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A path convergence theorem and construction of fixed
points for nonexpansive mappings in certain Banach spaces

T. M. M. SOW, N. DJITTE and C. E. CHIDUME

ABSTRACT. In this paper, we introduce a new iterative process to approximate fixed points of nonexpansive
maps in real Banach spaces having weakly continuous duality map and establish strong convergence theorems
for the proposed iterative process. There is no compactness assumption on K or on T . Our results improve
important recent results.

1. INTRODUCTION

Let E be a real Banach space with norm ‖ · ‖ and dual E∗. For any x ∈ E and x∗ ∈ E∗,
〈x∗, x〉 is used to refer to x∗(x). Let ϕ : [0,+∞)→ [0,∞) be a stricly increasing continuous
function such that ϕ(0) = 0 and ϕ(t)→ +∞ as t→∞. Such a function ϕ is called gauge.
Associed to a gauge ϕ is a duality map Jϕ : E → 2E

∗
defined by:

(1.1) Jϕ(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||ϕ(||x||), ||x∗|| = ϕ(||x||)}, x ∈ E.
If the gauge is defined by ϕ(t) = t, then the corresponding duality map is called the
normalized duality map and is denoted by J . Hence the normalized duality map is given
by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, ∀x ∈ E.
Notice that

Jϕ(x) =
ϕ(||x||)
||x||

J(x), x 6= 0.

Recall that a Banach space E is said to be smooth if

(1.2) lim
t→0

‖x+ ty‖ − ‖x‖
t

exist for each x, y ∈ SE (Here SE := {x ∈ E : ||x|| = 1} is the unit sphere ofE). E is said to
be uniformly smooth if it is smooth and the limit is attained uniformly for each x, y ∈ SE ,
andE is Fréchet differentiable if it is smooth and the limit is attained uniformly for y ∈ SE .
It is known that E is smooth if only if each duality map Jϕ is single-valued, that E is
Fréchet differentiable if and only if each duality map Jϕ is norm-to-norm continuous in
E, and that E is uniformly smooth if and only if each duality map Jϕ is norm-to-norm
uniformly continuous on bounded subsets of E.

Following Browder [2], we say that a Banach space has a weakly continuous duality
map if there exists a gauge ϕ such that Jϕ is a single-valued and is weak-to-weak∗ se-

quentially continous, i.e., if {xn} ⊂ E, xn
w−→ x, then Jϕ(xn)

w∗

−−→ Jϕ(x). It is known that
lp (1 < p < ∞) has a weakly continuous duality map with gauge ϕ(t) = tp−1. (see e.g.,
[8] fore more detais on duality maps). Finally recall that a Banach space E satisfies Opial’s
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property (see, e.g., [18]) if lim sup
n→+∞

‖xn − x‖ < lim sup
n→+∞

‖xn − y‖ whenever xn
w−→ x, x 6= y. A

Banach space E that has a weakly continuous duality map satisfies Opial’s property.
Let E be a real normed linear space and K be a nonempty subset of E. A map T : K →

E is said to be Lipschitz if there exists an L ≥ 0 such that

(1.3) ‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ K;

if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
For T : K → K nonexpansive with a fixed point, whereK is a closed convex nonempty

subset of a real Banach space E, unlike in the case of Banach contraction mapping princi-
ple, trivial examples show that the sequence {xn} generated by the Picard iterates, xn+1 :=
Txn, n ≥ 0, may fail to converge to such a fixed point even when such a fixed point is
unique. More precisely, let B be the closed unit ball of R2 and let T be the anticlock-
wise rotation of π

4 about the origin of coordinates. Then, T is nonexpansive with the
origin as the only fixed point. Moreover, the sequence {xn} defined by xn+1 := Txn, n ≥
0 with x0 = (0, 1) ∈ B, does not converge to (0,0) (see, e.g., Chidume[5]).

Krasnoselskii [14], however, showed that in this example, one can obtain convergent
sequence of successive approximations if 1

2 (I + T ) is used instead of T where I denotes
the identity map on R2, that is, if the sequence of successive approximations is defined by
x0 ∈ K,

(1.4) xn+1 =
1

2

(
xn + Txn

)
, n ≥ 0,

instead of the usual Picard iterates, xn+1 = Txn, x0 ∈ K,n ≥ 0. Clearly, the fixed point
sets of T and 1

2 (I + T ) are the same so that the limit of a convergent sequence defined by
(1.4) is necessarily a fixed point T .

A generalization of equation (1.4) which has proved successful in the approximation of
fixed points of nonexpansive maps T : K → K (when they exist), K is a closed convex
subset of a normed linear space, is the following scheme: x0 ∈ K,

(1.5) xn+1 = (1− λ)xn + λTxn, n ≥ 0; λ ∈ (0, 1),

(see, e.g., Schaefer [22]). However, the most general iterative scheme now studied for
approximating fixed point of nonexpansive mappings is the following: x0 ∈ K,

(1.6) xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

where {αn} ⊂ (0, 1) is a real sequence satisfying appropriate conditions (see, e.g., Chidume
[6], Eldestein and O’Brain [9], Ishikawa [13]). Under the conditions that; limαn = 0 and
∞∑
n=0

αn = ∞, the sequence {xn} generated by (1.6) is generally referred to as Mann se-

quence in the light of Mann [17].
This Mann’s method is remarkably useful for finding fixed points of a nonexpansive

mapping and provides a unified framework for some kinds of algorithms from various
different fields. In this respect, the following result is basic and important.

Theorem 1.1. Let X be an Opial space and T : K → K be a nonexpansive self-mapping of a
nonempty weakly compact convex subset K of X . For any x0 ∈ K, let {xn} ⊂ K be the sequence
given by (1.6) where {αn} ⊂ (0, 1) is a non-increasing real sequence satisfying: 0 < a ≤ αn < 1
for all n ≥ 1. Then {xn} converges weakly to a fixed point of T .
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However, as in Theorem 1.1, Mann’s method for nonexpansive mappings has only weak
convergence. Thus a natural question rises: could we obtain a strong convergence theo-
rem by using the well-known Mann’s method for non-expansive mappings? In this con-
nection, in 1975, Genel and Lindenstrass[10] gave a counter-example. Hence the modifi-
cation is necessary in order to guarantee the strong convergence of Mann’s method.

Some attempts to construct iteration algorithm so that strong convergence is guaran-
teed have been made.

Let E be a real Banach space, K a nonempty closed convex subset of E and T : K → K
a nonexpansive mapping. For fixed t ∈ (0, 1) and arbitrary u ∈ K, let zt ∈ K denote the
unique fixed point of Tt defined by Ttx := tu + (1 − t)Tx, x ∈ K. Assume that F (T ) :=
{x ∈ K : Tx = x} 6= ∅. Browder [3] proved that if E = H , a Hilbert space, then lim

t→0
zt

exists and is a fixed point of T . Reich [20] extended this result to uniformly smooth Banach
spaces. Kirk [15] obtained the same result in arbitrary Banach spaces under the additional
assumption that T has pre-compact range. (see also, [7]).

For a sequence {αn} of real numbers in [0, 1] and an arbitrary u ∈ K, let the sequence
{xn} in K be iteratively defined by x0 ∈ K,

xn+1 := αnu+ (1− αn)Txn, n ≥ 0.(1.7)

Concerning this process, Reich [20] posed the following question.

Question. Let E be a real Banach space. Is there a sequence {αn} such that whenever a weakly
compact convex subset K of E has the fixed point property for nonexpansive mappings, then the
sequence {xn} defined by (1.7) converges to a fixed point of T for arbitrary fixed u ∈ K and all
nonexpansive T : K → K?

Halpern [12] was the first to study the convergence of the algorithm (1.7) in the frame-
work of Hilbert spaces. He proved the following theorem.

Theorem 1.2 (Halpern, [12]). Let K be a nonempty bounded closed convex subset of a Hilbert
space H and T : K → K be a nonexpansive mapping. Let u ∈ K be arbitrary. Define a real
sequence {αn} in [0, 1] by αn = n−θ, θ ∈ (0, 1). Define a sequence {xn} in K by x1 ∈ K,
xn+1 = αnu + (1 − αn)Txn, n ≥ 1. Then, {xn} converges strongly to the element of F (T ) :=
{x ∈ K : Tx = x} nearest to u.

An iteration method with recursion formula of the form (1.7) is referred to as a Halpern-
type iteration method.

Lions [16] improved Theorem 1.2, still in Hilbert spaces, by proving strong convergence
of {xn} to a fixed point of T if the real sequence {αn} satisfies the following conditions:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=1

αn =∞; and (iii) lim
n→∞

|αn−αn−1|
α2

n
= 0.

Reich [20] gave an affirmative answer to the above question in the case when E is
uniformly smooth and αn = n−a with 0 < a < 1. It was observed that both Halpern’s
and Lions’ conditions on the real sequence {αn} excluded the natural choice, αn := (n +
1)−1. This was overcome by Wittmann [25] who proved, still in Hilbert spaces, the strong
convergence of {xn} if {αn} satisfies the following conditions:

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=1

αn =∞; and ; (iii)

∞∑
n=1

|αn+1 − αn| <∞.(1.8)

Reich [19] extended this result of Wittmann to the class of Banach spaces which are uni-
formly smooth and have weakly sequentially continuous duality maps (e.g., lp(1 < p <
∞)), where the sequence {αn} is required to satisfy conditions (i) and (ii) of (1.8) and to
be decreasing (and hence also satisfies (iii) of (1.8)). Shioji and Takahashi [23] extended
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Wittmann’s result to Banach spaces with uniformly Gâteaux differentiable norms and in
which each nonempty closed convex bounded subset of K has the fixed point property
for nonexpansive mappings (e.g., Lp spaces (1 < p < ∞)). They proved the followng
theorem.

Theorem ST ([23]). LetE be a Banach space whose norm is uniformly Gâteaux differentiable and
let K be a nonempty closed convex subset of E. Let T be a nonexpansive mapping from K into K
such that the set F (T ) of fixed points of T is nonempty. Let {αn} be a sequence which satisfies the
following conditions: 0 ≤ αn ≤ 1, limαn = 0,

∑
αn = ∞,

∑
|αn+1 − αn| < ∞. Let u ∈ K

and let {xn} be the sequence defined by x0 ∈ K, xn+1 = αnu + (1 − αn)Txn, n ≥ 0. Assume
that {zt} converges strongly to z ∈ F (T ) as t ↓ 0, where for 0 < t < 1, zt is the unique element
of K which satisfies zt = tu+ (1− t)Tzt. Then, {xn} converges strongly to z.

A result of Reich [21] and that of Takahashi and Ueda [24] show that ifK satisfies some
additional assumption, then {zt} defined above converges strongly to a fixed point of T .
In particular, the following is true.

Let E be a Banach space whose norm is uniformly Gâteaux differentiable and let K be
a weakly compact convex subset of E. Let T be a nonexpansive mapping from K into K.
Let u ∈ K and let zt be the unique element of K which satisfies zt = tu + (1 − t)Tzt for
0 < t < 1. Assume that each nonempty T−invariant closed convex subset of K contains
a fixed point of T . Then, {zt} converges strongly to a fixed point of T .

It is our purpose in this paper to construct a new iterative algorithm and prove strong
convergence theorems for approximating fixed points of nonexpansive mappings in re-
flexive real Banach spaces having weakly continuous duality maps. No compactness as-
sumption is made. Our theorems are important improvement of important recent results.

2. PRELIMINARIES

We start with the following demiclosedness principle for nonexpansive mappings.

Lemma 2.1 (demiclosedness principle, Browder [11]). LetE be a real Banach space satisfying
Opial’s property, K be a closed convex subset of E, and T : K → K be a nonexpansive mapping
such that F (T ) 6= ∅. Then I − T is demiclosed; that is,

{xn} ⊂ K, xn ⇀ x ∈ K and (I − T )xn → y implies that (I − T )x = y.

Lemma 2.2 (Xu, [26]). Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a
sequence in R such that

(a)

∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| <∞. Then lim
n→∞

an = 0.

3. MAIN RESULTS

Lemma 3.3. Let E be a real Banach space and K a nonempty,closed convex cone of E. Let T :
K → K be a nonexpansive mapping, and λ be a constant in (0, 1). Then, for each t ∈ (0, 1), there
exists a unique xt ∈ K such that

xt = t(λxt) + (1− t)Txt.

Proof. For each t ∈ (0, 1), define the mapping Tt : K → K by:

Ttx = t(λx) + (1− t)Tx, ∀x ∈ K.
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We show that Tt is a contraction. For this, let x, y ∈ K. We have

‖Ttx− Tty‖ = ‖[t(λxt) + (1− t)Tx]− [t(λy) + (1− t)Ty]‖ ≤ [1− (1− λ)t]‖x− y‖.

Therefore, Tt is a contraction. Using Banach’s contraction principle, there exists a unique
fixed point xt of Tt in K, i.e,

(3.9) xt = t(λxt) + (1− t)Txt.

�

We now prove the following theorem.

Theorem 3.3. Let E be a reflexive real Banach space having a weakly continuous duality map
and K a nonempty, closed convex cone of E. Let T : K → K be a nonexpansive mapping with
F (T ) 6= ∅. Then as t→ 0, the net {xt} defined by (3.9) converges strongly to a fixed point of T .

Proof.

Step 1. We prove that {xt} is bounded. Let u ∈ F (T ). From (3.9), we have

‖xt − u‖ = ‖t(λxt) + (1− t)Txt − u‖
≤ tλ‖xt − u‖+ (1− t)‖Txt − u‖+ (1− λ)t‖u‖
≤ [1− (1− λ)t]‖xt − u‖+ (1− λ)t‖u‖,

which implies that
‖xt − u‖ ≤ ‖u‖.

Hence, {xt} is bounded.

Step 2. We show that {xt} is relatively norm compact as t→ 0. Using (3.9), we have

(3.10) ‖xt − Txt‖ = t‖λxt − Txt‖ → 0, as t→ 0.

Now, let {tn} ⊂ (0, 1) be a sequence such that tn → 0 as n→ +∞. Set xn := xtn . We show
that {xn} has a convergence subsequence. To this end, from (3.10), we have

(3.11) ‖xn − Txn‖ → 0.

Let ϕ be a gauge such that the corresponding duality map Jϕ is single valued and weak-
to-weak∗ seqentially continuous from E to E∗. Let u ∈ F (T ). From (1.1) and (3.9), we
have

‖xt − u‖ϕ(‖xt − u‖) = 〈t(λxt) + (1− t)Txt − u, Jϕ(xt − u)〉
= tλ〈xt − u, Jϕ(xt − u)〉+ (1− t)〈Txt − u, Jϕ(xt − u)〉
−(1− λ)t〈u, Jϕ(xt − u)〉

≤ [1− (1− λ)t]‖xt − u‖ϕ(‖xt − u‖)− (1− λ)t〈u, Jϕ(xt − u)〉.

So,
‖xt − u‖ϕ(‖xt − u‖) ≤ 〈u, Jϕ(u− xt)〉.

In particular,

(3.12) ‖xn − u‖ϕ(‖xn − u‖) ≤ 〈u, Jϕ(u− xn)〉 ∀u ∈ F (T ),

which implies that
‖xn − u‖ ≤ ‖u‖.

Therefore, {xn} is bounded.
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Since E is reflexive and K is closed and convex, there exists {xnk
} a subsequence of

{xn} that converges weakly to x∗ ∈ K. Using Lemma 2.1, it follows that x∗ ∈ F (T ).
Replacing u by x∗ in (3.12), we have:

(3.13) ‖xnk
− x∗‖ϕ(‖xnk

− x∗‖) ≤ 〈x∗, Jϕ(x∗ − xnk
)〉 ∀k ≥ 1.

Using (3.13), the fact that xnk
⇀ x∗ as k →∞ and Jϕ is weakly continuous, it follows that

(3.14) ‖xnk
− x∗‖ϕ(‖xnk

− x∗‖)→ 0 as k →∞.

Using (3.14), the fact that {xn} is bounded, and ϕ is continuous and satisfies ϕ(t) = 0 if
and only if t = 0, we deduce that ‖xnk

−x∗‖ → 0 as k →∞. Hence xnk
→ x∗. This proves

the relatively compactness of the net {xt}.

Step 3. We show that the entire net {xt} converge to a fixed point of T . We claim that the
net {xt} has a unique cluster point. From step2, the net {xt} has a cluster point. Now
suppose that x∗ ∈ E and x∗∗ ∈ E are two cluster points of {xt}. Let {tn} ⊂ (0, 1) such
that tn → 0 and xtn → x∗, as n→∞ and {sn} ⊂ (0, 1) such that sn → 0 and xsn → x∗∗, as
n→∞. Set xn = xtn and zn = xsn .

Following the same arguments as in step2, it follows that x∗, x∗∗ ∈ F (T ), and the
following estimates hold:

(3.15) ‖xn − x∗∗‖ϕ(‖xn − x∗∗‖) ≤ 〈x∗∗, Jϕ(x∗∗ − xn)〉,

and

(3.16) ‖zn − x∗‖ϕ(‖zn − x∗‖) ≤ 〈x∗, Jϕ(x∗ − zn)〉.

Letting n→∞ in (3.15) and (3.16) gives

(3.17) ‖x∗ − x∗∗‖ϕ(‖x∗ − x∗∗‖) ≤ 〈x∗∗, Jϕ(x∗∗ − x∗)〉.

and

(3.18) ‖x∗∗ − x∗‖ϕ(‖x∗∗ − x∗‖) ≤ 〈x∗, Jϕ(x∗ − x∗∗)〉.

Adding up (3.17) and (3.18) yields

2‖x∗ − x∗∗‖ϕ(‖x∗ − x∗∗‖) ≤ ‖x∗ − x∗∗‖ϕ(‖x∗ − x∗∗‖),

which implies that x∗ = x∗∗.This complete the proof. �

We now apply Theorem 3.3 to approximate fixed points of nonexpansive mappings.

Theorem 3.4. LetE be a uniformly smooth real Banach space having a weakly continuous duality
map andK a nonempty, closed and convex cone ofE. Let T : K → K be a nonexpansive mapping
with F (T ) 6= ∅. Let λn and αn be two sequences in (0, 1). Let {xn} be a sequence generated
iteratively from arbitrary x0 ∈ K by:

(3.19) xn+1 = αn(λnxn) + (1− αn)Txn n ≥ 0.

Suppose the following conditions hold :

(a) lim
n→∞

αn = 0; (b) lim
n→∞

λn = 1;

(c)

∞∑
n=0

|αn − αn−1| <∞ ,
∞∑
n=0

|λn − λn−1| <∞ and
∞∑
n=0

(1− λn)αn =∞.

Then the sequence {xn} converges strongly to a fixed point of T.
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Proof. First, we prove that the sequence {xn} is bounded. Let u ∈ F (T ). From (3.19), we
have

‖xn+1 − u‖ = ‖αn(λnxn) + (1− αn)Txn − u‖
≤ αnλn‖xn − u‖+ (1− λn)αn‖u‖+ (1− αn)‖Txn − u‖
= [1− (1− λn)αn]‖xn − u‖+ (1− λn)αn‖u‖ ≤ max{‖xn − u‖, ‖u‖}.

Hence, {xn} is bounded and so is {Txn}.
From (3.19), it follows that

‖xn+1 − xn‖ = ‖αn(λnxn) + (1− αn)Txn − αn−1(λn−1xn−1) + (1− αn−1)Txn−1‖
= ‖αnλn(xn − xn−1) + αn(λn − λn−1)xn−1 + (αn − αn−1)(λn−1xn−1)

+ (1− αn)(Txn − Txn−1) + (αn−1 − αn)Txn−1‖
≤ αnλn‖xn − xn−1‖+ (1− αn)‖Txn − Txn−1‖+ |αn − αn−1|(λn−1‖xn−1‖

+ ‖Txn−1‖) + αn|λn − λn−1|‖xn−1‖
≤ [1− (1− λn)αn]‖xn − xn−1‖+ (|αn − αn−1|+ αn|λn − λn−1|)M1;

Hence,

(3.20) ‖xn+1 − xn‖ ≤ [1− (1− λn)]‖xn − xn−1‖+ (|αn − αn−1|+ αn|λn − λn−1|)M1,

whereM1 > 0 is such that supn{‖xn−1‖+‖Txn−1‖} ≤M1.Hence, from (3.24) and Lemma
2.2, we deduce

lim
n→+∞

‖xn+1 − xn‖ = 0.

At the same time, we note that

‖xn+1 − Txn‖ = αn‖(λnxn)− Txn‖ → 0.

Therefore, we have

(3.21) lim
n→+∞

‖xn − Txn‖ = 0.

Next, we prove that lim sup
n→+∞

〈x∗, J(x∗ − xn)〉 ≤ 0, where x∗ = lim
t→0

xt and {xt} is the net

defined by (3.9). From (1.1), (3.9), the fact that T is nonexpansive and the {xt} and {xn}
are bounded, we have the following estimates

‖xt − xn‖2 = 〈xt − xn, J(xt − xn)〉 = t〈xt − xn, J(xt − xn)〉 − (1− λ)t〈xt, J(xt − xn)〉
+ (1− t)〈Txt − Txn, J(xt − xn)〉+ (1− t)〈Txn − xn, J(xt − xn)〉
≤ ‖xt − xn‖2 − (1− λ)t〈xt, xt − xn〉+ (1− t)〈Txn − xn, xt − xn〉
≤ ‖xt − xn‖2 − (1− λ)t〈xt, J(xt − xn)〉+M2‖Txn − xn‖,

where M2 > 0 such that sup{‖xt − xn‖, t ∈ (0, 1), n ≥ 0} ≤M2. Therefore, we have

(3.22) 〈xt, J(xt − xn)〉 ≤
M2

(1− λ)t
‖Txn − xn‖.

From (3.22) and (3.26), we obtain

(3.23) lim sup
n→+∞

〈xt, J(xt − xn)〉 ≤ 0.

Letting t → 0, noting the fact that xt → x∗ in norm and the fact that the duality map J is
norm-to-norm uniformly continuous on bounded subsets of E, we get

lim sup
n→+∞

〈x∗, J(x∗ − xn)〉 ≤ 0.
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Finally, we show that xn → x∗. From (3.19), we have

‖xn+1 − x∗‖2 = 〈xn+1 − x∗, J(xn+1 − x∗)〉 = αnλn〈xn − x∗, J(xn+1 − x∗)〉
+ (1− λn)αn〈x∗, J(x∗ − xn+1)〉+ (1− αn)〈Txn − x∗, J(xn+1 − x∗)〉
≤ [1− (1− λn)αn]‖xn − x∗‖‖xn+1 − x∗‖+ (1− λn)αn〈x∗, J(x∗ − xn+1)〉

≤ 1− (1− λn)αn
2

(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + (1− λn)αn〈x∗, J(x∗ − xn+1)〉,

which implies that

‖xn+1 − x∗‖2 ≤ [1− (1− λn)αn]‖xn − x∗‖+ 2(1− λn)αn〈x∗, J(x∗ − xn+1)〉.
We can check that all the assumptions of Lemma 2.2 are satisfied. Therefore, we deduce
xn → x∗. This complete the proof. �

Corollary 3.1. Assume that E = lp, 1 < p <∞. Let K be a nonempty, closed and convex cone
ofEand T : K → K be a nonexpansive mapping with F (T ) 6= ∅. Let λn and αn be two sequences
in (0, 1). Let {xn} be a sequence generated iteratively from arbitrary x0 ∈ K by:

(3.24) xn+1 = αn(λnxn) + (1− αn)Txn n ≥ 0.

Suppose the following conditions hold :

(a) lim
n→∞

αn = 0; (b) lim
n→∞

λn = 1;

(c)

∞∑
n=0

|αn − αn−1| <∞ ,
∞∑
n=0

|λn − λn−1| <∞ and
∞∑
n=0

(1− λn)αn =∞.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Since lp spaces, 1 < p <∞ have weakly continuous duality map (see, e.g., [8] ), the
proof follows from Theorem 3.4. �

Corollary 3.2. Let H be a real Hilbert space and K a nonempty, closed and convex cone of E.
Let T : K → K be a nonexpansive mapping with F (T ) 6= ∅. Let λn and αn be two sequences in
(0, 1). Let {xn} be a sequence generated iteratively from arbitrary x0 ∈ K by:

(3.25) xn+1 = αn(λnxn) + (1− αn)Txn n ≥ 0.

Suppose the following conditions hold :

(a) lim
n→∞

αn = 0; (b) lim
n→∞

λn = 1;

(c)

∞∑
n=0

|αn − αn−1| <∞ ,
∞∑
n=0

|λn − λn−1| <∞ and
∞∑
n=0

(1− λn)αn =∞.

Then the sequence {xn} converges strongly to a fixed point of T.

Remark 3.1. The Mann algorithm (see, [25]) for nonexpansive mappings, without any
compactness assumptions on the setK or on the mapping T , gives only weak convergence
of the associated sequence. Here, we prove strong convergence thereom without any
compactness assumptions on the set K or on the map T . Therefore, our results improve
many recent results using Mann’s method to approximate fixed points of nonexpansive
mappings.

We know give example of space E, set K and mapping T satisfying the assumptions of
Theorem 3.4 and Corollary 3.1.

Let E = lp and K be the subset of E defined by:

K = {x = (xn) ∈ E : xn ≥ 0, ∀n ≥ 1}.
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Finally, let T : K → K be the mapping defined by:

Tx = (x2, x3, · · · , xn, · · · ), x = (xn)n≥1 ∈ K.
It is well known (see, e.g., [8]) that lp, 1 < p <∞ has weakly continuous duality map. The
set K is a nonempty, closed, convex cone in lp and the map T is nonexpansive. Therefore,
the spaces E, the set K and te map T satisfies all the assumptions of Theorem 3.4.

Remark 3.2. In our theorems, we assume thatK is a cone. But, in some cases, for example,
if K is the closed unit ball, we can weaken this assumption to the following: λx ∈ K
for all λ ∈ (0, 1) and x ∈ K. Therefore, in the case where E is a real Hilbert space or
E = lp, 1 < p <∞, our results can be used to approximated fixed ponts of nonexpansive
mappings from the closed unit ball to itself.

In fact, we have the following.

Corollary 3.3. Assume that E = lp, 1 < p <∞ or E is a real Hilbert space. Let B be the closed
unit ball of E and T : B → B be a nonexpansive mapping with F (T ) 6= ∅. Let λn and αn be two
sequences in (0, 1). Let {xn} be a sequence generated iteratively from arbitrary x0 ∈ B by:

(3.26) xn+1 = αn(λnxn) + (1− αn)Txn n ≥ 0.

Suppose the following conditions hold :

(a) lim
n→∞

αn = 0; (b) lim
n→∞

λn = 1;

(c)

∞∑
n=0

|αn − αn−1| <∞ ,
∞∑
n=0

|λn − λn−1| <∞ and
∞∑
n=0

(1− λn)αn =∞.

Then the sequence {xn} converges strongly to a fixed point of T .

Remark 3.3. Note that Corollary 3.3 is not valid if the Mann iteration is used instead of
(3.26) (see, e.g., Chidume [5] or Genel and Lindenstrass [10]).

Remark 3.4. For numerous applications to approximate fixed points of nonexpansive
mappings, see the celebrated monograph of Berinde [1]. As remarked by Charles Byrne
[4], most of the maps that arise in image reconstruction and signal processing are nonex-
pansive in nature.

Remark 3.5. Real sequences that satisfy conditions (i), (ii) and (iii) are given by: αn =
1√
n

and λn = 1− 1√
n
.

Acknowledgements. The first author is supported by The Center of Exellence CEA-
MITIC, Gaston Berger University, Senegal.

The authors thank the referees for their work and their valuable suggestions that helped
to improve the presentation of this paper.

REFERENCES

[1] Berinde, V., Iterative approximation of fixed points, Lecture Notes in Mathematics, 1912 (2007), ISBN-10 3-540-
72233-5, Springer, Berlin, Heildelberg, New York

[2] Browder, F. E., Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math. Z., 100 (1967)
201–225

[3] Browder, F. E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces,
Arch. Rational Mech. Anal., 24 (1967), 82–90

[4] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image restoration, Inverse
Problems, 20 (2004), 103–120

[5] Chidume, Ch., Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag, Series: Lecture
Notes in Mathematics, Vol. 1965 (2009), ISBN 978-1-84882-189-7



250 T. M. M. Sow, N. Djitte and C. E. Chidume

[6] Chidume, C. E., On the approximation of fixed points of nonexpansive mappings, Houston J. Math., 7 (1981),
345–355

[7] Cho, Y. J., Kang, S. M. and Zhou, H. Y., Some control conditions on iteratives methods, Comm. Appl. Nonlinear
Anal., 12 (2005), No. 2, 27–34
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