Cyclic permutations and crossing numbers of join products of symmetric graph of order six

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT.

In the paper, we extend known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product $G+D_n$, where the graph G consists of two leaves incident with two opposite vertices of one 4-cycle, and D_n consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a new graph COG for a calculating the distances between all (k-1)! vertices of the graph. Finally, by adding new edges to the graph G, we are able to obtain the crossing number of the join product with the discrete graph D_n for two other graphs. The methods used in the paper are new, and they are based on combinatorial properties of cyclic permutations.

Acknowledgement. The research was supported by the Slovak VEGA grant No. 1/0389/15. The research was also supported by the internal faculty research project no. FEI-2017-39.

REFERENCES

- [1] Berežný, Š., Buša, J. Jr. and Staš, M., Software solution of the algorithm of the cyclic-order graph, Acta Electrotechnica et Informatica, 18 (2018), No. 1, 3–10
- [2] Berežný, Š. and Staš, M., On the crossing number of the join of five vertex graph G with the discrete graph D_n , Acta Electrotechnica et Informatica, 17 (2017), No. 3, 27–32
- [3] Hernández-Vélez, C., Medina, C. and Salazar, G., The optimal drawing of $K_{5,n}$, Electron. J. Combin., 21 (2014), No. 4, \sharp P4.1, 29 pp.
- [4] Kleitman, D. J., *The crossing number of* $K_{5,n}$, J. Combinatorial Theory, **9** (2014), 315–323
- [5] Klešč, M., The crossing number of join of the special graph on six vertices with path and cycle, Discrete Math., 310 (2010), 1475–1481
- [6] Klešč, M., Petrillová, J. and Valo, M., Minimal number of crossings in strong product of paths, Carpathian J. Math., 29 (2013), No. 1, 27–32
- [7] Klešč, M., Petrillová, J. and Valo, M., On the crossing numbers of Cartesian products of wheels and trees, Discuss. Math. Graph Theory, 71 (2017), 339–413
- [8] Klešč, M. and Schrötter, Š., The crossing numbers of join of paths and cycles with two graphs of order five, Combinatorial Algorithms, Sprinder, LNCS, 7125 (2012), 160–167
- [9] Klešč, M. and Schrötter, Š., The crossing numbers of join products of paths with graphs of order four, Discuss. Math. Graph Theory, **31** (2011), 312–331
- [10] Staš, M., On the crossing number of the join of the discrete graph with one graph of order five, J. Math. Model. and Geometry, 5 (2017), No. 2, 12–19
- [11] Staš, M., Cyclic permutations: Crossing numbers of the join products of graphs, Proc. Aplimat 2018: 17th Conference on Applied Mathematics, (2018), 979–987
- [12] Woodall, D. R., Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory, 17 (1993), 657–671

Received: 05.02.2018; In revised form: 24.04.2018; Accepted: 01.05.2018

2010 Mathematics Subject Classification. 05C10, 05C38.

Key words and phrases. *Graph, drawing, crossing number, join product, cyclic permutation.*

Corresponding author: Michal Staš; michal.stas@tuke.sk

DEPARTMENT OF MATHEMATICS AND THEORETICAL INFORMATICS FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS TECHNICAL UNIVERSITY OF KOŠICE

Košice, Slovakia

E-mail address: stefan.berezny@tuke.sk E-mail address: michal.stas@tuke.sk