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A generalization of the (CN) inequality and its applications

THANOMSAK LAOKUL1 and BANCHA PANYANAK2

ABSTRACT. We extend the (CN) inequality of Bruhat and Tits in CAT(0) spaces to the general setting of
uniformly convex hyperbolic spaces. We also show that, under some appropriate conditions, the sequence of
Ishikawa iteration defined by Panyanak converges to a strict fixed point of a multi-valued Suzuki mapping.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, N stands for the set of natural numbers and R stands for the set
of real numbers.

Let (X, d) be a metric space, x, y ∈ X and l := d(x, y). A geodesic joining x to y is a
mapping c : [0, l] → X such that c(0) = x, c(l) = y, and d(c(t), c(s)) = |t − s| for all
t, s ∈ [0, l]. The image of c is called a geodesic segment joining x and y. The space X is said
to be a geodesic space (resp. D−geodesic space) if every two points of X (resp. every two
points of distance smaller than D) are joined by a geodesic. A subset E of X is said to
be convex if E includes every geodesic segment joining any two of its points. The set E is
said to be bounded if

diam(E) := sup{d(x, y) : x, y ∈ E} <∞.

We denote by 〈·, ·〉 the Euclidean scalar product in R3. By S2 we denote the unit sphere
in R3, that is the set

{
(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1

}
. The spherical distance on S2 is

defined by
dS2(x, y) := arccos〈x, y〉 for all x, y ∈ S2.

Definition 1.1. ([3]) Given κ ≥ 0, we denote by M2
κ the following metric spaces:

(i) if κ = 0 then M2
κ is the Euclidean space E2;

(ii) if κ > 0 thenM2
κ is obtained from the spherical space S2 by multiplying the distance

function by 1/
√
κ.

A geodesic triangle 4(x, y, z) in a geodesic space (X, d) consists of three points x, y, z
in X (the vertices of 4) and three geodesic segments between each pair of vertices (the
edges of 4). A comparison triangle for a geodesic triangle 4(x, y, z) in (X, d) is a triangle
4(x̄, ȳ, z̄) in M2

κ such that

d(x, y) = dM2
κ
(x̄, ȳ), d(y, z) = dM2

κ
(ȳ, z̄), and d(z, x) = dM2

κ
(z̄, x̄).

It is well known that such a comparison triangle exists if d(x, y) + d(y, z) + d(z, x) < 2Dκ,
where Dκ = π/

√
κ for κ > 0 and D0 = ∞. Notice also that the comparison triangle
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is unique up to isometry. A point ū ∈ [x̄, ȳ] is called a comparison point for u ∈ [x, y] if
d(x, u) = dM2

κ
(x̄, ū).

A metric space (X, d) is said to be a CAT(κ) space if it is Dκ−geodesic and for each two
points u, v of any geodesic triangle 4(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ

and for their comparison points ū, v̄ in4(x̄, ȳ, z̄), one has

d(u, v) ≤ dM2
κ
(ū, v̄).

Notice that if (X, d) is a CAT(0) space, then for each x, y, z ∈ X we have

(CN) d2(x,m) ≤ 1

2
d2(x, y)+

1

2
d2(x, z)−1

4
d2(y, z),

where m is the midpoint of y and z. This is the (CN) inequality of Bruhat and Tits [4]
which has been used to prove many results in metric fixed point theory.

The concept of uniformly convex hyperbolic spaces which is more general than the
concept of CAT(κ) spaces was introduced by Leustean [15] in 2007.

Definition 1.2. A hyperbolic space is a metric space (X, d) together with a function W :
X ×X × [0, 1]→ X such that for all x, y, z, w ∈ X and t, s ∈ [0, 1], we have

(W1) d(z,W (x, y, t)) ≤ (1− t)d(z, x) + td(z, y);
(W2) d (W (x, y, t),W (x, y, s)) = |t− s|d(x, y);
(W3) W (x, y, t) = W (y, x, 1− t);
(W4) d(W (x, z, t),W (y, w, t)) ≤ (1− t)d(x, y) + td(z, w).

If x, y ∈ X and t ∈ [0, 1], then we use the notation (1− t)x⊕ ty for W (x, y, t). It follows
from (W1) that

d(x, (1− t)x⊕ ty) = td(x, y) and d(y, (1− t)x⊕ ty) = (1− t)d(x, y).

A nonempty subset E of X is said to be convex if [x, y] ⊆ E for all x, y ∈ E, where
[x, y] := {(1− t)x⊕ ty : t ∈ [0, 1]}.

Definition 1.3. The hyperbolic space (X, d,W ) is called uniformly convex if for any r ∈
(0,∞) and ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all x, y, z ∈ X with d(x, z) ≤ r,
d(y, z) ≤ r and d(x, y) ≥ rε, we have

d

(
1

2
x⊕ 1

2
y, z

)
≤ (1− δ)r.

A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r ∈
(0,∞) and ε ∈ (0, 2] is called a modulus of uniform convexity. We call η monotone if it is a
nonincreasing function of r for every fixed ε.

The concept of p−uniform convexity was used extensively by Xu [22]. Its nonlinear
version for p = 2 was studied by Khan and Khamsi [12]. Now, we give the definition of a
2-uniformly convex hyperbolic space.

Definition 1.4. Let (X, d) be a uniformly convex hyperbolic space. For each r ∈ (0,∞)
and ε ∈ (0, 2], we define

Ψ(r, ε) := inf

{
1

2
d2(x, z) +

1

2
d2(y, z)− d2(

1

2
x⊕ 1

2
y, z)

}
,

where the infimum is taken over all x, y, z ∈ X such that d(x, z) ≤ r, d(y, z) ≤ r, and
d(x, y) ≥ rε. We say that (X, d) is 2-uniformly convex if

cM := inf

{
Ψ(r, ε)

r2ε2
: r ∈ (0,∞), ε ∈ (0, 2]

}
> 0.
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From the definition of cM , we obtain the following inequality:

(1.1) d2(
1

2
x⊕ 1

2
y, z) ≤ 1

2
d2(x, z) +

1

2
d2(y, z)− cMd2(x, y),

for all x, y, z ∈ X.

Remark 1.1. (1) Every uniformly convex Banach space is a 2-uniformly convex hyperbolic
space (see [22]).

(2) IfX is a CAT(0) space, then it is a 2-uniformly convex hyperbolic space with cM = 1
4

(see [12]).
(3) If κ > 0 and X is a CAT(κ) space with diam(X) ≤ π/2−ε√

κ
for some ε ∈ (0, π/2), then

by Lemma 2.3 of [21] we can conclude that

Ψ(r, ε) =
r2ε2R

8
,

where R = (π− 2ε) tan(ε). This clearly implies that X is a 2-uniformly convex hyperbolic
space with cM = R

8 .

In 2013, Ibn Dehaish et al. [10] obtained the following result and applied it to prove the
convergence of Mann iteration process for asymptotic pointwise nonexpansive mappings
in 2-uniformly convex hyperbolic spaces.

Theorem 1.1. Let (X, d) be a 2-uniformly convex hyperbolic space. Then

(1.2) d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− 4cM min{t2, (1− t)2}d2(x, y),

for all x, y, z ∈ X and t ∈ [0, 1].

It is well known that the Ishikawa iteration process [11], which involves two sequences
of scalars, is a generalization of the Mann iteration process [18], which involves one se-
quence of scalars. In this paper, we generalize Theorem 1.1 by replacing the number
min{t2, (1 − t)2} with t(1 − t) and show that our result can be used to prove the con-
vergence of Ishikawa iteration process for multi-valued Suzuki mappings. Our method
provides an efficient way of extending fixed point theorems in uniformly convex Banach
spaces or even in CAT(κ) spaces to the general setting of uniformly convex hyperbolic
spaces.

2. MAIN RESULT

Theorem 2.2. Let (X, d) be a 2-uniformly convex hyperbolic space. Then

(2.3) d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− 4cM t(1− t)d2(x, y),

for all x, y, z ∈ X and t ∈ [0, 1].

Proof. This proof is patterned after the proof of Lemma 2.5 in [6]. We first prove the result
for t = k

2n , where k, n ∈ N are such that k ≤ 2n. We use induction on n. If n = 1, then
t ∈ { 12 , 1}. By (1.1) we can conclude that (2.3) is true for t = 1

2 . If t = 1, then (2.3) is true
if and only if d(y, z) ≤ d(y, z). Therefore, (2.3) is true for n = 1. Now, suppose that (2.3) is
true for t = k

2n . Hence,

(2.4) d2((1− k

2n
)x⊕ k

2n
y, z) ≤ (1− k

2n
)d2(x, z) +

k

2n
d2(y, z)− 4cM

k

2n
(1− k

2n
)d2(x, y),

for all k ∈ N, k ≤ 2n and x, y, z ∈ X.
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We have to prove (2.3) for t = k
2n+1 , where k ∈ N, k ≤ 2n+1. If we denote u := (1 −

k
2n+1 )x⊕ ( k

2n+1 )y, then we have to prove

(2.5) d2(u, z) ≤ (1− k

2n+1
)d2(x, z) +

k

2n+1
d2(y, z)− 4cM

k

2n+1
(1− k

2n+1
)d2(x, y).

First, we show (2.5) for k ≤ 2n, that is, k
2n ∈ [0, 1]. Let α := (1 − k

2n )x ⊕ ( k
2n )y and

β := 1
2x⊕

1
2α. Then d(x, β) = 1

2d(x, α) = k
2n+1 d(x, y) = d(x, u). Since u, β ∈ [x, y], by (W2)

we can conclude that u = β. Applying (1.1) and the induction hypothesis, we obtain

d2(u, z) = d2(
1

2
x⊕ 1

2
α, z)

≤ 1

2
d2(x, z) +

1

2
d2(α, z)− cMd2(x, α)

≤ 1

2
d2(x, z) +

1

2
[(1− k

2n
)d2(x, z) +

k

2n
d2(y, z)− 4cM

k

2n
(1− k

2n
)d2(x, y)]

− cM [
k

2n
d(x, y)]2

= (1− k

2n+1
)d2(x, z) +

k

2n+1
d2(y, z)− 4cM

k

2n+1
(1− k

2n+1
)d2(x, y).

Now, suppose that 2n < k ≤ 2n+1 and let p := 2n+1− k. Then p ≤ 2n, by applying (2.5)
for p, we get that

d2(u, z) = d2(
p

2n+1
x⊕ (1− p

2n+1
)y, z)

= d2((1− p

2n+1
)y ⊕ p

2n+1
x, z)

≤ (1− p

2n+1
)d2(y, z) +

p

2n+1
d2(x, z)− 4cM

p

2n+1
(1− p

2n+1
)d2(x, y)

= (1− k

2n+1
)d2(x, z) +

k

2n+1
d2(y, z)− 4cM

k

2n+1
(1− k

2n+1
)d2(x, y).

Let D := {k/2n : k, n ∈ N, k ≤ 2n}. Then D is a dense subset of [0, 1]. For each t ∈ [0, 1],
there exists a sequence {tk} in D such that lim

k→∞
tk = t. Now, we have

(2.6) d2((1− tk)x⊕ tky, z) ≤ (1− tk)d2(x, z) + tkd
2(y, z)− 4cM tk(1− tk)d2(x, y).

Notice from (W2) that the function f : [0, 1] → [x, y] defined by f(t) := (1 − t)x ⊕ ty is
continuous. Letting k →∞ from (2.6), we get (2.3). �

3. APPLICATIONS

In this section, we apply Theorem 2.2 to prove ∆ and strong convergence theorems
for the Ishikawa iteration process defined by Panyanak [19]. From now on, X stands
for a complete 2-uniformly convex hyperbolic space with monotone modulus of uniform
convexity.

Let x ∈ X and E be a nonempty subset of X. The distance from x to E is defined by

dist(x,E) := inf{d(x, y) : y ∈ E}.

The radius of E relative to x is defined by

R(x,E) := sup{d(x, y) : y ∈ E}.
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We denote by K(E) the family of nonempty compact subsets of E. The Pompeiu-Hausdorff
distance on K(E) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ K(E).

Definition 3.5. ([9]) Let E be a nonempty subset of X. A multi-valued mapping T : E →
K(E) is said to be Suzuki if for each x, y ∈ E,

1

2
dist(x, T (x)) ≤ d(x, y) implies H(T (x), T (y)) ≤ d(x, y).

Let µ ≥ 1. The mapping T is said to satisfy condition (Eµ) if for each x, y ∈ E, we have

dist(x, T (y)) ≤ µdist(x, T (x)) + d(x, y).

It is known from Lemma 3.2 of [7] that every Suzuki mapping satisfies condition (E3).
An element x inE is called a fixed point of T if x ∈ T (x).Moreover, if {x} = T (x), then x

is called a strict fixed point (or an endpoint) of T . It is denoted by Fix(T ) the set of all fixed
points of T and by SFix(T ) the set of all strict fixed points of T. Using these notations, for
any mapping T : E → K(E), we have the following statements:
• SFix(T ) ⊆ Fix(T ).
• x ∈ Fix(T ) if and only if dist(x, T (x)) = 0.
• x ∈ SFix(T ) if and only if R(x, T (x)) = 0.

The existence of fixed points and strict fixed points for multi-valued Suzuki mappings
was widely studied by many authors, see [1, 7, 8, 14, 17] and the references therein.
In 2018, Kudtha and Panyanak [14] proved that a Suzuki mapping T on a nonempty
bounded closed convex subsetE ofX has a strict fixed point if and only if inf{R(x, T (x)) :
x ∈ E} = 0.Notice also that ifE is closed inX and T : E → K(E) is Suzuki, then SFix(T )
is also closed in X (see [5]).

A multi-valued mapping T : E → K(E) is said to be nonexpansive if H(T (x), T (y)) ≤
d(x, y) for all x, y ∈ E. The mapping T is said to be quasi-nonexpansive if for each x ∈ E
and y ∈ Fix(T ), one has H(T (x), T (y)) ≤ d(x, y).

Proposition 3.1. Let E be a nonempty subset of X and T : E → K(E) be a multi-valued
mapping. Then the following statements hold.

(1) If T is nonexpansive, then T is Suzuki.
(2) If T is Suzuki and Fix(T ) 6= ∅, then T is quasi-nonexpansive.

The following example shows that the converse of (1) in Proposition 3.1 is not true.

Example 3.1. Let E = [0, 3] and T : E → K(E) be defined by

T (x) =

{
{0} if x 6= 3,

[0.9, 1] if x = 3.

If x < y and (x, y) ∈ (E × E) − ((2, 3) × {3}), then H(T (x), T (y)) ≤ d(x, y). If x ∈ (2, 3)
and y = 3, then

1

2
dist(x, T (x)) =

x

2
> 1 > d(x, y) and

1

2
dist(y, T (y)) = 1 > d(x, y).

This implies that T is Suzuki. However, if x = 2.5 and y = 3, then d(x, y) = 0.5 and
H(T (x), T (y)) = 1. This shows that T is not nonexpansive.

LetE be a nonempty subset ofX and {xn} be a bounded sequence inX. The asymptotic
radius of {xn} relative to E is defined by

r(E, {xn}) = inf
{

lim sup
n→∞

d(xn, x) : x ∈ E
}
.
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The asymptotic center of {xn} relative to E is defined by

A(E, {xn}) =
{
x ∈ E : lim sup

n→∞
d(xn, x) = r(E, {xn})

}
.

It is known from Proposition 3.3 of [16] that if E is a nonempty closed convex subset
of X , then A(E, {xn}) consists of exactly one point. The following lemma was proved by
Dhompongsa and Panyanak [6].

Lemma 3.1. Let E be a nonempty closed convex subset of X and {xn} be a bounded sequence
in X. If A(E, {xn}) = {x} and {un} is a subsequence of {xn} with A(E, {un}) = {u} and the
sequence {d(xn, u)} converges, then x = u.

Now, we give the concept of ∆−convergence and collect some of its basic properties.

Definition 3.6. Let E be a nonempty closed convex subset of X and x ∈ E. Let {xn} be a
bounded sequence in X. We say that {xn}∆−converges to x if A(E, {un}) = {x} for every
subsequence {un} of {xn}. In this case we write ∆ − lim

n→∞
xn = x and call x the ∆−limit

of {xn}.

It is known from [13] that every bounded sequence in X has a ∆−convergent subse-
quence. The following fact can be found in [5].

Lemma 3.2. Let E be a nonempty closed convex subset of X and T : E → K(E) be a Suzuki
mapping. Then the following implication holds:

{xn} ⊆ E, ∆− lim
n→∞

xn = x, lim
n→∞

R(xn, T (xn)) = 0 =⇒ x ∈ SFix(T ).

Lemma 3.3. Let E be a nonempty closed convex subset of X, and let T : E → K(E) be a
Suzuki mapping. Suppose {xn} is a bounded sequence in E such that lim

n→∞
R(xn, Txn) = 0

and {d(xn, v)} converges for all v ∈ SFix(T ), then ωw(xn) ⊆ SFix(T ). Here ωw(xn) :=⋃
A(E, {un}) where the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn)

consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such thatA(E, {un}) =
{u}. Since {un} is bounded, there exists a subsequence {vn} of {un} and v ∈ E such
that ∆ − lim

n→∞
vn = v. By Lemmas 3.1 and 3.2, u = v ∈ SFix(T ). This shows that

ωw(xn) ⊆ SFix(T ). Next, we show that ωw(xn) consists of exactly one point. Let {un}
be a subsequence of {xn} with A(E, {un}) = {u} and let A(E, {xn}) = {x}. Since
u ∈ ωw(xn) ⊆ SFix(T ), {d(xn, u)} converges. By Lemma 3.1, x = u. This completes
the proof. �

Definition 3.7. ([19]) Let E be a nonempty convex subset of X, and {αn}, {βn} be se-
quences in [0, 1], and T : E → K(E) be a multi-valued mapping. The sequence of Ishikawa
iteration is defined by x1 ∈ E,

yn = (1− βn)xn ⊕ βnzn, n ∈ N,

where zn ∈ T (xn) such that d(xn, zn) = R(xn, T (xn)), and

(3.7) xn+1 = (1− αn)xn ⊕ αnvn, n ∈ N,

where vn ∈ T (yn) such that d(yn, vn) = R(yn, T (yn)).

A sequence {xn} in X is said to be Fejér monotone [2] with respect to E if

d(xn+1, p) ≤ d(xn, p) for all p ∈ E and n ∈ N.

The following lemma is crucial.
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Lemma 3.4. Let E be a nonempty closed convex subset of X and T : E → K(E) be a Suzuki
mapping with SFix(T ) 6= ∅. Let {xn} be the sequence of Ishikawa iteration defined by (3.7). Then
{xn} is Fejér monotone with respect to SFix(T ).

Proof. Let p ∈ SFix(T ). We note that T is quasi-nonexpansive. For each n ∈ N, we have

d(yn, p) ≤ (1− βn)d(xn, p) + βnd(zn, p)

= (1− βn)d(xn, p) + βndist(zn, T (p))

≤ (1− βn)d(xn, p) + βnH(T (xn), T (p))

≤ d(xn, p),

which implies that

d(xn+1, p) ≤ (1− αn)d(xn, p) + αnd(vn, p)

= (1− αn)d(xn, p) + αndist(vn, T (p))

≤ (1− αn)d(xn, p) + αnH(T (yn), T (p))

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ d(xn, p).

This shows that {xn} is Fejér monotone with respect to SFix(T ). �

The following fact can be found in [5].

Lemma 3.5. LetE be a nonempty closed subset ofX and {xn} be a Fejér monotone sequence with
respect toE. Then {xn} converges strongly to an element ofE if and only if lim

n→∞
dist(xn, E) = 0.

Now, we prove ∆−convergence theorem.

Theorem 3.3. Let E be a nonempty closed convex subset of X and T : E → K(E) be a Suzuki
mapping with SFix(T ) 6= ∅. Let αn, βn ∈ [a, b] ⊂ (0, 1) and {zn} be the sequence of Ishikawa
iteration defined by (3.7). Then {xn} ∆−converges to a strict fixed point of T.

Proof. Fix p ∈ SFix(T ). By Theorem 2.2 we have

d2(yn, p) ≤ (1− βn)d2(xn, p) + βnd
2(zn, p)− 4cMβn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnH
2(T (xn), T (p))− 4cMβn(1− βn)d2(xn, zn)

≤ d2(xn, p)− 4cMβn(1− βn)d2(xn, zn).

This implies that

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αnd
2(vn, p)− 4cMαn(1− αn)d2(xn, vn)

≤ (1− αn)d2(xn, p) + αnH
2(T (yn), T (p))− 4cMαn(1− αn)d2(xn, vn)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p)

≤ (1− αn)d2(xn, p) + αnd
2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn)

= d2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn).

Since cM > 0, it follows that

(3.8)
∞∑
n=1

a2(1− b)d2(xn, zn) ≤
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

Thus lim
n→∞

d2(xn, zn) = 0, and hence

(3.9) lim
n→∞

R(xn, T (xn)) = lim
n→∞

d(xn, zn) = 0.
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By Lemma 3.4, {d(xn, v)} converges for all v ∈ SFix(T ). By Lemma 3.3, ωw(xn) consists
of exactly one point and is contained in SFix(T ). This shows that {xn} ∆−converges to
an element of SFix(T ). �

Next, we prove strong convergence theorems. For this, we will add more conditions.
Recall that a mapping T : E → K(E) is said to satisfy condition (J) if there exists a non-
decreasing function h : [0,∞) → [0,∞) with h(0) = 0, h(r) > 0 for r ∈ (0,∞) such
that

R(x, T (x)) ≥ h(dist(x, SF ix(T ))) for all x ∈ E.
The mapping T is called semicompact if for any sequence {xn} in E such that

lim
n→∞

R(xn, T (xn)) = 0,

there exists a subsequence {xnk} of {xn} and q ∈ E such that lim
k→∞

xnk = q.

Theorem 3.4. Let E be a nonempty closed convex subset of X and T : E → K(E) be a Suzuki
mapping with SFix(T ) 6= ∅. Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be the sequence of Ishikawa
iteration defined by (3.7). If T satisfies condition (J), then {xn} converges strongly to a strict fixed
point of T.

Proof. Since T satisfies condition (J), by (3.9) we get that lim
n→∞

dist(xn, SF ix(T )) = 0. By

Lemma 3.4, {xn} is Fejér monotone with respect to SFix(T ). The conclusion follows from
Lemma 3.5. �

Example 3.2. Let E and T be as in Example 3.1. Then T is a Suzuki mapping with
SFix(T ) = {0}. Notice that T satisfies condition (J) with the function h : [0,∞) → [0,∞)
defined by h(r) = r

2 for all r ∈ [0,∞). For each n ∈ N, we let αn = βn = 1
2 . Then by

Theorem 3.4, the sequence of Ishikawa iteration defined by (3.7) converges strongly to 0.
However, we cannot directly apply Theorem 3.5 of [19] because, in this situation, T is not
nonexpansive.

Remark 3.2. In the proofs of Theorems 3.3 and 3.4, one may observe that it is not neces-
sary to use Theorem 2.2 because Theorem 1.1 is sufficient. The following result extends
Theorem 3.6 of [19]. We will show that the proof is quite simple when we apply Theorem
2.2.

The following fact is also needed.

Lemma 3.6. ([20]) Let {αn}, {βn} be two real sequences in [0, 1) such that βn → 0 and
∑
αnβn =

∞. Let {γn} be a nonnegative real sequence such that
∑
αnβn(1 − βn)γn < ∞. Then {γn} has

a subsequence which converges to zero.

Theorem 3.5. Let E be a nonempty closed convex subset of X and T : E → K(E) be a Suzuki
mapping with SFix(T ) 6= ∅. Let αn, βn ∈ [0, 1) be such that βn → 0 and

∑
αnβn = ∞ and

let {xn} be the sequence of Ishikawa iteration defined by (3.7). If T is semicompact, then {xn}
converges strongly to a strict fixed point of T.

Proof. From (3.8), we get that
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

By Lemma 3.6, there exist subsequences {xnk} and {znk} of {xn} and {zn} respectively,
such that lim

k→∞
d2(xnk , znk) = 0. Hence

(3.10) lim
k→∞

R(xnk , T (xnk)) = lim
k→∞

d(xnk , znk) = 0.
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Since T is semicompact, by passing to a subsequence, we may assume that xnk → q for
some q ∈ E. Since T satisfies (E3),

dist(q, T (q)) ≤ d(q, xnk) + dist(xnk , T (q))

≤ 2d(q, xnk) + 3dist(xnk , T (xnk))→ 0 as k →∞.

Hence q ∈ T (q). Since T is quasi-nonexpansive, we have

(3.11) H(T (xnk), T (q)) ≤ d(xnk , q)→ 0 as k →∞.

We now let v ∈ T (q) and choose wnk ∈ T (xnk) so that d(v, wnk) = dist(v, T (xnk)). From
(3.10) and (3.11) we have

d(q, v) ≤ d(q, xnk) + d(xnk , wnk) + d(wnk , v)

≤ d(q, xnk) +R(xnk , T (xnk)) +H(T (xnk), T (q))→ 0 as k →∞.

Hence v = q for all v ∈ T (q). Therefore q ∈ SFix(T ). By Lemma 3.4, lim
n→∞

d(xn, q) exists

and hence q is the strong limit of {xn}. �

Finally, we finish the paper by providing an example which shows the efficiency of
Theorem 3.5.

Example 3.3. Let E and T be as in Example 3.1. Then T is a Suzuki mapping with
SFix(T ) = {0}. Notice also that T is semicompact since E is compact. For each n ∈ N,
we let αn = 1

2 and βn = 1
n+1 . Then βn → 0 and

∑
αnβn = ∞. By Theorem 3.5, the se-

quence of Ishikawa iteration defined by (3.7) converges strongly to 0.However, we cannot
directly apply Theorem 3.6 of [19] because, in this situation, T is not nonexpansive.
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