determine the ramified primes in the quaternion algebra HQ(i)

(
α, p

′
)
. It is known that a

such prime p divides 2αp
′

([11], [12], [26]). Since p
′ ≡ 1 (mod 4) it results that p

′Z [i] =

p
′

1Z [i] · p′

2Z [i] , where p
′

1Z [i] , p
′

2Z [i]∈ Spec(Z [i]).

We calculate the Hasse invariant: ε
(
α,p

′

Q(i)

)
p
′
j

=

[
α
p
′
j

]
= 1, j = 1, 2. It results that p

′

1, p
′

2 are

not ramified in HQ(i)

(
α, p

′
)
.

Case 1: if 2-α.
Let α = qβ1

1 · q
β2

2 · ... · qβr
r , where r is a natural number, qj , j = 1, r are odd prime integers

and βj∈N∗, for j = 1, r.
Let p∈{q1, q2, ..., qr} . From hypothesis, it results that p ≡ 3 (mod 4) or p ≡ 1 (mod 4).
If p ≡ 3 (mod 4), it results that p remains prime in the ring Z[i]. Using the properties of the
Hasse invariant we obtain:

ε

(
α, p

′

Q (i)

)
p

=

r∏
k=1,k 6=j

ε

(
qβk

k , p
′

Q (i)

)
p

· ε

(
pβj , p

′

Q (i)

)
p

=(3.1)

=

ε( p, p
′

Q (i)

)
p

βj

=

[
p

′

p

]βj

.

Since p
′≡1 (mod 4), it results that p

′Z [i] = p
′

1Z [i] · p′

2Z [i] , where p
′

1Z [i] , p
′

2Z [i] are prime
ideals in Z [i] and p

′

2 = p
′
1.

Taking into account (3.1) we obtain:

ε

(
α, p

′

Q (i)

)
p

=

[
p

′

1

p

]βj

·

[
p

′

2

p

]βj

= 1.

So, each divisor p ≡ 3 (mod 4) of α does not ramify in HQ(i)

(
α, p

′
)
.

If p ≡ 1 (mod 4), it results that pZ [i] = p1Z [i] · p2Z [i] , where p1Z [i] , p2Z [i]∈ Spec(Z [i]).
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Analogously to the previous considerations, we obtain the Hasse invariant ε
(
α,p

′

Q(i)

)
p1

=

ε
(
α,p

′

Q(i)

)
p2

= 1. So, p1, p2 do not ramify in HQ(i)

(
α, p

′
)
.

Case 2: if 2|α.
We know that 2 = −i (1 + i)

2
, 1 + i is a prime element in Z [i] , i∈U(Z [i]) . Considering

the results obtained in case 1 and that
∏
p
ε
(
α,p

′

Q(i)

)
p
= 1, it results that ε

(
α,p

′

Q(i)

)
1+i

= 1. So,

1 + i does not ramify in HQ(i)

(
α, p

′
)
.

From the previously proved, applying Minkovski-Hasse theorem we get that the equa-
tion αx2 + p

′
y2 = z2 has solutions over Q (i) , so applying Proposition 2.2 it results that

HQ(i)

(
α, p

′
)

is a split algebra.

We wonder if the quaternion algebra HQ (α, p) is a split algebra when p is a prime posi-
tive integer, p ≡ 1 (mod 4) and α is an integer such that α is a quadratic residue modulo p.
When a F - quaternion algebra splits over a quadratic field F (

√
w) , in paper [5] are given

sufficient conditions for the F - quaternion algebra splits over F. But these conditions are
given only when w is totally positive; this is not our situation (when F (

√
w) = Q (i)).

When α is also prime, in [2] is realized a classification of quaternion algebras HQ

(
α, p

′
)

(in split algebras, respectively division algebras ) after congruences satisfied by into α and
p

′
.

Making some computations in Magma we obtain that the answer at our question is neg-
ative. For example, if α = 33 p = 29, we have that 29 ≡ 1 (mod 4) and 33 is a quadratic
residue modulo 29.Using Magma we obtain that the discriminant (in fact the generator of
this discriminant) of the quaternion algebra HQ(i) (33, 29) is 1, so the algebra HQ(i) (33, 29)
splits, but the discriminant of the quaternion algebra HQ (33, 29) is 33, so the HQ (33, 29)
is a division algebra. All ramified primes in the algebra HQ (33, 29) are 3 and 11 and we
remark that 3 and 11 are not quadratic residues modulo 29. In another example: if α = 35,
p = 29 we obtain that the quaternion algebra HQ(i) (35, 29) splits, also the quaternion al-
gebra HQ (35, 29) splits; 35 is a quadratic residue modulo 29 and 5; 7 are also quadratic
residues modulo 29. Considering these things, we get the following result. �

Proposition 3.8. Let p
′

be a prime positive integer such that p
′ ≡ 1 (mod 4). Let α be an

integer such that each divisor of α is a quadratic residue modulo p
′
. Then the quaternion algebra

HQ

(
α, p

′
)

is a split algebra.

Proof. The proof is similar to the proof of Proposition 3.7. The only difference is when in-
stead of the relation (3.1) from the proof of Proposition 3.7 appears the following situation
(using the properties of the Hilbert symbol):

(
α, p

′
)
p
=

r∏
k=1,k 6=j

(
qβk

k , p
′
)
p
·
(
pβj , p

′
)
p
=

((
p, p

′
)
p

)βj

=

(
p

′

p

)βj

.

Since p
′≡1 (mod 4), applying quadratic reciprocity law, it results

(
p
′

p

)
=
(
p

p′

)
. Since each

divisor of α is a quadratic residue modulo p
′
, it results that

(
p

p′

)
= 1. We obtain that(

α, p
′
)
p
= 1 so, each divisor p ≡ 3 (mod 4) of α does not ramify in HQ

(
α, p

′
)
. �

Now, we generalize Theorem 3.6 for symbol algebras.
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Theorem 3.7. Let p and q be prime positive integers such that p ≡ 1 (mod q), ξ be a primitive
root of order q of unity and let K = Q (ξ) be the cyclotomic field. Then there is an integer α not
divisible by p whose residue class mod p does not belongs to

(
F∗p
)q and for every such an α, we

have:
i) the algebra A⊗K Qp is a division algebra over Qp, where A is the symbol algebra A =

(
α,p
K,ξ

)
;

ii) the symbol algebra A is a division algebra over K.

Proof. Let be the homomorphism f : F∗p → F∗p, f (x) = xq. Since q divides p − 1, it re-
sults Ker (f) =

{
x ∈ F ∗p |xq ≡ 1 (mod p)

}
is non -trivial, so f is not injective. So, f is

not surjective. It results that there exists α (in F∗p,) which does not belongs to
(
F∗p
)q
. So,

Fp ⊂ Fp
(

q
√
α
)
.

The extension of fields Fp
(

q
√
α
)
/Fp is a cyclic extension of degree q. Applying Hensel ’s

lemma and the fact that p ≡ 1 (mod q), it results that Qp contains the q-th roots of the

unity, therefore Q (ξ) ⊂ Qp. We consider the symbol algebra A ⊗K Qp =
(
α,p
Qp,ξ

)
. Apply-

ing Theorem 2.4, it results that the extension Qp ( q
√
α) /Qp is a cyclic unramified extension

of degree q, therefore a norm of an element from this extension can be a positive power
of p, but can not be p. Applying Theorem 2.1, we get that

(
α,p
Qp,ξ

)
is not a split algebra,

therefore it is a division algebra. This implies that A is a symbol division algebra. �

Conclusions. In this paper we found a class of quaternion division algebras or division
symbol algebras over a p-adic field, over a quadratic field or over a cyclotomic field.

Using the computer algebra system MAGMA over the quadratic field Q (i) (i2 = −1)
and the cyclotomic field Q (ε) ,where ε is a primitive root of order 3 of the unity, we obtain
very good examples which allowed us to find conditions in Theorem 3.6, Proposition 3.6,
Proposition 3.7, Proposition 3.8 and Theorem 3.7.
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