Dedicated to Prof. Qamrul Hasan Ansari on the occasion of his 60th anniversary

A cyclic coordinate-update fixed point algorithm

BO PENG and HONG-KUN XU

ABSTRACT. We prove that a cyclic coordinate fixed point algorithm for nonexpansive mappings when the underlying Hilbert space is decomposed into a Cartesian product of finitely many block spaces is weakly convergent to a fixed point of the mapping under investigation. Our result relaxes a condition imposed on the stepsizes of Theorem 3.4 of Chow, et al [Chow, Y. T., Wu, T. and Yin, W., *Cyclic coordinate-update algorithms for fixed-point problems: analysis and applcations*, SIAM J. Sci. Comput., **39** (2017), No. 4, A1280–A1300].

1. INTRODUCTION

Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. Consider the problem of finding a zero of a maximal monotone operator *S*:

$$Sx = 0,$$

where $S: H \to H$ is a maximal monotone operator. Assume *S* is of the form

$$(1.2) S = I - T,$$

where $T: H \to H$ is a nonexpansive mapping (i.e., $||Tx - Ty|| \le ||x - y||$ for all $x, y \in H$). Consequently, S is Lipschitzian with Lipschitz constant not bigger than two. We use $\operatorname{zer}(S)$ and $\operatorname{Fix}(T)$ to denote the set of solutions of Eq. (1.1) and the set of fixed points of T, respectively. It is evident that $\operatorname{zer}(S) = \operatorname{Fix}(T) = \{x \in H : Tx = x\}$. We always assume that the solution set $\operatorname{zer}(S)$ (or $\operatorname{Fix}(T)$) is nonempty. Note that in our setting, finding a zero of S is equivalent to finding a fixed point of T. Therefore, the Kransnoselskii-Mann algorithm (KM) [4, 6] is applicable to Eq. (1.1). Recall that KM generates a sequence (x^k) through the iteration scheme:

(1.3)
$$x^{k+1} = (1 - \alpha_k)x^k + \alpha_k T x^k, \quad k = 0, 1, 2, \cdots,$$

where the initial guess $x^0 \in H$ is chosen arbitrarily, and $\alpha_k \in [0, 1]$ for all k.

The KM (1.3) has extensively been studied (see [5, 8, 10, 13, 15] and references therein). A basic convergence result of KM (1.3) is given below.

Theorem 1.1. (cf. [12]) Suppose $Fix(T) \neq \emptyset$ and the stepsizes (α_k) satisfies the divergence condition:

(1.4)
$$\sum_{k=0}^{\infty} \alpha_k (1-\alpha_k) = \infty.$$

Then the sequence (x^k) generated by KM (1.3) converges weakly to a point in Fix(T).

Received: 08.05.2019. In revised form: 16.08.2019. Accepted: 23.08.2019

²⁰¹⁰ Mathematics Subject Classification. 90C25, 90C52, 65K10, 47J25.

Key words and phrases. Krasnoselskii-Mann, maximal monotone operator, nonexpansive mapping, cyclic coordinate-update, fixed point algorithm.

Corresponding author: Hong-Kun Xu; xuhk@hdu.edu.cn

B. Peng and H. K. Xu

Note that a standard choice of the stepsizes (α_k) that satisfies the divergence condition (1.4) is given by

(1.5)
$$\alpha_k = \frac{1}{k^{\tau}}, \quad k \ge 1, \text{ with } 0 < \tau \le 1.$$

Chow, et al [1] applied KM (1.3) to find a zero of a maximal monotone mapping S = I - IT (with T being nonexpansive) in the case where the underlying space H is decomposed into a Cartesian product of finitely many block spaces:

$$(1.6) H = H_1 \times H_2 \times \cdots \times H_m$$

where m > 1 is an integer, and H_i is a Hilbert space for each 1 < i < m. In this framework, each $x \in H$ is decomposed into $x = (x_1, \dots, x_m)$, where x_i denotes the *i*th coordinate of x (we write $(x)_i = x_i$); i.e., the projection of x onto the *i*th block space H_i .

Basing on KM (1.3), Chow, et al [1] introduced a cyclic coordinate-update algorithm [1, Algorithm 1, page A1283], and proved [1, Theorem 3.4, page A1288] the weak convergence of their Algorithm 1 under the assumption that the stepsizes (α_k) are chosen as

(1.7)
$$\alpha_k = \frac{1}{\sqrt{k}}, \quad k \ge 1.$$

The purpose of this paper is to prove that [1, Algorithm 1] remains to be weakly convergent to a solution of Eq. (1.1) if the stepsizes (α_k) are chosen to satisfy the following two conditions:

(α 1) $\sum_{k=1}^{\infty} \alpha_k = \infty$; (α 2) $\sum_{k=1}^{\infty} \alpha_k^3 < \infty$. A particular choice is given by $\alpha_k = \frac{1}{k^{\tau}}$ for $k \ge 1$ with $\frac{1}{3} < \tau \le 1$. This includes the choice (1.7) by letting $\tau = \frac{1}{2}$.

2. Preliminaries

The following two lemmas are useful for proving the convergence of our algorithm in this paper.

Lemma 2.1. [11] Assume (a_k) is a sequence of nonnegative real numbers with the property:

$$a_{k+1} \le (1+r_k)a_k + b_k, \quad k \ge 0,$$

where (r_k) and (b_k) are sequences of nonnegative real numbers such that $\sum_{k=0}^{\infty} r_k < \infty$ and $\sum_{k=0}^{\infty} b_k < \infty$. Then (a_k) is bounded and $\lim_{k\to\infty} a_k$ exists.

Lemma 2.2. [5, Lemma 2.5] Let K be a nonempty subset of a Hilbert space H. Assume (x^k) is a bounded sequence in H with the properties:

- (a) $\lim_{k\to\infty} ||x^k z||$ exists for each $z \in K$;
- (b) if x' is a weak cluster point of (x^k) , then $x' \in K$.

Then the full sequence (x^k) converges weakly to a point in K.

We need the demiclosedness principle of nonexpansive mappings as follows.

Lemma 2.3. [9, 2] Let C be a closed convex subset of a Hilbert space H and $T : C \to C$ a nonexpansive mapping. Suppose (v^k) is a sequence in C such that $v^k \to v$ weakly and $v^k - Tv^k \to v^k$ 0 in norm. Then v = Tv.

366

2.1. A cyclic coordinate-update algorithm. Let *H* be a real Hilbert space with the decomposition (1.6). Let us consider the equation (1.1), assuming (1.2) and $zer(S) \neq \emptyset$.

Following [1], we introduce the coordinate mappings (S_i) associated with S as follows: $S_i x := (0, \dots, 0, (Sx)_i, 0, \dots, 0), \quad x \in H$. As a result,

$$Sx = \sum_{i=1}^{m} S_i x, \quad \langle S_i x, S_j x \rangle = 0 \ (i \neq j), \quad \|Sx\|^2 = \sum_{i=1}^{m} \|S_i x\|^2$$

for all $x \in H$.

The cyclic coordinate-update algorithm (CCA) introduced in [1, Algorithm 1] is rephrased below:

(2.8a)
$$(x^{k,0} = x^k,$$

(2.8b)
$$\begin{cases} x^{k,j} = x^{k,j-1} - \alpha_k S_j(x^{k,j-1}), \quad j = 1, 2, \cdots, m, \end{cases}$$

(2.8c) $x^{k+1} = x^{k,m}$.

For $\alpha \in (0, 1)$, Chow, et al [1] introduced two operators T^{α} and E^{α} defined respectively by

$$(2.9) T^{\alpha} := I - \alpha S,$$

(2.10)
$$E^{\alpha} := (I - \alpha S_m)(I - \alpha S_{m-1}) \cdots (I - \alpha S_1).$$

Note that T^{α} is an α -averaged mapping (cf. [3, 14]); indeed, $T^{\alpha} = (1-\alpha)I + \alpha T$. However, each mapping $I - \alpha S_i$ fails, in general, to be nonexpansive; nevertheless, it is Lipschitzian with Lipschitz constant $L_i \leq 2$ for $1 \leq i \leq m$. Put $L := \max\{L_i : 1 \leq i \leq m\}$.

The following fact is easily proved (see [1, Eq. (2.7), page A1285]):

(2.11)
$$||T^{\alpha}x - x^*||^2 \le ||x - x^*||^2 - \alpha(1 - \alpha)||Sx||^2, \quad x \in H, \ x^* \in \operatorname{zer}(S).$$

The CCA (2.8) can also equivalently be reformulated in the form:

(2.12)
$$x^{k+1} = E^{\alpha_k} x^k = (I - \alpha_k S_m) (I - \alpha_k S_{m-1}) \cdots (I - \alpha_k S_1) x^k, \quad k = 0, 1, \cdots.$$

The main convergence result of Chow, et al [1] is the following result.

Theorem 2.2. [1, Theorem 3.4] Assume S is of the form (1.2) with T nonexpansive and $\operatorname{zer}(S) \neq \emptyset$. Assume, in addition, the stepsizes (α_k) satisfy the rule (1.7). Then the sequence (x^k) generated by the CCA (2.8) (or equivalently, (2.12)) converges weakly to a solution of Eq. (1.1).

3. AN IMPROVEMENT OF [1, Theorem 3.4]

In this section we will improve [1, Theorem 3.4] by showing the weak convergence of the CCA (2.8) under the much more general, relaxed conditions (α 1) and (α 2) satisfied by the stepsizes (α_k). To this end we need the lemma below.

Lemma 3.4. Let (α_k) and (β_k) be sequences of nonnegative real numbers. Suppose the following conditions are satisfied:

(i)
$$\sum_{k=1}^{\infty} \alpha_k = \infty$$
;

(ii)
$$\sum_{k=1}^{\infty} \alpha_k \beta_k < \infty;$$

(iii) $\beta_{k+1} - \beta_k \leq c\alpha_k$ for all $k \geq 1$ and some constant c > 0.

Then (β_k) converges to zero.

Proof. Let \mathbb{N} denote the set of positive integers. Given $\varepsilon > 0$. We define a subset N_{ε} of \mathbb{N} by

$$\mathbb{N}_{\varepsilon} := \left\{ k \in \mathbb{N} : \beta_k < \frac{\varepsilon}{2} \right\}.$$

Set $\mathbb{N}^c_{\varepsilon} := \mathbb{N} \setminus \mathbb{N}_{\varepsilon}$.

Since the conditions (i) and (ii) imply that $\liminf_{k\to\infty} \beta_k = 0$, the set \mathbb{N}_{ε} is indeed an infinite subset of \mathbb{N} . Also we have

$$\sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k} \beta_{k} \geq \frac{\varepsilon}{2} \sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k}.$$

By the condition (ii) we find that $\sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k} < \infty$. Consequently, there exists a sufficiently large integer k_{ε} such that

$$\sum_{\substack{k \in \mathbb{N}_{\varepsilon}^{c} \\ k \ge k_{\varepsilon}}} \alpha_{k} < \frac{\varepsilon}{2c}.$$

We now claim that

$$(3.13) \qquad \qquad \beta_k < \varepsilon \quad \text{for all } k > k_{\varepsilon}.$$

As a matter of fact, for fixed $k > k_{\varepsilon}$, if $k \in \mathbb{N}_{\varepsilon}$, then (3.13) holds trivially and we are done. If $k \in \mathbb{N}_{\varepsilon}^{c}$, then, since \mathbb{N}_{ε} is infinite, \mathbb{N}_{ε} has integers that are bigger than k. Let $n \in \mathbb{N}_{\varepsilon}$ be the least integer in \mathbb{N}_{ε} such that k < n. Note that we have $\beta_n < \varepsilon/2$. It follows that (noticing the minimality property of $n \in \mathbb{N}_{\varepsilon}$)

$$\beta_k = \beta_n + (\beta_k - \beta_n) < \frac{\varepsilon}{2} + (\beta_k - \beta_n) = \frac{\varepsilon}{2} + \sum_{\substack{i=k\\i \ge k_\varepsilon}}^{n-1} (\beta_i - \beta_{i+1}) \le \frac{\varepsilon}{2} + c \sum_{\substack{i=k\\i \ge k_\varepsilon}}^{n-1} \alpha_i$$

by (iii) $\le \frac{\varepsilon}{2} + c \sum_{\substack{i \in \mathbb{N}_\varepsilon^c\\i \ge k_\varepsilon}} \alpha_i < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Consequently, (3.13) holds again. This finishes the proof.

Now we are in a position to extend [1, Theorem 3.4] to a more general case where the stepsizes (α_k) can be particularly taken to be $k^{-\tau}$ for all $k \ge 1$ with $\tau \in (1/3, 1]$.

Theorem 3.3. Suppose $\operatorname{zer}(S) \neq \emptyset$ and I - S is nonexpansive. Assume (α_k) satisfies the conditions $(\alpha 1)$ and $(\alpha 2)$ in Section 1. Then the sequence (x^k) generated by CCA (2.12) (i.e., (2.8)) converges weakly to a point in $\operatorname{zer}(S)$.

Proof. We will use the weak convergence lemma (i.e., Lemma 2.2) to prove the theorem. Namely, we will prove that the iterates (x^k) fulfil the two following conditions:

(C1) $\lim_{k\to\infty} ||x^k - x^*||$ exists for every $x^* \in \operatorname{zer}(S)$; (C2) $\omega_w(x^k) \subset \operatorname{zer}(S)$.

We follow the notation and some lines of the proof given in [1] with appropriate modifications and improvements. For $\alpha \in (0, 1)$, put

$$R \equiv R_{\alpha} := \frac{1}{\alpha} (T^{\alpha} - E^{\alpha}).$$

Here T^{α} and E^{α} are defined by (2.9) and (2.10), respectively. Below is an estimate given in [1, Lemma 3.1]:

(3.14)
$$||Rx|| \le \frac{\alpha Lm}{\sqrt{2}} (1+\alpha L)^m ||Sx|| \le \alpha c_m ||Sx||, \quad x \in H,$$

where $c_m = \frac{mL}{\sqrt{2}}(1+L)^m$. Observing $E^{\alpha} = T^{\alpha} - \alpha R$ and using the inequality

$$||u+v||^2 \le ||u||^2 + 2\langle v, u+v \rangle, \quad u, v \in H,$$

we get, for $x \in H$ and $x^* \in \operatorname{zer}(S)$,

$$||E^{\alpha}x - x^*||^2 = ||(T^{\alpha}x - x^*) - \alpha Rx||^2 \le ||T^{\alpha}x - x^*||^2 - 2\alpha \langle Rx, E^{\alpha}x - x^* \rangle$$

368

A Cyclic Coordinate-update Fixed Point Algorithm

$$\leq \|T^{\alpha}x - x^*\|^2 + 2\alpha \|Rx\| \|E^{\alpha}x - x^*\|$$

By Young's inequality, we get, for any $\eta > 0$,

$$||E^{\alpha}x - x^*||^2 \le ||T^{\alpha}x - x^*||^2 + \alpha \eta^{-1} ||Rx||^2 + \alpha \eta ||E^{\alpha}x - x^*||^2.$$

It turns out that

(3.15)
$$\|E^{\alpha}x - x^*\|^2 \le \frac{1}{1 - \alpha\eta} \|T^{\alpha}x - x^*\|^2 + \frac{\alpha}{\eta(1 - \alpha\eta)} \|Rx\|^2.$$

Combining (3.14) and (3.15) yields

(3.16)
$$\|E^{\alpha}x - x^*\|^2 \leq \frac{1}{1 - \alpha\eta} \|T^{\alpha}x - x^*\|^2 + \frac{\alpha^3 c_m^2}{\eta(1 - \alpha\eta)} \|Sx\|^2.$$

By (2.11) we furthermore derive that

(3.17)
$$\|E^{\alpha}x - x^*\|^2 \le \frac{1}{1 - \alpha\eta} \left(\|x - x^*\|^2 - \left(\alpha(1 - \alpha) - \frac{\alpha^3 c_m^2}{\eta}\right) \|Sx\|^2 \right).$$

Inserting $x := x^k$, $\alpha := \alpha_k$, $\eta := \eta_k$ into (3.17), and recalling $x^{k+1} = E^{\alpha_k} x^k$, we obtain

$$(3.18) \|x^{k+1} - x^*\|^2 \le (1 + \xi_k) \left(\|x^k - x^*\|^2 - \left(\alpha_k (1 - \alpha_k) - \frac{\alpha_k^3 c_m^2}{\eta_k} \right) \|Sx^k\|^2 \right),$$

where $\xi_k = \frac{\alpha_k \eta_k}{1 - \alpha_k \eta_k}$. Take

$$\eta_k := \frac{2\alpha_k^2 c_m^2}{1 - \alpha_k}, \quad k > 1.$$

Then it is easy to find that

$$\xi_k = \frac{2c_m^2 \alpha_k^3}{1 - \alpha_k - 2c_m^2 \alpha_k^3}.$$

Since $\alpha_k \to 0$, it is not hard to find from (α_2) that $\xi_k = O(\alpha_k^3)$. Consequently, the series

$$(3.19) \qquad \qquad \sum_{k=1}^{\infty} \xi_k < \infty$$

A consequence of (3.18) is that

(3.20)
$$\|x^{k+1} - x^*\|^2 \le (1+\xi_k) \|x^k - x^*\|^2.$$

By (3.19) and (3.20) and applying Lemma 2.1, we have verified (C1). Returning to (3.18) we immediately get

$$(3.21) \qquad \qquad \sum_{k=1}^{\infty} \alpha_k \|Sx^k\|^2 < \infty$$

Since (x^k) is bounded and S is 2-Lipschitzian, we have a constant $\tilde{c} > 0$ such that $||x^k|| \le c$ and $||Sx^k|| \le \tilde{c}$ for all k. Set $\beta_k = ||Sx^k||^2$. It follows that

$$\begin{aligned} |\beta_{k+1} - \beta_k| &= |\|Sx^{k+1}\|^2 - \|Sx^k\|^2| \le \|Sx^{k+1} - Sx^k\|(\|Sx^{k+1}\| + \|Sx^k\|) \le 4\tilde{c}\|x^{k+1} - x^k\|.\\ \text{Since } x^{k+1} &= E^{\alpha_k}x^k = x^k - \alpha_k(Sx^k + Rx^k), \text{ it follows from (3.14) that}\\ (3.22) \quad |\beta_{k+1} - \beta_k| \le 4\tilde{c}\alpha_k(\|Sx^k\| + \|Rx^k\|) \le 4\tilde{c}\alpha_k(1 + \alpha_k c_m)\|Sx^k\| \le 4\tilde{c}^2\alpha_k(1 + c_m) = c\alpha_k,\\ \text{where } c &= 4\tilde{c}^2(1 + c_m).\\ \text{Finally, by (2.21) and (2.22), we can apply Lemma 2.4 to get } \beta \to 0. \text{ Altermatively, yet} \end{aligned}$$

Finally, by (3.21) and (3.22) we can apply Lemma 3.4 to get $\beta_k \to 0$. Alternatively, we get $||x^k - Tx^k|| = ||Sx^k|| \to 0$. This further enables us to apply Lemma 2.3 to obtain $\omega_w(x^k) \subset \operatorname{Fix}(T) = \operatorname{zer}(S)$. That is, (C2) is proven. This completes the proof.

Corollary 3.1. Suppose $\operatorname{zer}(S) \neq \emptyset$ and I - S is nonexpansive. If the stepsizes (α_k) are given by $\alpha_k = \frac{1}{k^{\tau}}$ for all $k \ge 1$ and some $\tau \in (\frac{1}{3}, 1]$, then the sequence (x^k) generated by the CCA (2.12) converges weakly to a point in $\operatorname{zer}(S)$.

Remark 3.1. Corollary 3.1 contains the main convergence result of [1, Theorem 3.4] as a special case (corresponding to the choice $\tau = \frac{1}{2}$).

Remark 3.2. The divergence condition (1.4) guarantees the weak convergence of the Krasnoselskii-Mann algorithm (1.3). Our conditions (α 1) and (α 2) are stronger than the divergence condition (1.4). It is unclear if the CCA (2.8) would converge weakly if the stepsizes (α_k) satisfy the divergence condition (1.4). In particular, we do not know if the CCA (2.8) converges weakly if the stepsizes (α_k) satisfy the two conditions below:

•
$$\sum_{k=1}^{\infty} \alpha_k = \infty$$
, and

• $\sum_{k=1}^{\infty} \alpha_k^p < \infty$ for any fixed, arbitrarily big positive integer *p*.

Note that these conditions with p = 2 are employed in incremental subgradient methods [7]. Note also that a positive answer to this question implies that the CCA (2.8) generates weakly convergent iterates (x^k) , with stepsizes $\alpha_k = \frac{1}{k^{\tau}}$ for all $k \ge 1$ and $\tau \in (0, 1]$.

REFERENCES

- Chow, Y. T., Wu, T. and Yin, W., Cyclic coordinate-update algorithms for fixed-point problems: analysis and applcations, SIAM J. Sci. Comput., 39 (2017), No. 4, A1280–A1300
- [2] Geobel, K. and Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, 1990
- [3] He, H. and Xu, H. K., Perturbation resilience and superiorization methodology of averaged mappings, Inverse Problems, 33 (2017), No. 4, 044007, 11 pp.
- [4] Krasnoselskii, M. A., Two remarks on the method of successive approximations, Uspehi Math. Nauk., 10 (1955), 123–127 (in Russian)
- [5] Lopez Acedo, G. and Xu, H. K., Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67 (2007), 2258–2271
- [6] Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510
- [7] Nedic, A. and Bertsekas, D. P., Incremental subgradient methods for nondifferentiable optimization, SIAM J. Option, 12 (2001), No. 1 ,109–138
- [8] O'Hara, J. G., Pillay, P. and Xu, H. K., Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal., 64 (2006), 2022–2042
- [9] Opial, Z., Weak convergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595–597
- [10] Peng, Z., Xu, Y., Yan, M. and Yin, W., Arock: An algorithmic framework for asynchronous parallel coordinate updates, SIAM J. Sci. Comput., 38 (2016), A2851–A2879
- [11] Polyak, B. T., Introduction to Optimization, Optimization Software, New York, 1987
- [12] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276
- [13] Wang, F. and Xu, H. K., Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105–4111
- [14] Xu, H. K., Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), No. 2, 360–378
- [15] Xu, H. K., A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021–2034

DEPARTMENT OF MATHEMATICS HANGZHOU DIANZI UNIVERSITY SCHOOL OF SCIENCE HANGZHOU 310018, CHINA *E-mail address*: 161070021@hdu.edu.cn, xuhk@hdu.edu.cn