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On nonconvex retracts in normed linear spaces

GUOWEI ZHANG and PENGCHENG LI

ABSTRACT. Let E be a real normed linear space. A subset X ⊂ E is called a retract of E if there exists a
continuous mapping r : E → X , a retraction, satisfying r(x) = x, x ∈ X . It is well known that every nonempty
closed convex subset of E is a retract of E. Nonconvex retracts are studied in this paper.

1. INTRODUCTION

Let E be a real normed linear space with the zero element denoted by θ. A nonempty
convex closed set P ⊂ E is called a cone if it satisfies the following two conditions: (i)
λx ∈ P for x ∈ P and λ ≥ 0; (ii) ±x ∈ P implies x = θ. For the properties of cones we
refer to [4, 5]. A functional γ : P → R is convex if γ(tx + (1 − t)y) ≤ tγ(x) + (1 − t)γ(y)
for any x, y ∈ P and t ∈ [0, 1]; γ is concave if −γ is convex. The function γ is bounded if
the image of any bounded set in P under γ is bounded as well. The open ball centered at
θ with radius R > 0 is denoted by BR = {x ∈ E | ‖x‖ < R}. Throughout this paper, the
notations

D1 = {x ∈ P | α(x) ≤ R1}, D2 = {x ∈ P | β(x) ≤ R2}
and

D′
1 = {x ∈ P | α(x) ≥ R1}, D′

2 = {x ∈ P | β(x) ≥ R2}
are always used for the functionals α, β : P → [0,+∞) and the constants R1, R2 > 0.

A subset X ⊂ E is called a retract of E if there exists a continuous mapping r : E → X ,
a retraction, satisfying r(x) = x, x ∈ X . It is well known that every nonempty closed
convex subset of E is a retract of E [1, 3]. By a theorem due to Dugundji [1], D = {x ∈
E | ‖x‖ ≥ R}(R > 0) is a nonconvex retract in infinite dimensional spaces. The concept
of retract plays a very important role in fixed point theory, see [4]–[8]. In [7] there are the
following results for nonconvex retracts.

Theorem 1.1. Let P be a cone in E, α : P → [0,+∞) be a continuous convex functional and
β : P → [0,+∞) be a bounded continuous concave functional with α(θ) = β(θ) = 0 and
α(x) > 0, β(x) > 0 for x 6= θ, both {x ∈ P | α(x) ≤ R} and {x ∈ P | β(x) ≤ R} be bounded for
all R > 0. If

(1.1) β(µx) > β(x) for µ > 1, x ∈ P\{θ},
then D1 ∩D2 is a retract of E.

Theorem 1.2. Let P be a cone in E, α : P → [0,+∞) be a continuous functional and β : P →
[0,+∞) be a continuous concave functional with α(θ) = β(θ) = 0 and α(x) > 0, β(x) > 0 for
x 6= θ. If (1.1) holds and

α(λx) ≤ λα(x) for λ ∈ [0, 1], x ∈ P,
then D′

1 ∩D′
2 is a retract of E.
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In this paper we prove that D′
1 ∩D2 is a retract(see the figure above) under some con-

ditions, where α, β : P → [0,+∞) are respectively continuous convex and concave func-
tionals. Two examples are given respectively in infinite and finite dimensional spaces
to illustrate that D′

1 ∩ D2 is nonconvex. As for D1 ∩ D′
2, it is obviously a retract if it is

nonempty since it is closed convex.

2. MAIN RESULTS

The following lemma in [2] is needed to prove the main theorem.

Lemma 2.1. Let X and Y be topological spaces and {Ai | i = 1, 2, · · · , n} be a finite family of
closed sets such that X = ∪ni=1Ai. If fi : Ai → Y is continuous and fi|Ai∩Aj

= fj |Ai∩Aj

for i 6= j(i, j = 1, 2, · · · , n), then there exists a unique continuous map f : X → Y such that
f |Ai

= fi(i = 1, 2, · · · , n).

Theorem 2.3. Let P be a cone in E, α : P → [0,+∞) be a uniformly continuous convex
functional and β : P → [0,+∞) be a bounded continuous concave functional with α(θ) =
β(θ) = 0 and α(x) > 0, β(x) > 0 for x 6= θ. Suppose that for R > 0, {x ∈ P | β(x) ≤ R} is
bounded. If

(2.1) R1β(x) ≤ R2α(x) for x ∈ D1 ∩D2

and

(2.2) β(x+ λy) ≤ β(x+ y) for x, y ∈ P, λ ∈ [0, 1],

then D′
1 ∩D2 is a retract of E.

Proof. (I) We first prove that D2 is a retract of E.
(i) It is clear that D′

2 6= ∅ since D2 is bounded. Take R > 0 such that

D2 ⊂ {x ∈ P | ‖x‖ ≤ R} =: PR

and D′
2 ∩ PR 6= ∅. Since PR is closed convex, there exists a retraction g1 : E → PR.

(ii) Because β(x) is a bounded functional, there exists a constant M > R2 such that
β(x) ≤ M for x ∈ D′

2 ∩ PR. It follows from the boundedness of DM+1 = {x ∈ P | β(x) ≤
M + 1} that there exists R′ > R such that β(x) > M + 1 for x ∈ P ∩ ∂BR′ . Since θ 6∈ D′

2

we can define

g2(x) =
β(R′[x])−R2

β(R′[x])− β(x)
(x−R′[x]) for x ∈ D′

2 ∩ PR,

here and later [x] stands for x/‖x‖ for x ∈ E\{θ}. Obviously, g2 is continuous on D′
2 ∩PR.
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(iii) Consider the topological space D′
2 ∩ PR and denote

A1 = {x ∈ D′
2 ∩ PR | ‖g2(x)‖ ≤ R′}, A2 = {x ∈ D′

2 ∩ PR | ‖g2(x)‖ ≥ R′}

which are closed sets in D′
2 ∩ PR. It is clear that D′

2 ∩ PR = A1 ∪A2. Define

hA1
(x) = g2(x) +R′[x] for x ∈ A1 and hA2

(x) = θ for x ∈ A2.

Both hA1 and hA2 are continuous.
We will show that hA1 : A1 → P . In fact, since ‖g2(x)‖ ≤ R′, that is,

(2.3)
∥∥∥∥ β(R′[x])−R2

β(R′[x])− β(x)
(x−R′[x])

∥∥∥∥ =
β(R′[x])−R2

β(R′[x])− β(x)
(R′ − ‖x‖) ≤ R′,

we have

(2.4) hA1
(x) =

(
β(R′[x])−R2

β(R′[x])− β(x)
(‖x‖ −R′) +R′

)
[x] ∈ P.

For x ∈ A1 ∩ A2 = {y ∈ D′
2 ∩ PR | ‖g2(y)‖ = R′}, it follows from (2.3) and (2.4) that

hA1
(x) = hA2

(x) = θ. By Lemma 2.1 there is a unique continuous map g3 : D′
2 ∩ PR → P

such that g3|A1
= hA1

and g3|A2
= hA2

(iv) Define

g4(x) =

{
g3(x), x ∈ D′

2 ∩ PR;
x, x ∈ D2.

For x ∈ {y ∈ P | β(y) = R2} ∩ PR, we have that g2(x) = x − R′[x] and ‖g2(x)‖ =
R′−‖x‖ < R′. Therefore, g3(x) = x and hence g4 : PR → P is well defined and continuous.

(v) Now we show that for x ∈ D′
2 ∩ PR, β(g3(x)) ≤ R2, i.e., g4 : PR → D2.

In fact, when ‖g2(x)‖ ≥ R′, β(g3(x)) = 0 ≤ R2; when ‖g2(x)‖ ≤ R′, it follows from
β(x) ≥ R2 that

β(R′[x])−R2

β(R′[x])− β(x)
≥ 1

and

g3(x) =
β(R′[x])−R2

β(R′[x])− β(x)
(x−R′[x]) +R′[x],

x =
β(R′[x])− β(x)
β(R′[x])−R2

g3(x) +

(
1− β(R′[x])− β(x)

β(R′[x])−R2

)
R′[x].

By the concavity of β, we have

β(x) ≥ β(R′[x])− β(x)
β(R′[x])−R2

β(g3(x)) +

(
1− β(R′[x])− β(x)

β(R′[x])−R2

)
β(R′[x]),

β(g3(x)) ≤
β(R′[x])−R2

β(R′[x])− β(x)
β(x)−

(
β(R′[x])−R2

β(R′[x])− β(x)
− 1

)
β(R′[x]) = R2.

(vi) Let f1(x) = g4(g1(x)) for x ∈ E, then f1 : E → D2 is a retraction.
(II) In the following we prove step by step that D′

1 ∩D2 is a retract of E.
(i) Since α is uniformly continuous and β is continuous with α(θ) = β(θ) = 0, there

exists x0 ∈ D2\{θ} such that α(x0) ≤ R1/3, β(x0) ≤ R2/2 and for x ∈ P ,

(2.5) |α(x+ x0)− α(x)| ≤
R1

3
.

(ii) Define

W =

{
x ∈ D1 ∩D2 | α(x+ x0) ≤

R1

2
, β(x+ x0) ≤

R2

2

}
.
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Clearly, W 6= ∅ due to θ ∈W . Now we show that for x ∈W ,

(2.6) α

(
x+ x0 −

2α(x+ x0)

R1
x0

)
> 0.

When α(x+ x0) = R1/2, we have

α

(
x+ x0 −

2α(x+ x0)

R1
x0

)
= α(x).

If α(x) = 0, then x = θ and α(x + x0) = α(x0) = R1/2 which contradicts α(x0) ≤ R1/3.
Hence x 6= θ and α(x) > 0, that is, (2.6) holds.

When α(x+ x0) < R1/2, we have

x+ x0 −
2α(x+ x0)

R1
x0 ∈ P\{θ},

which implies that (2.6) holds.
(iii) Here we prove that W ∩ D′

1 = ∅. Otherwise, for x1 ∈ W ∩ D′
1, we have from

x1 ∈ D′
1 that α(x1) ≥ R1 and from x1 ∈ W that α(x1) ≤ R1 with α(x1 + x0) ≤ R1/2.

Hence α(x1) = R1 and α(x1)− α(x1 + x0) ≤ R1/3 by (2.5). Consequently,

R1 = α(x1) ≤
R1

3
+ α(x1 + x0) ≤

R1

3
+
R1

2
=

5R1

6
< R1.

The contradiction implies that W ∩D′
1 = ∅ and W ∩ (D′

1 ∩D2) = ∅.
(iv) Consider the topological space D2. Denote O = {x ∈ D2 | α(x + x0) < R1/2}

which is open in D2. Let A3 = (D1 ∩ D2)\O and A4 = D′
1 ∩ D2 which are closed sets in

D2. Obviously, D2 =W ∪A3 ∪A4. Define

hW (x) = R1

x+ x0 − 2α(x+x0)
R1

x0

α
(
x+ x0 − 2α(x+x0)

R1
x0

) for x ∈W,

hA3(x) = R1
x

α(x)
for x ∈ A3 and hA4(x) = x for x ∈ A4

which are all continuous.
If x ∈ W ∩ A3, then α(x + x0) = R1/2 and hW (x) = hA3

(x); if x ∈ A3 ∩ A4, then
α(x) = R1 and hA3

(x) = hA4
(x). By Lemma 2.1 there is a unique continuous map f2 on

D2 such that f2|W = hW , f2|A3
= hA3

and f2|A4
= hA4

(v) In this step we will show that f2 : D2 → D′
1 ∩D2.

If x ∈ A3, then x = (α(x)/R1)f2(x) and

α(x) = α

(
α(x)

R1
f2(x) +

(
1− α(x)

R1

)
θ

)
≤ α(x)

R1
α(f2(x)),

thus α(f2(x)) ≥ R1. Since

β(x) = β

(
α(x)

R1
f2(x) +

(
1− α(x)

R1

)
θ

)
≥ α(x)

R1
β(f2(x)),

we have that β(f2(x)) ≤ (R1/α(x))β(x) and β(f2(x)) ≤ R2 by (2.1).
If x ∈W , since

(2.7) x+ x0 −
2α(x+ x0)

R1
x0 =

1

R1
α

(
x+ x0 −

2α(x+ x0)

R1
x0

)
f2(x)
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and

(2.8)

α
(
x+ x0 − 2α(x+x0)

R1
x0

)
= α

((
1− 2α(x+x0)

R1

)
(x+ x0) +

2α(x+x0)
R1

x
)

≤
(
1− 2α(x+x0)

R1

)
α(x+ x0) +

2α(x+x0)
R1

α(x)

≤
(
1− 2α(x+x0)

R1

)
R1

2 + 2α(x+x0)
R1

R1

= R1

2 + α(x+ x0) ≤ R1,

we have from the convexity of α that

α
(
x+ x0 − 2α(x+x0)

R1
x0

)
= α

(
1
R1
α
(
x+ x0 − 2α(x+x0)

R1
x0

)
f2(x)

)
≤ 1

R1
α
(
x+ x0 − 2α(x+x0)

R1
x0

)
α(f2(x))

and thus α(f2(x)) ≥ R1. It follows from (2.2) that

β

(
x+ x0 −

2α(x+ x0)

R1
x0

)
≤ β(x+ x0) ≤

R2

2
≤ R2,

and hence x+ x0 − (2α(x+ x0)/R1)x0 ∈ D1 ∩D2 by (2.8). From (2.1) we have

(2.9) R1β

(
x+ x0 −

2α(x+ x0)

R1
x0

)
≤ R2α

(
x+ x0 −

2α(x+ x0)

R1
x0

)
.

By (2.7) and the concavity of β, we have

β
(
x+ x0 − 2α(x+x0)

R1
x0

)
= β

(
1
R1
α
(
x+ x0 − 2α(x+x0)

R1
x0

)
f2(x)

)
≥ 1

R1
α
(
x+ x0 − 2α(x+x0)

R1
x0

)
β(f2(x)).

Therefore (2.9) leads to β(f2(x)) ≤ R2.
(vi) Let r(x) = f2(f1(x)) for x ∈ E, then r : E → D′

1 ∩D2 is a retraction, i.e., D′
1 ∩D2 is

a retract of E. �

Remark 2.1. By Theorem 3.1 in [7] and references therein, the retracts in Banach Spaces
can be applied to compute fixed point index in cones and to obtain the existence and the
location of positive fixed points about nonlinear completely continuous operators.

3. EXAMPLES

In this section two examples are given respectively in infinite and finite dimensional
spaces to illustrate that D′

1 ∩D2 is nonconvex.

Example 3.1. Let E = C[0, 1] with the norm ‖x‖ = maxt∈[0,1] |x(t)| for x ∈ C[0, 1] and

P =

{
x ∈ C[0, 1] | x(t) ≥ 0 for t ∈ [0, 1], min

t∈[1/3,2/3]
x(t) ≥ 1

9
‖x‖

}
.

Define two functionals as

α(x) = max
t∈[1/3,2/3]

x(t) and β(x) = min
t∈[1/3,2/3]

x(t) for x ∈ P.

Obviously, P is a cone in E, α : P → [0,+∞) is a uniformly continuous convex functional
and β : P → [0,+∞) is a bounded continuous concave functional with α(θ) = β(θ) = 0
and α(x) > 0, β(x) > 0 for x 6= θ, DR = {x ∈ P | β(x) ≤ R} is bounded for any R > 0.
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Let R1 = R2 = 4/9 and x1(t) = t, x2(t) = (t − 1)2 for t ∈ [0, 1]. It is easy to see that
x1, x2 ∈ D′

1 ∩D2. Clearly, (2.1) and (2.2) hold. Since

α

(
1

2
x1 +

1

2
x2

)
=

7

18
< R1,

it follows that D′
1 ∩D2 is nonconvex.

Example 3.2. Let E = R2 and P = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}. For (x, y) ∈ P define
α(x, y) = x + y and β(x, y) = min(x + y,

√
x +
√
y) which immediately shows that β is

concave (as the minimum of concave functions) and satisfies (2.2). Obviously, P is a cone
in E, α : P → [0,+∞) is a uniformly continuous convex functional and β : P → [0,+∞)
is a bounded continuous functional with α(0, 0) = β(0, 0) = 0 and α(x, y) > 0, β(x, y) > 0
for (x, y) 6= (0, 0), DR = {(x, y) ∈ P | β(x, y) ≤ R} is bounded for any R > 0.

Let R1 = R2 = 3. It is clear that (2.1) is satisfied. Since (0, 9), (9, 0) ∈ D′
1 ∩ D2 and

β((0, 9)/2 + (9, 0)/2) =
√
4.5 +

√
4.5 > 3 = R2, It follows that D′

1 ∩D2 is nonconvex.
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