
CARPATHIAN J. MATH.
35 (2019), No. 2, 209 - 220

Online version available at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Dedicated to Prof. Juan Nieto on the occasion of his 60th anniversary

Convergence results for fixed point iterative algorithms in
metric spaces

IOAN A. RUS

ABSTRACT.
Let (X, d) be a metric space, f , fn : X → X , with Ff = Ffn , n ∈ N. For the fixed point equation

(1) x = f(x)

we consider the following iterative algorithm,

(2) x ∈ X, x0 = x, xn+1(x) = fn(xn(x)), n ∈ N.

By definition, the algorithm (2) is convergent if,

xn(x) → x∗(x) ∈ Ff as n→ ∞, ∀ x ∈ X.

In this paper we give some conditions on fn and f which imply the convergence of algorithm (2). In this way we
improve some results given in [Rus, I. A., An abstract point of view on iterative approximation of fixed points: impact
on the theory of fixed point equations, Fixed Point Theory, 13 (2012), No. 1, 179–192]. In our results, in general we
do not suppose that, Ff 6= ∅. Some research directions are formulated.
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