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Rings in which nilpotents form a subring

JANEZ ŠTER

ABSTRACT. Let R be a ring with the set of nilpotents Nil(R). We prove that the following are equivalent: (i)
Nil(R) is additively closed, (ii) Nil(R) is multiplicatively closed and R satisfies Köthe’s conjecture, (iii) Nil(R)
is closed under the operation x ◦ y = x+ y− xy, (iv) Nil(R) is a subring of R. Some applications and examples
of rings with this property are given, with an emphasis on certain classes of exchange and clean rings.

1. INTRODUCTION

Rings in which nilpotents form a subring (we will call these rings NR rings hereafter)
are closely related to Armendariz rings and their variations. A ring R is called Armendariz
if, given any two polynomials f(x) = a0+a1x+. . .+amx

m and g(x) = b0+b1x+. . .+bnx
n

over R, f(x)g(x) = 0 implies aibj = 0 for all i and j. Antoine [1] studied the structure
of the set of nilpotents in Armendariz rings and proved that in these rings nilpotents
always form a subring. He also proved in [1] that the same is true under a slightly weaker
condition that the ring is nil-Armendariz. Some other results relating the Armendariz and
NR conditions can be also found in [5], and recently [4].

In this paper we prove some results which concern the question of when the set of
nilpotents in a ring is a subring in general, not in connection with any of the above men-
tioned Armendariz conditions. Roughly speaking, our main theorem shows that the set of
nilpotents Nil(R) of a ring R is a subring whenever R satisfies Köthe’s conjecture (which
is a weak assumption) and Nil(R) is closed under any of the most commonly used opera-
tions in rings, such as addition, multiplication, the “circle” operation x◦y = x+y−xy, the
commutator operation (x, y) 7→ xy−yx, or even some more (see Theorem 2.1 and Remark
2.2). Therefore, very little needs to be assumed for the set of nilpotents to be a subring.

Let us provide here some notations and conventions used throughout the paper. All
rings in the paper are associative and not necessarily unital, unless otherwise stated. For
a ring R and for any two elements x, y ∈ R, we denote x ◦ y = x+ y − xy. Then (R, ◦) is a
monoid. We denote by Q(R) its group of units, i.e.

Q(R) = {q ∈ R| there exists r ∈ R such that q ◦ r = r ◦ q = 0}.
If R is unital, then the group of units of R, denoted U(R), is precisely U(R) = 1−Q(R).

We denote by J(R), Nil∗(R), and Nil(R) the Jacobson radical, the upper nilradical, and
the set of nilpotents of a ring R, respectively. Note that Nil∗(R) ⊆ J(R) ⊆ Q(R) and
Nil∗(R) ⊆ Nil(R) ⊆ Q(R). The ring R is said to be of bounded index if there exists a
positive integer n such that xn = 0 for all x ∈ Nil(R), and R is of bounded index n if n is
the least integer with this property. We call R a NI ring if Nil(R) is an ideal in R, and a NR
ring if Nil(R) is a subring of R [5].

Our main result will be applied to certain classes of exchange rings. For a ring R, we
denote by Id(R) its set of idempotents. We say that R is an exchange ring if for every a ∈ R
there exists e ∈ Id(R) such that e = ra = s ◦ a for some r, s ∈ R [2]. If R has a unit, this
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is equivalent to saying that for every a ∈ R there exists e ∈ Id(R) such that e ∈ Ra and
1− e ∈ R(1− a) (see [2]).

Throughout the text, Z will denote the set of integers and N the set of positive integers.
R[x] and Mn(R) stand for the polynomial ring and the ring of n × n matrices over R,
respectively.

2. THE MAIN RESULT

In this section we prove our main theorem. For every nilpotent x ∈ Nil(R), we define
the index of x as the smallest positive integer n such that xn = 0.

Lemma 2.1. In any ringR, if x, y ∈ Nil(R) are of index 2 and x+y ∈ Nil(R), then xy ∈ Nil(R).

Proof. Let x, y be elements with the given properties. Since x + y ∈ Nil(R), xy + yx =
(x+y)2 ∈ Nil(R). We have (xy+yx)k = (xy)k+(yx)k for every k, hence (xy)k+(yx)k = 0
for some k, which gives (xy)k+1 = 0. �

Lemma 2.2. In any ringR, if x, y ∈ Nil(R) are of index 2 and x◦y ∈ Nil(R), then xy ∈ Nil(R).

Proof. Let x, y be elements with the given properties. First note that we can embed R into
a unital ring, so that we may assume that R is already unital.

Let z = x ◦ y ∈ Nil(R) and u = 1 − z ∈ U(R). A direct verification shows that
z2 = (xy + yx)u. Since z and u commute and z is a nilpotent, it follows that xy + yx is a
nilpotent. Since (xy + yx)k = (xy)k + (yx)k for every k, it follows that (xy)k + (yx)k = 0
for some k, which gives (xy)k+1 = 0. �

We say that a ring R satisfies Köthe’s conjecture if every nil left ideal of R is contained in
a nil two-sided ideal. Many other equivalent formulations exist; one of them, for example,
is that the sum of two nil left ideals in R is a nil left ideal (see, for example, [12, p. 164]).
Whether or not every ring satisfies Köthe’s conjecture is a long-standing open question.
An important fact that will be needed in our computations is that the rings we are dealing
with all satisfy Köthe’s conjecture.

Lemma 2.3. Let R be a ring such that the set of nilpotents Nil(R) is closed under + or ◦. Then
R satisfies Köthe’s conjecture.

Proof. It suffices to prove that the sum of two nil left ideals in R is a nil left ideal. If Nil(R)
is closed under +, this is trivial, so let us assume that Nil(R) is closed under ◦. Let I and
J be nil left ideals of R, and take x ∈ I and y ∈ J . We wish to prove that x+y is nilpotent.
Choose n ∈ N such that yn = 0, and define z = x+yx+y2x+ . . .+yn−1x. Then z−yz = x,
and hence x+ y = y ◦ z. Since I is a nil left ideal, z ∈ I is nilpotent. Hence the conclusion
follows from the fact that Nil(R) is closed under ◦. �

Recall that the upper radical of a ringR, Nil∗(R), is the sum of all nil (two-sided) ideals.
If R satisfies Köthe’s conjecture then every nil left (or right) ideal in R is contained in
Nil∗(R). In particular, if Nil∗(R) = 0 and R satisfies Köthe’s conjecture, then R contains
no nonzero nil left ideals.

Lemma 2.4. Let R be a ring such that Nil∗(R) = 0 and R satisfies Köthe’s conjecture, and
suppose that xy ∈ Nil(R) for all x, y ∈ Nil(R) with x2 = y2 = 0. Then R satisfies the following
condition:

(2.1) axb = 0 whenever x ∈ Nil(R) and a, b ∈ R with ab = 0.
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Proof. Take x ∈ Nil(R), with xn = 0, and a, b ∈ R with ab = 0. We will prove the needed
equality axb = 0 by induction on n.

If n = 1 there is nothing to prove. Thus suppose that n ≥ 2, and take any t ∈ R. From
ab = 0 we have (bta)2 = 0. Moreover, since (x2)n−1 = 0, by the inductive hypothesis
we have ax2b = 0, so that (xbtax)2 = 0. Therefore, the assumption of the lemma yields
bta · xbtax ∈ Nil(R) and hence btax ∈ Nil(R), i.e. taxb ∈ Nil(R). As t was arbitrary, this
means that axb generates a nil left ideal in R. (Note that in any ring R, if x ∈ R satisfies
Rx ⊆ Nil(R), then the left ideal generated by x, which is Zx + Rx, is also nil.) Since R
contains no nonzero nil left ideals, it follows that axb = 0, as desired. �

Rings satisfying the condition (2.1) above were studied in [10] and called there NZI
rings, and also in [8] as INFP rings. In [8, Proposition 2.1] it is proven that if R is any ring
satisfying (2.1) then Nil(R) is a subring of R. With this result and our lemmas at hand, we
are ready to give the main theorem:

Theorem 2.1. Let R be a ring with the set of nilpotents Nil(R). The following are equivalent:
(i) Nil(R) is additively closed.

(ii) Nil(R) is multiplicatively closed and R satisfies Köthe’s conjecture.
(iii) Nil(R) is closed under ◦.
(iv) Nil(R) is a subring of R.

Proof. (iv)⇒ (i), (ii), (iii) is trivial.
(i)⇒ (iv): LetR satisfy (i). Denote the factor ringR′ = R/Nil∗(R). ThenR′ also satisfies

(i) (indeed, Nil(R′) is nothing but the set of all x + Nil∗(R) with x ∈ Nil(R)). By Lemmas
2.1 and 2.3, R′ satisfies the hypotheses of Lemma 2.4, so that Nil(R′) is a subring of R′ by
[8, Proposition 2.1]. It follows that Nil(R) is a subring of R as well.

(ii)⇒ (iv): Suppose that R satisfies (ii). Similarly as above, we see that R′ = R/Nil∗(R)
also satisfies (ii) (note that R′ satisfies Köthe’s conjecture since R does). Hence R′ satisfies
the hypotheses of Lemma 2.4, so that [8, Proposition 2.1] again gives that Nil(R′) is a
subring of R′ and hence Nil(R) is a subring of R.

(iii)⇒ (iv): Similarly as before, denote again R′ = R/Nil∗(R), and observe that R′ also
satisfies (iii). Hence Lemmas 2.2 and 2.3 give that R′ satisfies the hypotheses of Lemma
2.4 and the conclusion follows as above. �

It is a natural question if the assumption ‘R satisfies Köthe’s conjecture’ in (ii) of the
above theorem is actually superfluous. Although the assumption that Nil(R) is multi-
plicatively closed seems to be quite restrictive, we have not been able to prove that in that
case, R actually satisfies Köthe’s conjecture. Providing a counterexample to this prob-
lem might even be more difficult since such an example would certainly settle Köthe’s
conjecture in the negative.

Question 1. Let R be a ring such that Nil(R) is multiplicatively closed. Does R satisfy
Köthe’s conjecture?

Remark 2.1. To answer Question 1, one may assume that R is a radical ring (i.e. R =
J(R)). Indeed, if R is a ring with Nil(R) multiplicatively closed, and I, J are two nil left
ideals in R such that I + J is not nil, then I and J are nil left ideals in J(R), which is a
radical ring with Nil(J(R)) multiplicatively closed.

Remark 2.2. In Theorem 2.1, we could add some more equivalent statements. For ex-
ample, one such statement, equivalent to (i)–(iv) of Theorem 2.1, would be that Nil(R) is
closed under the operation x ∗ y = x+ y + xy. (In fact, this can be easily seen to be equiv-
alent to (iii) of Theorem 2.1.) Moreover, another statement would be that Nil(R) is closed
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under the operation (x, y) 7→ xy + yx, or under the operation (x, y) 7→ [x, y] = xy − yx,
and R satisfies Köthe’s conjecture. (In order to prove this, note that if x, y ∈ Nil(R) are
of index 2 and xy + yx ∈ Nil(R) (or xy − yx ∈ Nil(R)), then xy ∈ Nil(R). For the rest of
the proof, use Lemma 2.4.) Similarly as above, we do not know if the ‘Köthe conjecture’
assumption in these cases is superfluous or not.

The most interesting part of Theorem 2.1 for us will be the equivalence (iii)⇔ (iv). In
the following we provide a few corollaries of that equivalence. Following [5], we call a
ring a NR ring if its set of nilpotents forms a subring.

Note that in any ring R, Nil(R) is a subset of the group (Q(R), ◦) which is closed with
respect to taking inverses. Therefore, Nil(R) is a subgroup of Q(R) if and only if it is
closed under ◦.
Corollary 2.1. Let R be a ring. Then R is NR if and only if Nil(R) is a subgroup of Q(R). �

In particular, when Nil(R) is the whole group Q(R), we have:

Corollary 2.2. Let R be a ring such that Nil(R) = Q(R). Then R is NR. �

If R is a unital ring, then saying that Nil(R) is closed under ◦ is the same as saying that
the set 1 + Nil(R) = {1 + x| x ∈ Nil(R)} is closed under multiplication (and thus forms a
multiplicative subgroup of U(R)). Thus, for unital rings, an equivalent form of (iii)⇔ (iv)
of Theorem 2.1 might be:

Corollary 2.3. Let R be a unital ring. Then R is NR if and only if 1 + Nil(R) is a multiplicative
subgroup of U(R). �

A unital ring R is called a UU ring if all units are unipotent, i.e. U(R) = 1 + Nil(R).
These rings were studied in [3] and [6].

Corollary 2.4. Every UU unital ring is NR. �

In [4], Chen called R a NDG ring if Nil(R) is additively closed, and proved that the
polynomial ring R[x] is NDG if and only if Nil(R)[x] = Nil(R[x]). (While this result is
stated only for unital rings in [4], the proof also works for general rings.) By Theorem 2.1,
NDG rings are just NR rings. Thus, we obtain the following interesting criterion when the
polynomial ring is NR:

Corollary 2.5. Let R be a ring. Then R[x] is NR if and only if Nil(R)[x] = Nil(R[x]). �

In particular, if R is a nil ring, then the above proposition says that R[x] is NR if and
only if it is nil. It is known that the polynomial ring over a nil ring need not be nil [14].
Thus, we recover the observation noted in [5, Example 2.6] that the polynomial ring over
a NR ring need not be NR.

Another consequence of our result is the following corollary which relates INFP rings
studied in [8] and NR rings. Recall that a ring R is INFP if it satisfies the condition (2.1).
By Lemma 2.4, R/Nil∗(R) is INFP for every NR ring R. Conversely, if R′ = R/Nil∗(R) is
INFP then it is NR by [8, Proposition 2.1], so that R is also NR. Thus we have:

Corollary 2.6. A ring R is NR if and only if R/Nil∗(R) is INFP. �

We close this section with a few limiting examples which show that the statements of
the lemmas applied in our main theorem cannot be much generalized.

In view of Lemmas 2.1 and 2.2, one might wonder if some kind of Theorem 2.1 would
also hold elementwise. For example, one might ask, if x, y are nilpotents and x+ y (or xy
or x ◦ y) is a nilpotent, is then any other among x+ y, xy, x ◦ y nilpotent? While Lemmas
2.1 and 2.2 say that this is actually the case if the indices of the nilpotents are sufficiently
low, it is not true in general.
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Example 2.1. Let F be a field and R =M3(F ). Define the following elements in R:

x =

 0 1 0
0 0 1
0 0 0

 , y =

 0 0 0
1 0 0
0 −1 0

 , z =

 0 0 0
0 0 0
1 0 0

 , w =

 1 1 0
−1 −1 0
0 1 0

 .
Then x, y, x+ y ∈ Nil(R) but xy, x ◦ y /∈ Nil(R), x, z, xz ∈ Nil(R) but x+ z, x ◦ z /∈ Nil(R),
and x,w, x ◦ w ∈ Nil(R) but x+ w, xw /∈ Nil(R).

Lemma 2.4 raises the question if every ringR in which Nil(R) is a subring satisfies that,
whenever x, y ∈ R are nilpotents and x is of index 2, xy is also of index at most 2. Note
that by Lemma 2.4, this is the case if Nil∗(R) = 0. The following example shows that in
general it is not true.

Example 2.2. Let n ≥ 3 and let T be the ring of strictly upper triangular 2n× 2n matrices
over a field F . Set R = M2(T ). Clearly, R is a nil ring, i.e. Nil(R) = R. (In fact, R is even
nilpotent of index 2n.) Let A ∈ T be the matrix with ones above the main diagonal and
zeros elsewhere. Then A is of index 2n. Letting x = [ 0 A0 0 ] ∈ R and y = [ 0 0

A 0 ] ∈ R, we see
that x and y are of index 2, but xy =

[
A2 0
0 0

]
is of index n.

3. EXCHANGE NR RINGS

In this section we study the NR condition for the class of exchange rings. We begin
with a proposition which relates the Abelian and NR conditions, and holds for any ring,
regardless of the exchange property. Recall that a ring R is Abelian if idempotents in R are
central.

Proposition 3.1. Let R be a NR ring. Then R/Nil∗(R) is Abelian.

In the unital case this proposition follows from Corollary 2.6 and [8, Proposition 1.5]
where it is shown that INFP unital rings are Abelian. However, to cover also the nonunital
case, we include the short proof here.

Proof. Let R′ = R/Nil∗(R) and e ∈ Id(R′), and take any x, y ∈ R′. Since R′ is a NR
ring and (x − ex)e, e(y − ye) ∈ Nil(R′), we have e(y − ye)(x − ex)e ∈ Nil(R′), hence
y(xe − exe) = (y − ye)(x − ex)e ∈ Nil(R′). Since this holds for every y ∈ R′, it follows
that xe− exe generates a nil left ideal in R′. Since R′ contains no nonzero nil left ideals, it
follows that xe− exe = 0. Similarly we prove ex− exe = 0, and hence ex = xe. �

Remark 3.3. In the above proposition, the ring R in general is not Abelian. For example,
the ring of upper triangular matrices over a field is NI and not Abelian.

As noted in [5], NR rings in general are not NI. For example, if R = F 〈x, y〉/(x2) (i.e.,
R is the ring of formal polynomials in noncommuting variables x and y over a field F ,
modulo the ideal generated by x2), then Nil(R) = Fx + xRx. So Nil(R) is a subring of R
with the trivial multiplication, but yx /∈ Nil(R), and hence Nil(R) is not an ideal (see [5]).

Observe that, in this example, J(R) = 0, hence Nil(R) is not even contained in J(R).
However, if R is a NR exchange ring then always Nil(R) ⊆ J(R). This follows from
[4, Corollary 2.17] (note that NR rings are linearly weak Armendariz, see [4] for details).
Alternatively, the proof could be obtained by using Proposition 3.1.

It would be interesting to know if NR exchange rings are actually NI.

Question 2. Let R be an exchange ring. If R is NR, is then R NI?

Remark 3.4. To answer Question 2, we may assume that R is a radical ring (note that
radical rings are exchange [2]). Indeed, if R is a NR exchange ring, then we know that
Nil(R) ⊆ J(R), so that J(R) is a NR radical ring. Assume that Nil(R) is an ideal in J(R).
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Then, for any a ∈ R and x ∈ Nil(R), axa ∈ J(R), hence (ax)2 = (axa)x ∈ Nil(R) and
therefore ax ∈ Nil(R), which proves that Nil(R) is also an ideal in R, as desired.

In the following we provide a partial answer to Question 2 for the case when R is of
bounded index.

Lemma 3.5. Let R be a NR ring of bounded index n with Nil∗(R) = 0. If x1, . . . , xn ∈ Nil(R)
are of index 2, then x1 . . . xn = 0.

Proof. By assumption we have (x1 + . . .+ xn)
n = 0, i.e.

(3.2)
∑
σ∈Xn

xσ(1) . . . xσ(n) = 0,

where Xn denotes the set of all functions σ : {1, . . . , n} → {1, . . . , n}. By Lemma 2.4 we
have xiyxi = 0 for each i and y ∈ Nil(R), thus xσ(1) . . . xσ(n) = 0 whenever σ(i) = σ(j) for
some i 6= j. Hence (3.2) becomes ∑

σ∈Sn

xσ(1) . . . xσ(n) = 0,

where Sn ⊆ Xn denotes the permutation group of {1, . . . , n}.
Let t ∈ R. For every σ ∈ Sn \ {id} there exists i = i(σ) such that σ(i) > σ(i+1). Denote

y = y(σ) = xσ(i)xσ(i)+1 . . . xntxσ(1)xσ(2) . . . xσ(i).

Since x2σ(i) = 0, y ∈ Nil(R), and hence z = z(σ) = xσ(i+1)+1 . . . xσ(i)−1y ∈ Nil(R). By
Lemma 2.4, xσ(i+1)zxσ(i+1) = 0, hence

x1 . . . xntxσ(1) . . . xσ(n) = x1 . . . xσ(i+1)zxσ(i+1)xσ(i+2) . . . xσ(n) = 0.

Hence

x1 . . . xntx1 . . . xn =
∑
σ∈Sn

x1 . . . xntxσ(1) . . . xσ(n) = x1 . . . xnt
∑
σ∈Sn

xσ(1) . . . xσ(n) = 0.

This shows that x1 . . . xn generates a nil left ideal in R and consequently x1 . . . xn = 0. �

Lemma 3.6. LetR be an exchange NR ring of bounded index with Nil∗(R)=0. Then Nil(R) = 0.

Proof. First note that we may assume thatR is radical. In fact, ifR satisfies the hypotheses
of the lemma, then J(R) is clearly a radical NR ring (with Nil(J(R)) = Nil(R)) of bounded
index. To see that Nil∗(J(R)) = 0, take a nil left ideal I in J(R). Then the left ideal in R
generated by I , which is I + RI , is also nil. Indeed, since R is NR, it suffices to see that
ax ∈ Nil(R) for every a ∈ R and x ∈ I . Now, axa ∈ J(R), hence (ax)2 = (axa)x ∈ Nil(R),
which gives ax ∈ Nil(R), as desired. Hence J(R) indeed satisfies the hypotheses of the
lemma, and therefore we may assume that R is a radical ring.

Let x ∈ R such that x2 = 0. We need to prove that x = 0. It suffices to prove that
qx ∈ Nil(R) for every q ∈ R. Embed R into a unital ring S, then u = 1 − q ∈ U(S), with
u−1 = 1− r, where r ∈ R is taken such that q ◦ r = r ◦ q = 0. Let n denote the index of R,
and, for each i = 1, . . . , n, define xi = ui−1xu1−i. Clearly, each xi is a nilpotent of index
2. Moreover, xi ∈ R since it can be expressed in terms of x, q, r. Hence by Lemma 3.5,
x1 . . . xn = 0. But we have

x1 . . . xn = xuxu−1u2xu−2 . . . un−1xu1−n = (xu)nu−n.

Thus (xu)n = 0 and hence xu ∈ Nil(R), which gives x − qx = ux ∈ Nil(R). Thus qx ∈
Nil(R), as desired. �

Now the following is easy:
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Theorem 3.2. Let R be an exchange NR ring of bounded index. Then R is NI.

Proof. Let R′ = R/Nil∗(R). Then R′ is an exchange NR ring of bounded index with
Nil∗(R′) = 0, so that Nil(R′) = 0 by Lemma 3.6. It follows that Nil(R) = Nil∗(R), as
desired. �

Remark 3.5. The assumption that R is exchange is crucial in Theorem 3.2. For example,
the ring R = F 〈x, y〉/(x2) is NR of bounded index 2 (in fact, Nil(R) has trivial multiplica-
tion), but it is not NI.

We conclude the paper by providing an interesting application of Theorem 2.1 to the
class of Diesl’s strongly nil clean rings. These rings were defined by Diesl in [7], as rings
in which every element can be written as the sum of an idempotent and a nilpotent that
commute. Along with these, Diesl also defined the wider class of nil clean rings, which
have the same definition without commutativity. It turns out that very little can be said
about nil clean rings, according to many fundamental open questions stated in [7]. On the
other hand, much more can be said about strongly nil clean rings. In fact, while probably
not known to the author of [7] at that time, these rings had been completely characterized
much earlier, back in 1988, by Hirano et al. [9]. Hirano et al. proved that strongly nil clean
rings (of course, they were not called this way in [9]) are precisely those rings R in which
the set of nilpotents Nil(R) forms an ideal and R/Nil(R) is a Boolean ring. Accordingly,
these rings are just those which are Boolean modulo the upper nilradical.

In [9], the authors used Jacobson’s structure theory for primitive rings to obtain their
results. Recently, several new proofs of the above equivalence appeared, using different
techniques (see [13, 11, 6]). In the following we provide another proof of that equivalence,
which, we believe, is noteworthy because it is very short, self-contained, and it applies
also to nonunital rings.

Proposition 3.2. Given a ring R, the following are equivalent:
(i) R is strongly nil clean.

(ii) For every a ∈ R, a− a2 ∈ Nil(R).
(iii) R/Nil∗(R) is Boolean.

Proof. (iii)⇒ (ii) is trivial.
(i)⇔ (ii): First, let a ∈ R be strongly nil clean, i.e. a = e+q and eq = qe, where e ∈ Id(R)

and q ∈ Nil(R). Then a − a2 = e + q − e2 − 2eq − q2 = q − 2eq − q2, which is clearly a
nilpotent since e and q commute. Conversely, if a ∈ R is such that (a − a2)n = 0, then,
embedding R into a unital ring S and setting e = (1 − (1 − a)n)n, one easily checks that
e is a multiple of an and 1 − e is a multiple of (1 − a)n, so that e(1 − e) and (a − e)n =
an − ane + (ae − e)n = an(1 − e) + (a − 1)ne are both multiples of an(1 − a)n = 0 and
thus e − e2 = e(1 − e) = 0 and (a − e)n = 0. Note that also e ∈ R and ae = ea. Hence
a = e+ (a− e) is a strongly nil clean decomposition of a in R.

(i) and (ii) ⇒ (iii): This is the main part of the proof. First, observe that every ring R
satisfying (ii) has Nil(R) = Q(R). Indeed, given any q ∈ Q(R), then, taking r ∈ R with
q ◦ r = r ◦ q = 0, we easily see that q = (q − q2) − (q − q2)r, so that q must be a nilpotent
since q and r commute and q − q2 ∈ Nil(R). Now, by Corollary 2.2 R is a NR ring, so that
R′ = R/Nil∗(R) is NR and Abelian by Proposition 3.1. Accordingly, since every element
inR′ can be expressed as the sum of an idempotent and a nilpotent, Nil(R′) forms an ideal
in R′, so that Nil(R′) = 0. Hence Nil(R) = Nil∗(R), which immediately yields (iii). �

Remark 3.6. From the above proof we see that the equivalence (i) ⇔ (ii) holds also on
the elementwise level, that is, an element a in a ring is strongly nil clean (i.e., the sum of
an idempotent and a nilpotent) if and only if a − a2 is a nilpotent. This shows that the
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condition “a is strongly clean” in [11, Theorem 2.1] is actually superfluous, and provides
an easy self-evident argument for [11, Theorem 2.9].
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