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A cyclic coordinate-update fixed point algorithm

BO PENG and HONG-KUN XU

ABSTRACT. We prove that a cyclic coordinate fixed point algorithm for nonexpansive mappings when the
underlying Hilbert space is decomposed into a Cartesian product of finitely many block spaces is weakly con-
vergent to a fixed point of the mapping under investigation. Our result relaxes a condition imposed on the
stepsizes of Theorem 3.4 of Chow, et al [Chow, Y. T., Wu, T. and Yin, W., Cyclic coordinate-update algorithms for
fixed-point problems: analysis and applcations, SIAM J. Sci. Comput., 39 (2017), No. 4, A1280–A1300].

1. INTRODUCTION

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Consider
the problem of finding a zero of a maximal monotone operator S:

(1.1) Sx = 0,

where S : H → H is a maximal monotone operator. Assume S is of the form

(1.2) S = I − T,

where T : H → H is a nonexpansive mapping (i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H).
Consequently, S is Lipschitzian with Lipschitz constant not bigger than two. We use
zer(S) and Fix(T ) to denote the set of solutions of Eq. (1.1) and the set of fixed points of
T , respectively. It is evident that zer(S) = Fix(T ) = {x ∈ H : Tx = x}. We always assume
that the solution set zer(S) (or Fix(T )) is nonempty. Note that in our setting, finding a
zero of S is equivalent to finding a fixed point of T . Therefore, the Kransnoselskii-Mann
algorithm (KM) [4, 6] is applicable to Eq. (1.1). Recall that KM generates a sequence (xk)
through the iteration scheme:

(1.3) xk+1 = (1− αk)xk + αkTx
k, k = 0, 1, 2, · · · ,

where the initial guess x0 ∈ H is chosen arbitrarily, and αk ∈ [0, 1] for all k.
The KM (1.3) has extensively been studied (see [5, 8, 10, 13, 15] and references therein).

A basic convergence result of KM (1.3) is given below.

Theorem 1.1. (cf. [12]) Suppose Fix(T ) 6= ∅ and the stepsizes (αk) satisfies the divergence
condition:

(1.4)
∞∑
k=0

αk(1− αk) =∞.

Then the sequence (xk) generated by KM (1.3) converges weakly to a point in Fix(T ).
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Note that a standard choice of the stepsizes (αk) that satisfies the divergence condition
(1.4) is given by

(1.5) αk =
1

kτ
, k ≥ 1, with 0 < τ ≤ 1.

Chow, et al [1] applied KM (1.3) to find a zero of a maximal monotone mapping S = I−
T (with T being nonexpansive) in the case where the underlying space H is decomposed
into a Cartesian product of finitely many block spaces:

(1.6) H = H1 ×H2 × · · · ×Hm

wherem ≥ 1 is an integer, andHi is a Hilbert space for each 1 ≤ i ≤ m. In this framework,
each x ∈ H is decomposed into x = (x1, · · · , xm), where xi denotes the ith coordinate of
x (we write (x)i = xi); i.e., the projection of x onto the ith block space Hi.

Basing on KM (1.3), Chow, et al [1] introduced a cyclic coordinate-update algorithm
[1, Algorithm 1, page A1283], and proved [1, Theorem 3.4, page A1288] the weak con-
vergence of their Algorithm 1 under the assumption that the stepsizes (αk) are chosen
as

(1.7) αk =
1√
k
, k ≥ 1.

The purpose of this paper is to prove that [1, Algorithm 1] remains to be weakly conver-
gent to a solution of Eq. (1.1) if the stepsizes (αk) are chosen to satisfy the following two
conditions:

(α1)
∑∞
k=1 αk =∞; (α2)

∑∞
k=1 α

3
k <∞.

A particular choice is given by αk = 1
kτ for k ≥ 1 with 1

3 < τ ≤ 1. This includes the
choice (1.7) by letting τ = 1

2 .

2. PRELIMINARIES

The following two lemmas are useful for proving the convergence of our algorithm in
this paper.

Lemma 2.1. [11] Assume (ak) is a sequence of nonnegative real numbers with the property:

ak+1 ≤ (1 + rk)ak + bk, k ≥ 0,

where (rk) and (bk) are sequences of nonnegative real numbers such that
∑∞
k=0 rk < ∞ and∑∞

k=0 bk <∞. Then (ak) is bounded and limk→∞ ak exists.

Lemma 2.2. [5, Lemma 2.5] Let K be a nonempty subset of a Hilbert space H . Assume (xk) is
a bounded sequence in H with the properties:

(a) limk→∞ ‖xk − z‖ exists for each z ∈ K;
(b) if x′ is a weak cluster point of (xk), then x′ ∈ K.

Then the full sequence (xk) converges weakly to a point in K.

We need the demiclosedness principle of nonexpansive mappings as follows.

Lemma 2.3. [9, 2] Let C be a closed convex subset of a Hilbert space H and T : C → C a
nonexpansive mapping. Suppose (vk) is a sequence inC such that vk → v weakly and vk−Tvk →
0 in norm. Then v = Tv.
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2.1. A cyclic coordinate-update algorithm. LetH be a real Hilbert space with the decom-
position (1.6). Let us consider the equation (1.1), assuming (1.2) and zer(S) 6= ∅.

Following [1], we introduce the coordinate mappings (Si) associated with S as follows:
Six := (0, · · · , 0, (Sx)i, 0, · · · , 0), x ∈ H. As a result,

Sx =

m∑
i=1

Six, 〈Six, Sjx〉 = 0 (i 6= j), ‖Sx‖2 =

m∑
i=1

‖Six‖2

for all x ∈ H .
The cyclic coordinate-update algorithm (CCA) introduced in [1, Algorithm 1] is rephra-

sed below:


xk,0 = xk,(2.8a)

xk,j = xk,j−1 − αkSj(xk,j−1), j = 1, 2, · · · ,m,(2.8b)

xk+1 = xk,m.(2.8c)
For α ∈ (0, 1), Chow, et al [1] introduced two operators Tα andEα defined respectively

by

Tα := I − αS,(2.9)

Eα := (I − αSm)(I − αSm−1) · · · (I − αS1).(2.10)

Note that Tα is an α-averaged mapping (cf. [3, 14]); indeed, Tα = (1−α)I+αT . However,
each mapping I−αSi fails, in general, to be nonexpansive; nevertheless, it is Lipschitzian
with Lipschitz constant Li ≤ 2 for 1 ≤ i ≤ m. Put L := max{Li : 1 ≤ i ≤ m}.

The following fact is easily proved (see [1, Eq. (2.7), page A1285]):

(2.11) ‖Tαx− x∗‖2 ≤ ‖x− x∗‖2 − α(1− α)‖Sx‖2, x ∈ H, x∗ ∈ zer(S).

The CCA (2.8) can also equivalently be reformulated in the form:

xk+1 = Eαkxk = (I − αkSm)(I − αkSm−1) · · · (I − αkS1)x
k, k = 0, 1, · · · .(2.12)

The main convergence result of Chow, et al [1] is the following result.

Theorem 2.2. [1, Theorem 3.4] Assume S is of the form (1.2) with T nonexpansive and zer(S) 6=
∅. Assume, in addition, the stepsizes (αk) satisfy the rule (1.7). Then the sequence (xk) generated
by the CCA (2.8) (or equivalently, (2.12)) converges weakly to a solution of Eq. (1.1).

3. AN IMPROVEMENT OF [1, Theorem 3.4]

In this section we will improve [1, Theorem 3.4] by showing the weak convergence of
the CCA (2.8) under the much more general, relaxed conditions (α1) and (α2) satisfied by
the stepsizes (αk). To this end we need the lemma below.

Lemma 3.4. Let (αk) and (βk) be sequences of nonnegative real numbers. Suppose the following
conditions are satisfied:

(i)
∑∞
k=1 αk =∞;

(ii)
∑∞
k=1 αkβk <∞;

(iii) βk+1 − βk ≤ cαk for all k ≥ 1 and some constant c > 0.
Then (βk) converges to zero.

Proof. Let N denote the set of positive integers. Given ε > 0. We define a subset Nε of N
by

Nε :=
{
k ∈ N : βk <

ε

2

}
.



368 B. Peng and H. K. Xu

Set Ncε := N \ Nε.
Since the conditions (i) and (ii) imply that lim infk→∞ βk = 0, the set Nε is indeed an

infinite subset of N. Also we have∑
k∈Ncε

αkβk ≥
ε

2

∑
k∈Ncε

αk.

By the condition (ii) we find that
∑
k∈Ncε

αk <∞. Consequently, there exists a sufficiently
large integer kε such that ∑

k∈Ncε
k≥kε

αk <
ε

2c
.

We now claim that

(3.13) βk < ε for all k > kε.

As a matter of fact, for fixed k > kε, if k ∈ Nε, then (3.13) holds trivially and we are done.
If k ∈ Ncε, then, since Nε is infinite, Nε has integers that are bigger than k. Let n ∈ Nε be the
least integer in Nε such that k < n. Note that we have βn < ε/2. It follows that (noticing
the minimality property of n ∈ Nε)

βk = βn + (βk − βn) <
ε

2
+ (βk − βn) =

ε

2
+

n−1∑
i=k

(βi − βi+1) ≤
ε

2
+ c

n−1∑
i=k

αi

by (iii) ≤ ε

2
+ c

∑
i∈Ncε
i≥kε

αi <
ε

2
+
ε

2
= ε.

Consequently, (3.13) holds again. This finishes the proof. �

Now we are in a position to extend [1, Theorem 3.4] to a more general case where the
stepsizes (αk) can be particularly taken to be k−τ for all k ≥ 1 with τ ∈ (1/3, 1].

Theorem 3.3. Suppose zer(S) 6= ∅ and I − S is nonexpansive. Assume (αk) satisfies the con-
ditions (α1) and (α2) in Section 1. Then the sequence (xk) generated by CCA (2.12) (i.e., (2.8))
converges weakly to a point in zer(S).

Proof. We will use the weak convergence lemma (i.e., Lemma 2.2) to prove the theorem.
Namely, we will prove that the iterates (xk) fulfil the two following conditions:

(C1) limk→∞ ‖xk − x∗‖ exists for every x∗ ∈ zer(S);
(C2) ωw(xk) ⊂ zer(S).

We follow the notation and some lines of the proof given in [1] with appropriate modifi-
cations and improvements. For α ∈ (0, 1), put

R ≡ Rα :=
1

α
(Tα − Eα).

Here Tα and Eα are defined by (2.9) and (2.10), respectively. Below is an estimate given
in [1, Lemma 3.1]:

(3.14) ‖Rx‖ ≤ αLm√
2

(1 + αL)m‖Sx‖ ≤ αcm‖Sx‖, x ∈ H,

where cm = mL√
2
(1 + L)m. Observing Eα = Tα − αR and using the inequality

‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉, u, v ∈ H,
we get, for x ∈ H and x∗ ∈ zer(S),

‖Eαx− x∗‖2 = ‖(Tαx− x∗)− αRx‖2 ≤ ‖Tαx− x∗‖2 − 2α〈Rx,Eαx− x∗〉
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≤ ‖Tαx− x∗‖2 + 2α‖Rx‖‖Eαx− x∗‖.
By Young’s inequality, we get, for any η > 0,

‖Eαx− x∗‖2 ≤ ‖Tαx− x∗‖2 + αη−1‖Rx‖2 + αη‖Eαx− x∗‖2.

It turns out that

‖Eαx− x∗‖2 ≤ 1

1− αη
‖Tαx− x∗‖2 + α

η(1− αη)
‖Rx‖2.(3.15)

Combining (3.14) and (3.15) yields

‖Eαx− x∗‖2 ≤ 1

1− αη
‖Tαx− x∗‖2 + α3c2m

η(1− αη)
‖Sx‖2.(3.16)

By (2.11) we furthermore derive that

‖Eαx− x∗‖2 ≤ 1

1− αη

(
‖x− x∗‖2 −

(
α(1− α)− α3c2m

η

)
‖Sx‖2

)
.(3.17)

Inserting x := xk, α := αk, η := ηk into (3.17), and recalling xk+1 = Eαkxk, we obtain

‖xk+1 − x∗‖2 ≤ (1 + ξk)

(
‖xk − x∗‖2 −

(
αk(1− αk)−

α3
kc

2
m

ηk

)
‖Sxk‖2

)
,(3.18)

where ξk = αkηk
1−αkηk . Take

ηk :=
2α2

kc
2
m

1− αk
, k > 1.

Then it is easy to find that

ξk =
2c2mα

3
k

1− αk − 2c2mα
3
k

.

Since αk → 0, it is not hard to find from (α2) that ξk = O
(
α3
k

)
. Consequently, the series

(3.19)
∞∑
k=1

ξk <∞.

A consequence of (3.18) is that

‖xk+1 − x∗‖2 ≤ (1 + ξk)‖xk − x∗‖2.(3.20)

By (3.19) and (3.20) and applying Lemma 2.1, we have verified (C1). Returning to (3.18)
we immediately get

(3.21)
∞∑
k=1

αk‖Sxk‖2 <∞.

Since (xk) is bounded and S is 2-Lipschitzian, we have a constant c̃ > 0 such that ‖xk‖ ≤ c
and ‖Sxk‖ ≤ c̃ for all k. Set βk = ‖Sxk‖2. It follows that

|βk+1−βk| = |‖Sxk+1‖2−‖Sxk‖2| ≤ ‖Sxk+1−Sxk‖(‖Sxk+1‖+ ‖Sxk‖) ≤ 4c̃‖xk+1−xk‖.

Since xk+1 = Eαkxk = xk − αk(Sxk +Rxk), it follows from (3.14) that

(3.22) |βk+1−βk| ≤ 4c̃αk(‖Sxk‖+‖Rxk‖) ≤ 4c̃αk(1+αkcm)‖Sxk‖ ≤ 4c̃2αk(1+cm) = cαk,

where c = 4c̃2(1 + cm).
Finally, by (3.21) and (3.22) we can apply Lemma 3.4 to get βk → 0. Alternatively, we

get ‖xk − Txk‖ = ‖Sxk‖ → 0. This further enables us to apply Lemma 2.3 to obtain
ωw(x

k) ⊂ Fix(T ) = zer(S). That is, (C2) is proven. This completes the proof. �
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Corollary 3.1. Suppose zer(S) 6= ∅ and I −S is nonexpansive. If the stepsizes (αk) are given by
αk = 1

kτ for all k ≥ 1 and some τ ∈ ( 13 , 1], then the sequence (xk) generated by the CCA (2.12)
converges weakly to a point in zer(S).

Remark 3.1. Corollary 3.1 contains the main convergence result of [1, Theorem 3.4] as a
special case (corresponding to the choice τ = 1

2 ).

Remark 3.2. The divergence condition (1.4) guarantees the weak convergence of the
Krasnoselskii-Mann algorithm (1.3). Our conditions (α1) and (α2) are stronger than the
divergence condition (1.4). It is unclear if the CCA (2.8) would converge weakly if the
stepsizes (αk) satisfy the divergence condition (1.4). In particular, we do not know if the
CCA (2.8) converges weakly if the stepsizes (αk) satisfy the two conditions below:

•
∑∞
k=1 αk =∞, and

•
∑∞
k=1 α

p
k <∞ for any fixed, arbitrarily big positive integer p.

Note that these conditions with p = 2 are employed in incremental subgradient methods
[7]. Note also that a positive answer to this question implies that the CCA (2.8) generates
weakly convergent iterates (xk), with stepsizes αk = 1

kτ for all k ≥ 1 and τ ∈ (0, 1].
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