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Cyclic permutations and crossing numbers of join products
of two symmetric graphs of order six

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT. The main purpose of this article is broaden known results concerning crossing numbers for join
of graphs of order six. We give the crossing number of the join product G +Dn, where the graph G consists of
one 5-cycle and of one isolated vertex, and Dn consists on n isolated vertices. The proof is done with the help
of software that generates all cyclic permutations for a given number k, and creates a new graph COG for
calculating the distances between all (k − 1)! vertices of the graph. Finally, by adding some edges to the graph
G, we are able to obtain the crossing numbers of the join product with the discrete graph Dn and with the path
Pn on n vertices for other two graphs.

1. INTRODUCTION

It is well known that a computing of the crossing number of a given graph in general
case is NP-complete problem. Nevertheless, many researchers are trying to solve this
problem. Research of the problem of reducing the number of crossings in the graph was
studied in a lot of areas, and the most researched area is Very Large Scale Integration
technology. Further, the problem of reducing the number of crossings in the graph is
studied not only in the graph theory, but also by computer scientists. The exact values of
the crossing numbers are known only for some graphs or some families of graphs.

In this article are used notations and definitions of the crossing numbers of graphs like
in [7]. We will often use the Kleitman’s result [5] on crossing numbers of the complete
bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, for m ≤ 6.

Using Kleitman’s result [5], the crossing numbers for join of two paths, join of two cycles,
and for join of path and cycle were studied in [7]. Moreover, the exact values for crossing
numbers of G+Dn and of G+ Pn for all graphs G of order at most four are given in [12].
It is also important to note that, the crossing numbers of the graphs G + Dn are known
for few graphs G of order five and six in [2], [6], [10], [11], [14], [15], [16], [17], and [18].
In all these cases, the graph G is mostly connected and contains also mostly at least one
cycle. Further, the exact values for the crossing numbers G + Pn, and G + Cn have been
also investigated for some graphs G of order five and six in [6], [11], [13], and [19].

The methods presented in the paper are new, and they are based on multiple combi-
natorial properties of the cyclic permutations. The similar methods were partially used
first time in the papers [4], and [14]. In [2], [3], [15], and [17], the properties of cyclic per-
mutations are also verified by the help of software in [1]. According to our opinion the
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methods used in [6], [11], and [12], do not allow to establish the crossing number of the
join product G + Dn. The proofs will be done with the help of software that generates
all cyclic permutations in [1]. C++ version of the program is located also on the website
http://web.tuke.sk/fei-km/coga/. The list with the short names of 6!/6 = 120
cyclic permutations of six elements are collected in Table 1 of [15].

2. CYCLIC PERMUTATIONS AND CONFIGURATIONS

Let G be the disconnected graph of order six consisting of one 5-cycle and of one isola-
ted vertex. We will consider the join product of the graph G with the discrete graph on n
vertices denoted by Dn. The graph G +Dn consists of one copy of the graph G and of n
vertices t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G.
Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with the vertex
ti. Thus, T 1 ∪ · · · ∪ Tn is isomorphic with the complete bipartite graph K6,n and

(2.1) G+Dn = G ∪K6,n = G ∪

(
n⋃

i=1

T i

)
.

In the paper, we will use the same notation and definitions for cyclic permutations
and the corresponding configurations for a good drawing D of the graph G +Dn like in
[15]. Let D be a drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti in the
drawing D as the cyclic permutation that records the (cyclic) counter-clockwise order in
which the edges leave ti have been defined by Hernández-Vélez, Medina, and Salazar [4].
We use the notation (123456) if the counter-clockwise order the edges incident with the
vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. We have to emphasize that a rotation is a
cyclic permutation. We will separate all subgraphs T i, i = 1, . . . , n, of the graph G +Dn

into three mutually-disjoint subsets depending on how many times the considered T i

crosses the edges of G in D. For i = 1, . . . , n, let RD = {T i : crD(G,T i) = 0} and
SD = {T i : crD(G,T i) = 1}. Every other subgraph T i crosses the edges of G at least twice
in D. Moreover, let F i denote the subgraph G∪T i for T i ∈ RD, where i ∈ {1, . . . , n}. Thus,
for a given subdrawing of G in D, any subgraph F i is exactly represented by rotD(ti).

According to the arguments in the proof of the main Theorem 3.1, if we would like to
obtain a drawing of G+Dn with the smallest number of crossings, then the set RD must
be nonempty. Thus, we will deal with only drawings of the graph G with a possibility of
an existence of a subgraph T i ∈ RD. Of course, there is only one drawing of G in which
the edges of G do not cross each other. Since there is only one subdrawing of its subgraph
isomorphic with the path P4 with one crossing among its edges, then we obtain four next
possibilities in which two remaining edges of the graph G are able to cross the edges of
the fixed subgraph. Hence, there are only five possible drawings of G which are presented
in Fig. 1.

Let us assume first a good drawing D of the graph G + Dn in which the edges of G
do not cross each other. In this case, without loss of generality, we can choose the vertex
notation of the graph in such a way as shown in Fig. 1(a). Our aim shall be to list all
possible rotations rotD(ti) which can appear in D if the edges of T i do not cross the edges
of G. Since there is only one subdrawing of F i \ {v6} represented by the rotation (12345),
there are five possibilities for how to obtain the subdrawing of F i depending on in which
region the edge tiv6 is placed. These five possibilities under our consideration will be
denoted by Ak, for k = 1, . . . , 5. As for our considerations, it does not play a role in
which of the regions is unbounded; assume the drawings shown in Fig. 2. In the rest
of the paper, each cyclic permutation will be represented by the permutation with 1 in
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FIGURE 1. Five possible drawings of the graph G.

the first position. Thus, the configurations A1, A2, A3, A4, and A5 are represented by
the cyclic permutations (123456), (123645), (162345), (123465), and (126345), respectively.
Of course, in a fixed drawing of the graph G + Dn, some configurations from M need
not appear. We denote by MD the subset of M = {A1, A2, A3, A4, A5} consisting of all
configurations that exist in the drawing D.

FIGURE 2. Drawings of five possible configurations of the subgraph F i.

We remark that if two different subgraphs F i and F j with configurations from MD

cross in a drawing D of G + Dn, then only the edges of T i cross the edges of T j . Thus,
we will deal with the minimum numbers of crossings between two different subgraphs
F i and F j depending on their configurations. Let X , Y be the configurations fromMD.
We shortly denote by crD(X,Y ) the number of crossings in D between T i and T j for
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different T i, T j ∈ RD such that F i, F j have configurations X , Y , respectively. Finally, let
cr(X,Y ) = min{crD(X,Y )} over all good drawings of the graph G+Dn with X,Y ∈MD.
Our aim is to establish cr(X,Y ) for all pairs X,Y ∈M.

Let Pi denotes the inverse cyclic permutation to the permutation Pi, for i = 1, . . . , 120,
where the list with the short names of 6!/6 = 120 cyclic permutations of six elements were
collected in Table 1 of [15]. Woodall [20] have been defined the cyclic-ordered graph COG
with the set of vertices V = {P1, P2, . . . , P120}, and with the set of edges E, where two
vertices are joined by the edge if the vertices correspond to the permutations Pi and Pj ,
which are formed by the exchange of exactly two adjacent elements of the 6-tuple (i. e. an
ordered set with 6 elements). Hence, if dCOG(”rotD(ti)”, ”rotD(tj)”) denotes the distance
between two vertices which correspond to the cyclic permutations rotD(ti) and rotD(tj)
in the graph COG, then

(2.2) crD(T i, T j) ≥ Q(rotD(ti), rotD(tj)) = dCOG(”rotD(ti)”, ”rotD(tj)”)

for any two different subgraphs T i and T j , where Q(rotD(ti), rotD(tj)) as the minimum
number of interchanges of adjacent elements of rotD(ti) required to produce the inverse
cyclic permutation of rotD(tj) have been already defined in [15].

Now, we are ready to find the necessary numbers of crossings between subgraphs
T i and T j for the corresponding configurations of F i and F j from M. The configura-
tions A1 and A2 are represented by the cyclic permutations P1 = (123456) and P31 =

(123645), respectively. Since P31 = (154632) = P116, we have cr(A1, A2) ≥ 4 using
of dCOG(”P1”, ”P116”) = 4. The same reason gives cr(A1, A3) ≥ 5, cr(A1, A4) ≥ 5,
cr(A1, A5) ≥ 4, cr(A2, A3) ≥ 4, cr(A2, A4) ≥ 5, cr(A2, A5) ≥ 5, cr(A3, A4) ≥ 4, cr(A3, A5) ≥
5, and cr(A4, A5) ≥ 4. Clearly, also cr(Ai, Ai) ≥ 6 for any i = 1, . . . , 5. Thus, all lower-
bounds of number of crossing of two configurations fromM are summarized in the sym-
metric Table 1 (here, Ak and Al are configurations of the subgraphs F i and F j , where
k, l ∈ {1, 2, 3, 4, 5}).

− A1 A2 A3 A4 A5

A1 6 4 5 5 4
A2 4 6 4 5 5
A3 5 4 6 4 5
A4 5 5 4 6 4
A5 4 5 5 4 6

TABLE 1. The necessary number of crossings between T i and T j for
the configurations Ak, Al.

Assume a good drawing D of the graph G + Dn with at least one crossing among
edges of the graph G (in which there is a subgraph T i ∈ RD). In this case, without loss
of generality, we can choose the vertex notations of the graphs in such a way as shown in
Fig. 1(b), (c), (d), and (e). In all mentioned cases, we are able to use the same idea as above,
i.e., we obtain the same configurations, and also the same corresponding lower-bounds of
numbers of crossings between two configurations as in Table 1.

3. THE CROSSING NUMBER OF G+Dn

Two vertices ti and tj of G+Dn are antipodal in a drawing of G+Dn if the subgraphs
T i and T j do not cross. A drawing is antipodal-free if it has no antipodal vertices. In the
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proof of the main theorem, the following lemma related to some restricted drawing of the
graph G+D2 is needful.

Lemma 3.1. cr(G+D2) = 1.

Proof. In Fig. 3(a) it is easy to see that cr(G + D2) ≤ 1. Thus, it remains to prove the
reverse inequality. Let us suppose that there is a drawing D of the graph G+D2 with no
crossing. Then crD(G) = 0, and the edges of both subgraphs T 1, T 2 do not cross the edges
of G, i.e., T 1, T 2 ∈ RD. Hence, the positive values in Table 1 force a contradiction. �

FIGURE 3. The good drawings of G+D2 and of G+Dn.

Now we are able to prove the main results of the paper.

Theorem 3.1. cr(G+Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1.

Proof. In Fig. 3(b) there is the drawing of G+Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings. Thus,

cr(G+Dn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
. We prove the reverse inequality by induction on n. The

graph G+D1 is planar; hence, cr(G+D1) = 0. By Lemma 3.1, the result is true for n = 2.
Suppose now that for n ≥ 3, there is a drawing D with

(3.3) crD(G+Dn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
,

and let

(3.4) cr(G+Dm) ≥ 6
⌊m
2

⌋⌊m− 1

2

⌋
+
⌊m
2

⌋
for any integer m < n.

Let us first show that the considered drawing D must be antipodal-free. As a con-
tradiction, suppose that, without loss of generality, crD(Tn−1, Tn) = 0. Using positive
values in Table 1, one can easily verify that both subgraphs Tn and Tn−1 are not from the
set RD, i.e., crD(G,Tn ∪ Tn−1) ≥ 1. The known fact that cr(K6,3) = 6 implies that any T k,
k = 1, 2, . . . , n− 2, crosses Tn−1 ∪ Tn at least six times. So, for the number of crossings in
D we have

crD(G+Dn) = crD (G+Dn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, T
n−1 ∪ Tn)

+crD(G,Tn−1∪Tn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+
⌊n− 2

2

⌋
+6(n−2)+1 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.
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This contradiction with the assumption (3.3) confirms that D must be an antipodal-free
drawing. Moreover, if r = |RD| and s = |SD|, the assumption (3.4) together with the well-
known fact cr(K6,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
imply that, in D, there are at least

⌈
n
2

⌉
+ 1 subgraphs

T i which do not cross the edges of G. More precisely

crD(G) + crD(G,K6,n) ≤ crD(G) + 0r + 1s+ 2(n− r − s) <
⌊n
2

⌋
,

i.e.,

(3.5) s+ 2(n− r − s) <
⌊n
2

⌋
.

This forces that r ≥
⌈
n
2

⌉
+ 1 ≥ 3. Now, for T i ∈ RD, we will discuss the existence of

possible configurations of subgraphs F i = G ∪ T i in the drawing D. Moreover, if n = 3
then r = 3, and crD(G + D3) ≥ crD(T 1 ∪ T 2 ∪ T 3) ≥ 12 holds by summing of three
minimal values of Table 1 in all possible drawings of G which are presented in Fig. 1. This
contradiction with the assumption (3.3) confirms that n ≥ 4.

Case 1: crD(G) = 0.
Without loss of generality, we can choose the vertex notation of the graph G in such a
way as shown in Fig. 1(a). Thus, we will deal with the configurations belonging to the
nonempty setMD, i.e., we will discuss over all cardinalities of the setMD in the following
subcases:

a) |MD| ≥ 3.
We will consider two subcases. Let us first assume that {Ai, Aj , Ak} ⊆ MD with
i+2 ≡ j+1 ≡ k (mod 5). Without lost of generality, let us consider three different
subgraphs Tn−2, Tn−1, Tn ∈ RD such that Fn−2, Fn−1 and Fn have mentioned
configurations Ai, Aj and Ak, respectively. Then crD(G∪Tn−2∪Tn−1∪Tn, Tm) ≥
14 for any Tm ∈ RD with m 6= n−2, n−1, n by summing the values in all columns
in the considered three rows of Table 1. Moreover, crD(Tn−2∪Tn−1∪Tn, Tm) ≥ 4
for any subgraph Tm 6∈ RD provided by there is no permutation Pl for some l ∈
{1, . . . , 120} with Q (rotD(tn−2), Pl) = Q (rotD(tn−1), Pl) = Q (rotD(tn), Pl) = 1,
for more see (2.2). Since crD(Tn−2 ∪ Tn−1 ∪ Tn) ≥ 13 holds by summing of three
corresponding values of Table 1 between the mentioned configurations Ai, Aj and
Ak, then by fixing the subgraph G ∪ Tn−2 ∪ Tn−1 ∪ Tn,

crD(G+Dn) ≥ 6
⌊n− 3

2

⌋⌊n− 4

2

⌋
+ 14(r − 3) + 5s+ 5(n− r − s) + 13

= 6
⌊n− 3

2

⌋⌊n− 4

2

⌋
+ 5n+ 9r − 29 ≥ 6

⌊n− 3

2

⌋⌊n− 4

2

⌋
+5n+ 9

(⌈n
2

⌉
+ 1
)
− 29 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

In addition, let us assume that MD = {Ai, Aj , Ak} with i + 1 ≡ j (mod 5),
j+1 6≡ k (mod 5), and k+1 6≡ i (mod 5). Without lost of generality, let us consider
two different subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have mentioned
configurations Ai and Aj , respectively. Then crD(G ∪ Tn−1 ∪ Tn, Tm) ≥ 10 for
any Tm ∈ RD with m 6= n − 1, n by Table 1. Hence, by fixing the subgraph
G ∪ Tn−1 ∪ Tn,

crD(G+Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 10(r − 2) + 3s+ 4(n− r − s) + 4

= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 4n+ 5r + (r − s)− 16 ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
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+4n+ 5
(⌈n

2

⌉
+ 1
)
+ 0− 16 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

b) |MD| = 2, i.e.,MD = {Ai, Aj} for some i, j ∈ {1, . . . , 5}with i 6= j.
Without lost of generality, let us consider two different subgraphs Tn−1, Tn ∈ RD

such that Fn−1 and Fn have mentioned configurations Ai and Aj , respectively.
Then crD(G ∪ Tn−1 ∪ Tn, T k) ≥ 6 + 4 = 10 for any T k ∈ RD with k 6= n− 1, n by
Table 1. Hence, by fixing the subgraph G∪Tn−1 ∪Tn, we are able to use the same
inequalities as in the previous subcase.

c) |MD| = 1, i.e.,MD = {Aj} for some j ∈ {1, . . . , 5}.
Without lost of generality, let us assume that Tn ∈ RD with the configuration
Aj ∈ MD of the subgraph Fn for some j ∈ {1, . . . , 5}. Hence, by fixing the
subgraph G ∪ Tn,

crD(G+Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(r − 1) + 2s+ 3(n− r − s) + 0

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+ 2r + (r − s)− 6 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+3n+ 2

(⌈n
2

⌉
+ 1
)
+ 0− 6 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

Case 2: crD(G) ≥ 1.
In all considered cases, we can choose the vertex notations of the graph G in such a way
as shown in Fig. 1(b), (c), (d) or (e). According to r ≥ 1, there is a subgraph T i ∈ RD.
Without lost of generality, we can also assume that Tn ∈ RD with the configuration Aj of
the subgraph G ∪ Tn = Fn for some j ∈ {1, . . . , 5}. Since there is no region with at least
four vertices of G on its boundary (in the subdrawing of Fn), then there is no subgraph
T k ∈ SD with crD(Tn, T k) = 1, i.e., crD(G ∪ Tn, T k) ≥ 3 for any T k ∈ SD. Of course,
crD(G∪Tn, T k) ≥ 2+1 = 3 for any T k 6∈ RD ∪SD. Hence, by fixing the subgraph G∪Tn,

crD(G+Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3s+ 3(n− r − s) + 1 = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+3n+ r − 3 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+

(⌈n
2

⌉
+ 1
)
− 3 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

Thus, it was shown that there is no good drawing D of the graph G+Dn with less than
6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings. This completes the proof of the main theorem. �

4. TWO OTHER GRAPHS

FIGURE 4. Two graphs G1 and G2 by adding new edges to the graph G.
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In Fig. 3(b) we are able to add some edges to the graph G without additional crossings.
So the drawing of the graphs G1 + Dn and G2 + Dn with 6

⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings is

obtained. Thus, the next results are obvious.

Corollary 4.1. cr(Gi +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1, where i = 1, 2.

Remark that the crossing numbers of the graph G2 + Dn was obtained in [8] without
using the vertex rotation.

5. THE JOIN PRODUCT WITH PATHS

FIGURE 5. The good drawing of G+ Pn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings.

Theorem 5.2. cr(G+ Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 for n ≥ 2.

Proof. In Fig. 5 there is the drawing of G+Pn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1 crossings. Thus,

cr(G+ Pn) ≤ 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1. We prove the reverse inequality by induction on n.

The graph G + P2 contains a subdivision of the graph (C4 ∪ {v}) + P2. It was proved in
[19] that cr ((C4 ∪ {v}) + P2) = 2. Thus, the result is true for n = 2. Suppose now that for
n ≥ 3, there is a drawing D with

(5.6) crD(G+ Pn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
+ 1,

and let

(5.7) crD(G+ Pm) ≥ 6
⌊m
2

⌋⌊m− 1

2

⌋
+
⌊m
2

⌋
+ 1 for any integer m < n.

As the graph G+ Pn contains G+Dn like a subgraph, by Theorem 3.1, crD(G+ Pn) =
6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
, and therefore, no edge of the path Pn is crossed in D. Let us first

show that the considered drawing D must be antipodal-free. As a contradiction, suppose
that, without loss of generality, crD(Tn−1, Tn) = 0. Using positive values in Table 1,
one can also easily verify that both subgraphs Tn−1 and Tn are not from the set RD, i.e.,
crD(G,Tn−1 ∪Tn) ≥ 1. The known fact cr(K6,3) = 6 implies that any T k, k = 1, . . . , n− 2,
crosses Tn−1 ∪ Tn at least six times. So, for the number of crossings in D we have

crD(G+Pn) = crD (G+ Pn−2)+crD(Tn−1∪Tn)+crD(K6,n−2, T
n−1∪Tn)+crD(G,Tn−1∪Tn)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+
⌊n− 2

2

⌋
+ 1 + 0 + 6(n− 2) + 1 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
+ 1.
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This contradiction with the assumption (5.6) forces that D must be an antipodal-free
drawing. Moreover, our assumption on D together with cr(K6,n) = 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
also

imply that, in D, there are at least
⌈
n
2

⌉
subgraphs T i which do not cross the edges of G.

More precisely

(5.8) crD(G) + 0r + 1s+ 2(n− r − s) ≤
⌊n
2

⌋
.

This forces that r ≥
⌈
n
2

⌉
≥ 2, and 2r + s ≥ 2n −

⌊
n
2

⌋
. Now, for T i ∈ RD, we will discuss

the existence of possible configurations of subgraphs F i = G ∪ T i in the drawing D.
Case 1: crD(G) = 0.

Without loss of generality, we can choose the vertex notation of the graph G in such a way
as shown in Fig. 1(a). We will discuss two possibilities over congruence n modulo 2.

• Let n be even, and let us also assume that Tn ∈ RD with the configuration Aj ∈
MD of the subgraph Fn for some j ∈ {1, . . . , 5}. Since no edge of the path Pn is
crossed in D, then crD(G ∪ Tn, T k) ≥ 3 for any T k ∈ SD, see Fig. 2. Hence, by
fixing the subgraph G ∪ Tn,

crD(G+ Pn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3s+ 3(n− r − s) + 0

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+ r − 4 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+

⌈n
2

⌉
− 4

= 6
n− 2

2

n− 2

2
+ 3n+

n

2
− 4 > 6

n

2

n− 2

2
+

n

2
.

• Let n be odd, and let us also consider two different subgraphs Tn−1, Tn ∈ RD

with some configurations fromMD of the subgraphs Fn−1 and Fn (of course, the
mentioned configurations can be same). Since no edge of the path Pn is crossed in
D, then crD(G ∪ Tn−1, T k) ≥ 3 and crD(G ∪ Tn, T k) ≥ 3 for any T k ∈ SD, see Fig.
2. Moreover, crD(G ∪ Tn−1 ∪ Tn, T k) ≥ 8 for any T k ∈ RD with k 6= n − 1, n by
summing the values in all columns in the considered two rows of Table 1. Hence,
by fixing the subgraph G ∪ Tn−1 ∪ Tn,

crD(G+Pn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+8(r−2)+5s+4(n−r−s)+4 = 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+4n+ 2r + 2r + s− 12 ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 4n+ 2

⌈n
2

⌉
+ 2n−

⌊n
2

⌋
− 12

= 6
n− 3

2

n− 3

2
+ 4n+ 2

n+ 1

2
+ 2n− n− 1

2
− 12 > 6

n− 1

2

n− 1

2
+

n− 1

2
.

Case 2: crD(G) ≥ 1.
In all considered cases, we can also choose the vertex notations of the graph G in such a
way as shown in Fig. 1(b), (c), (d) or (e). Since we are able to use the same arguments like
in Case 2 in the proof of Theorem 3.1, then by fixing the subgraph G ∪ Tn with Tn ∈ RD,

crD(G+ Pn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3s+ 3(n− r − s) + 1

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+3n+r−3 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+3n+

⌈n
2

⌉
−3 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

These contradictions with the assumption of less than 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings

in D completes the proof. �
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The crossing number of the graph G2 + Pn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings was

established in [8]. Since G1 + Pn is a subgraph of G2 + Pn and G + Pn is a subgraph of
G1 + Pn, the next result is also obvious.

Corollary 5.2. cr(G1 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 for n ≥ 2.
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[16] Staš, M., Determining crossing number of one graph of order five using cyclic permutations, Proc. Aplimat 2019:
18th Conference on Applied Mathematics, (2019), 1126–1134
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