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On the crossing number of join of the wheel on six vertices
with the discrete graph

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT. The main aim of the paper is to give the crossing number of join product W5 +Dn for the wheel
W5 on six vertices, and Dn consisting of n isolated vertices. In the proofs, it will be extend the idea of the
minimum numbers of crossings between two different subgraphs from the family of subgraphs which do not
cross the edges of the graph W5 onto the family of subgraphs that cross the edges of W5 at least twice. Further,
we give a conjecture that the crossing number of Wm + Dn is equal to Z(m + 1)Z(n) + (Z(m) − 1)

⌊
n
2

⌋
+ n

for m at least three, and where the Zarankiewicz’s number Z(n) =
⌊
n
2

⌋⌊
n−1
2

⌋
is defined for n ≥ 1. Recently,

our conjecture was proved for the graphs Wm + Dn, for any n = 3, 4, 5, by Klešč et al., and also for W3 + Dn

and W4+Dn due to the result by Klešč, Schrötter and by Staš, respectively. Clearly, the main result of the paper
confirms the validity of this conjecture for the graph W5 +Dn.

1. INTRODUCTION

The crossing number cr(G) of a simple graphGwith the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane.
(For the definition of a drawing see [8].) It is easy to see that a drawing with minimum
number of crossings (an optimal drawing) is always a good drawing, meaning that no
edge crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross. Let D (D(G)) be a good drawing of the graph G. We denote the
number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We
denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj), and
the number of crossings among edges of Gi in D by crD(Gi). It is easy to see that for
any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G, the following equations
hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

The investigation on the crossing number of graphs is a classical and very difficult
problem. Garey and Johnson [6] proved that this problem is NP-complete. Recall that
the exact values of the crossing numbers are known for only a few families of graphs.
The purpose of this article is to extend the known results concerning this topic. In this
article will be used definitions and notations of the crossing numbers of graphs presented
by Klešč in [9]. Kulli and Muddebihal [15] described the characterization for all pairs of
graphs for which their join product is planar graph. In the paper, some parts of proofs are
also based on Kleitman’s result [7] on the crossing numbers for some complete bipartite
graphs. More precisely, he showed that

cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, for m ≤ 6.
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Again by Kleitman’s result [7], the crossing numbers for join of two different paths, join
of two different cycles, and also for join of path and cycle were established in [9]. Further,
the exact values for crossing numbers of G + Dn and of G + Pn for all graphs G on less
than five vertices are determined in [13]. At present, the crossing numbers of the graphs
G +Dn are known only for few graphs G of order six, see e.g. [2, 3, 8, 10, 14, 17, 18, 19].
In all these cases, the graph G is usually connected and contains at least one cycle.

The methods in the paper will mostly use the combinatorial properties of cyclic per-
mutations. If we place the graph W5 on the surface of the sphere, from the topological
point of view, the resulting number of crossings of W5 +Dn does not matter which of the
regions in the subdrawing of W5 ∪ T i is unbounded, but on how the subgraph T i crosses
or does not cross the edges of W5 (the description of T i will be justified in Section 2). This
representation of T i can best be described by the idea of a configuration utilizing some
cyclic permutation on the pre-numbered vertices of the graph W5. For the first time, the
idea of configurations is converted from the family of subgraphs which do not cross the
edges of the graph W5 of order six onto the family of subgraphs whose edges cross the
edges of W5 at least twice. Due to this algebraic topological approach, we can extend
known results for the crossing numbers of new graphs. Some of the ideas and methods
were used for the first time in [5].

Based on the ability to generalize the optimal drawing for W5 +Dn in Fig. 3 onto the
drawings of the graphs Wm + Dn, we are able to postulate that the crossing numbers
of the graphs Wm + Dn are equal to Z(m + 1)Z(n) + (Z(m) − 1)

⌊
n
2

⌋
+ n for m ≥ 3. To

determine this conjecture the Zarankiewicz’s number defined by Z(n) =
⌊
n
2

⌋⌊
n−1
2

⌋
is also

used. In [11], Klešč et al. were established the exact values of the crossings numbers of
the graphs S3 + Cm, S4 + Cm, and S5 + Cm. Since the graph Sn + Cm is isomorphic with
the graph Wm +Dn for all integers n ≥ 1 and m ≥ 3, it is not difficult to verify that their
results confirm our conjecture in all cases Wm + Dn for each n = 3, 4, 5. Moreover, the
results of W3 +Dn by Klešč and Schrötter [13], and of W4 +Dn by Staš [20] also establish
the validity of this conjecture. The main purpose of this article is to extend these results
concerning this topic of the join of the wheel W5 with the discrete graph Dn. Also in this
article, some parts of proofs can be simplified by utilizing the work of the software COGA
that generates all cyclic permutations by Berežný and Buša [1]. Its C++ version is located
also on the website http://web.tuke.sk/fei-km/coga/, and the list with all short
names of 120 cyclic permutations of six elements have already been collected in Table 1 of
[18] or using COGA.

2. CYCLIC PERMUTATIONS AND POSSIBLE DRAWINGS OF W5

LetW5 be the wheel on six vertices. We consider the join product ofW5 with the discrete
graph on n vertices denoted by Dn. The graph W5 +Dn consists of one copy of the graph
W5 and of n vertices t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is adjacent to every
vertex of W5. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident
with the vertex ti. This means that the graph T 1∪· · ·∪Tn is isomorphic with the complete
bipartite graph K6,n and

(2.1) W5 +Dn =W5 ∪K6,n =W5 ∪

(
n⋃

i=1

T i

)
.

In the paper, it will be used the definitions and notation of the cyclic permutations
for a good drawing D of the graph W5 + Dn as in [18]. The rotation rotD(ti) of a vertex
ti in the drawing D is the cyclic permutation that records the (cyclic) counterclockwise
order in which the edges leave ti, as defined by Hernández-Vélez et al. [5]. We use the
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notation (123456) if the counter-clockwise order the edges incident with the vertex ti is
tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. Recall that a rotation is a cyclic permutation. We separate
all subgraphs T i, i = 1, . . . , n, of the graph W5 + Dn into five mutually-disjoint subsets
depending on how many times the considered subgraph T i crosses the edges of W5 in
D. For i = 1, . . . , n, let RD = {T i : crD(W5, T

i) = 0}, SD = {T i : crD(W5, T
i) = 1},

TD = {T i : crD(W5, T
i) = 2}, and UD = {T i : crD(W5, T

i) = 3}. Every other subgraph T i

crosses the edges ofW5 at least four times inD. For T i ∈ RD∪SD∪TD∪UD, let F i denote
the subgraph W5 ∪ T i, i ∈ {1, 2, . . . , n}, of W5 +Dn and let D(W5 ∪ T i) be its subdrawing
induced by D.

FIGURE 1. Eight possible non isomorphic drawings of the graphW5 with
no crossing among edges of C5(W5).

According to the arguments in the proof of the main Theorem 3.1, if we would like to
obtain an optimal drawing of W5 + Dn, then the set RD ∪ SD ∪ TD must be nonempty.
Thus, we will only consider drawings of the graph W5 for which there is the possibility of
obtaining a subgraph T i whose edges cross the edges ofW5 at most twice. Since the graph
W5 consists of one dominating vertex of degree five and of five vertices of degree three
which form the subgraph isomorphic with the cycle C5 (for brevity, we write C5(W5)), we
only need to consider possibilities of crossings between subdrawings of C5(W5) and five
edges incident with the dominating vertex. Further, due to Lemma 3.1, we obtain at least
the considered crossing number of the graph W5 + Dn if the edges of the cycle C5(W5)
cross itself in the considered subdrawings of W5. Let us first consider a good subdrawing
of W5 in which there is no crossing on the edges of C5(W5). In this case, we obtain one
planar drawing shown in Fig. 1(a). If we consider a good subdrawing of W5 in which
the edges of C5(W5) are crossed once, then we obtain two possibilities that are shown in
Fig. 1(b) and (c). The drawings of W5 with two and three crossings are shown in Fig. 1(d),
(e), and (f), and in Fig. 1(g) and (h), respectively. The vertex notation of the graph W5 in
Fig. 1 will be justified later.



384 Štefan Berežný and Michal Staš

3. THE CROSSING NUMBER OF W5 +Dn

In the proof of the main theorem, the following Lemma 3.1 and Lemma 3.2 related to
some restricted subdrawings of the graph W5 +Dn will be helpful.

Lemma 3.1. In any optimal drawing of the join product W5 +Dn, n ≥ 1, the edges of C5(W5)
do not cross each other.

Proof. Assume an optimal drawing of the graph W5 +Dn in which two edges of C5(W5)
cross. Let x be the point of the plane in which two edges, say {ci, ci+1} and {cj , cj+1}, of
C5(W5) cross. In the rest of paper, let c1 be neither of the four vertices. Since the plane
is a normal space, in the plane there is an open set Ax such that Ax contains x together
with the corresponding segments of the crossed edges. Clearly, we can also assume that
the dominating vertex of W5 is not contained in Ax. Thus, all remaining edges of the
drawing are disjoint with Ax, see Fig. 2(a). Fig. 2(b) shows that the edges {ci, ci+1} and
{cj , cj+1} can be redrawn into new edges {ci, cj} and {ci+1, cj+1}which do not cross. The
vertices either c1, ci, cj , ci+1, cj+1, c1 or c1, cj , ci, cj+1, ci+1, c1 form the 5-cycle again. Since
each vertex of the cycle C5(W5) is adjacent to the dominating vertex of degree five of W5,
the new drawing of the graph W5 + Dn with less number of crossings is obtained. This
contradiction completes the proof. �

FIGURE 2. Elimination of a crossing in C5(W5).

Lemma 3.2. Let D be a good drawing of W5 +Dn, n ≥ 1. If the edges of C5(W5) are crossed at
least

⌈
n
2

⌉
times, then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
crossings in D.

Proof. The wheel W5 consists of two edge-disjoint subgraphs C5(W5) and S5(W5). Based
on the assumption of the number of crossings on the edges of C5(W5), let us consider that
crD(C5(W5)) + crD(C5(W5), S5(W5) + Dn) ≥

⌈
n
2

⌉
is fulfilling in the good drawing D of

W5 +Dn. The star S5(W5) is isomorphic with the complete bipartite graph K1,5 and the
exact value for the crossing number of the graph K1,5 + Dn is given by Mei and Huang
[17], i.e., cr(K1,5,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
. This enforces that the edges of S5(W5) + Dn

must be crossed at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
times in D. Consequently, we have

crD(W5 +Dn) = crD(S5(W5) +Dn) + crD(C5(W5)) + crD(C5(W5), S5(W5) +Dn)

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
+
⌈n
2

⌉
= 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
.

�
Now we are able to prove the main result of the paper concerning the crossing number

of the join of the wheel W5 with the discrete graph Dn.

Lemma 3.3. cr(W5 +D1) = 1 and cr(W5 +D2) = 5.

Proof. The graphs W5 + D1 and W5 + D2 are isomorphic with the graphs P2 + C5 and
P3+C5, respectively. The exact values for the crossing numbers of the graphs Pm+Cn are
given in [9], that is, cr(Pm+Cn) = Z(m)Z(n)+1 for anym ≥ 2, n ≥ 3 with min{m,n} ≤ 6.
So, cr(W5 +D1) = cr(P2 + C5) = 1 and cr(W5 +D2) = cr(P3 + C5) = 5. �
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FIGURE 3. The good drawing of W5 +Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
crossings.

Theorem 3.1. cr(W5 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
for n ≥ 1.

Proof. In Fig. 3 there is the drawing of W5 + Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n + 3

⌊
n
2

⌋
crossings.

Thus, cr(W5 +Dn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
. By Lemma 3.2, the result is true for n = 1

and n = 2. We prove the reverse inequality by induction on n. Suppose now that, for
some n ≥ 3, there is a drawing D with

(3.2) crD(W5 +Dn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
,

and let

(3.3) cr(W5 +Dm) ≥ 6
⌊m
2

⌋⌊m− 1

2

⌋
+m+ 3

⌊m
2

⌋
for any integer m < n.

If r = |RD|, s = |SD|, t = |TD| and u = |UD|, then the assumption (3.3) together with
the well-known fact cr(K6,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
imply that, inD, there is at least one subgraph

T i by which the edges of W5 are crossed at most twice. More precisely:

crD(W5)+crD(W5,K6,n) ≤ crD(W5)+0r+1s+2t+3u+4(n− r− s− t−u) < n+3
⌊n
2

⌋
,

i.e.,

(3.4) 1s+ 2t+ 3u+ 4(n− r − s− t− u) < n+ 3
⌊n
2

⌋
,

or easier

(3.5) 1s+ 2t+ 3(n− r − s− t) < n+ 3
⌊n
2

⌋
.

This forces that 3r + 2s+ t >
⌈
n
2

⌉
, and if r = s = 0 then t >

⌈
n
2

⌉
. By Lemma 3.1, there

is no crossing among edges of C5(W5) in all contemplated subdrawings of the graph W5.
Now, we will deal with the possibilities of obtaining a subgraph T i ∈ RD ∪ SD ∪ TD in
the drawing D and we show that in all cases the contradiction with the assumption (3.2)
is obtained.

Case 1: crD(W5) = 0. The drawing of W5 is uniquely determined in such a way as
shown in Fig. 1(a). It is obvious that the sets RD and TD are empty. Further, for r = 0 and
t = 0, the condition (3.4) enforces s+ u >

⌊
n
2

⌋
. Since each subgraph T i ∈ SD ∪UD crosses

some edge of C5(W5) at least once, the edges of the cycle C5(W5) must be crossed at least⌈
n
2

⌉
times. Lemma 3.2 forces a contradiction with (3.2) in D.

Case 2: crD(W5) = 1. At first, without loss of generality, we can choose the drawing
with the vertex notation of W5 in such a way as shown in Fig. 1(b). Since the sets RD

and SD are empty, there are at least
⌈
n
2

⌉
subgraphs T i whose edges cross the edges of W5
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exactly twice. Further, it is not difficult to verify that one edge of C5(W5) is crossed by
edges of each such subgraph T i ∈ TD at least once. Again, Lemma 3.2 contradicts the
assumption of D.

In addition, without loss of generality, we can choose the vertex notation of the graph
W5 in such a way as shown in Fig. 1(c). Clearly, the setsRD and SD are also empty, that is,
t >

⌈
n
2

⌉
. Our aim is to list all possible rotations rotD(ti) which can appear inD if the edges

of T i cross the edges ofW5 exactly twice. Since there is only one subdrawing ofF i\{v4, v5}
represented by the rotation (1236), there are four ways to obtain the subdrawing of F i

depending on which two edges of W5 are crossed by the edges tiv4 and tiv5. Namely,
the rotations (123465), (124365), (152346), and (152436). The reader can easily verify that
a subgraph T i ∈ TD does not cross the edges of C5(W5) only if rotD(ti) = (123465).
Assume now the set T ∗

D = {T i ∈ TD : rotD(ti) = (123465)} and let t1 = |T ∗
D|. Note that

T ∗
D is a subset of TD and therefore, t1 ≤ t. Further, we denote by γ the number of all

subgraphs which cross the edges of W5 at least trice but at most four times, and also cross
the edges of C5(W5) at least once. Hence, there are two subcases to consider:

a) If γ ≥ t1, then
⌈
n
2

⌉
< t ≤ γ + t − t1, which yields that the edges of C5(W5)

are crossed by at least
⌈
n
2

⌉
different subgraphs. Consequently, Lemma 3.2 also

confirms a contradiction with (3.2) in D.
b) Let γ < t1 and let us also assume the subgraph W5 ∪ T i of W5 +Dn, for some T i

from the nonempty set T ∗
D. Then crD(W5 ∪ T i, T j) ≥ 2 + 6 = 8 holds for any

T j ∈ T ∗
D with j 6= i provided that rotD(ti) = rotD(tj), for more see [21], and

crD(W5 ∪ T i, T k) ≥ 2 + 4 = 6 is fulfilling for any T k ∈ TD \ T ∗
D again using the

properties of cyclic permutations. Thus, by fixing the subgraph W5 ∪ T i, we have

crD(W5 +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 8(t1 − 1) + 6(t− t1) + 3γ + 5(n− γ − t) + 3

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5n+ t+ 2(t1 − γ)− 5 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5n+

⌈n
2

⌉
− 5

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
.

Case 3: crD(W5) = 2. At first, without loss of generality, we can choose the vertex notation
of the graph W5 in such a way as shown in Fig. 1(d). Our aim is also to list all possible
rotations rotD(ti) which can appear in D if T i ∈ TD. The vertex ti must be placed in the
quadrangular region with four vertices either v1, v2, v3, and v6 or v1, v6, v4, and v5 of
W5 on its boundary. Thus, the subgraph F i can be represented by (123645), (136452), or
(152364). If we denote by T ∗

D = {T i ∈ TD : rotD(ti) = (123645)}, the same process as in
the previous case can be applied.

In addition, without loss of generality, we can consider the drawing of W5 with the
vertex notation in such a way as shown in Fig. 1(e). Clearly, the set RD is empty, but the
set SD can be nonempty. So, two possible subcases may occur:

a) Let SD be the nonempty set, that is, 2s + t >
⌈
n
2

⌉
. Now, for a T i ∈ SD, the

subgraph F i = W5 ∪ T i is uniquely represented by rotD(ti) = (142365) and
crD(W5 ∪ T i, T j) ≥ 1 + 6 = 7 holds for any T j ∈ SD with j 6= i provided that
rotD(ti) = rotD(tj). Moreover, it is not difficult to verify in possible regions of
D(W5 ∪ T i) that crD(W5 ∪ T i, T k) ≥ 6 is true for any subgraph T k ∈ TD, and
crD(W5 ∪ T i, T k) ≥ 5 is also fulfilling for any T k 6∈ SD ∪ TD. Thus, by fixing the
subgraph W5 ∪ T i, we have
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crD(W5+Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+7(s−1)+6t+5(n−s−t)+3 = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+5n+(2s+ t)−4 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+5n+

⌈n
2

⌉
−4 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+n+3

⌊n
2

⌋
.

b) Let SD be the empty set, that is, each subgraph T i crosses the edges of W5 at least
twice. Our aim is again to list all possible rotations rotD(ti) which can appear
in D if the edges of T i cross the edges of W5 exactly twice. Since there is only
one subdrawing of F i \ {v4} represented by the rotation (12365), there are four
ways how to obtain the subdrawing of F i depending on which two edges of W5

are crossed by the edge tiv4. Namely, the rotations (123465), (123645), (123654),
and (124365). One can easily show that the subgraph T i ∈ TD only with either
rotD(ti) = (123465) or rotD(ti) = (123645) does not cross the edges of C5(W5).
Assume now the set T ∗

D = {T i ∈ TD : rotD(ti) = (123465) or rotD(ti) = (123645)}
and let t1 = |T ∗

D|. Therewith, we define γ by the same way as in the cases above,
and if γ ≥ t1 then we can observe the same arguments.

In the next part, let us suppose that γ < t1 and let us also assume the subgraph
W5 ∪ T i of W5 + Dn with T i ∈ T ∗

D. Now, for this T i ∈ T ∗
D, we will discuss the

possibility of obtaining a subdrawing ofW5∪T i∪T k inD with just three crossings
on edges of the graph W5 ∪ T i by one subgraph T k ∈ UD:
(1) Let the edges of W5 ∪ T i be crossed by each subgraph T k ∈ UD at least four

times. Then crD(W5 ∪ T i, T j) ≥ 2 + 5 = 7 holds for any T j ∈ T ∗
D with j 6= i

and crD(W5 ∪ T i, T k) ≥ 2 + 4 = 6 is fulfilling for any T k ∈ TD \ T ∗
D. Thus, by

fixing the subgraph W5 ∪ T i, we have

crD(W5+Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+7(t1−1)+6(t− t1)+4γ+5(n−γ− t)+4

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+5n+ t+(t1−γ)−3 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+5n+

⌈n
2

⌉
−3

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
.

(2) If there is a T k ∈ UD such that crD(W5 ∪ T i, T k) = 3, i.e, crD(T i, T k) = 0,
then, by fixing the subgraph T i ∪ T k, we have

crD(W5 +Dn) = crD(W5 +Dn−2) + crD(T i ∪ T k) + crD(K6,n−2, T
i ∪ T k)

+crD(W5, T
i ∪ T k) ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ n− 2 + 3

⌊n− 2

2

⌋
+ 0

+6(n− 2) + 2 + 3 = 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
,

where the edges of the subgraph T i ∪ T k are crossed by any T j , j 6= i, k, at
least six times due to the well-known fact that cr(K6,3) = 6.

Finally, without loss of generality, we assume the drawing of W5 with the vertex nota-
tion in such a way as shown in Fig. 1(f). Clearly, the set RD is empty, but the set SD can
be nonempty. So two possible subcases may occur:

a) Let SD be the nonempty set, that is, there is a subgraph T i ∈ SD. Now, for some
T i ∈ SD, the subgraph F i = W5 ∪ T i can be represented by either (124365) or
(123465) if either v2v3 or v3v6 is crossed by the edge tiv4, respectively. If there is
a T i ∈ SD with rotD(ti) = (124365), then we can easily verify in possible regions
ofD(W5∪T i) that crD(W5∪T i, T k) ≥ 6 for any subgraph T k ∈ SD∪TD∪UD, and
crD(W5 ∪ T i, T k) ≥ 5 for any T k 6∈ SD ∪ TD ∪ UD. Thus, by fixing the subgraph
W5 ∪ T i, we have
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crD(W5 +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(s+ t+ u− 1) + 5(n− s− t− u) + 3

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5n+ (s+ t+ u)− 3 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+5n+

⌈n
2

⌉
− 3 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
,

where the condition (3.4) enforces s+ t+ u ≥
⌈
n
2

⌉
, for r = 0. If there is a T i ∈ SD

only with rotD(ti) = (123465), then crD(T i, T j) ≥ 6 holds for any T j ∈ SD with
j 6= i provided that rotD(ti) = rotD(tj). Further, one can easily verify in possible
regions of D(W5 ∪ T i) that crD(W5 ∪ T i, T k) ≥ 6 for any subgraph T k ∈ TD, and
crD(W5 ∪ T i, T k) ≥ 5 for any T k ∈ UD. Thus, by fixing the subgraph W5 ∪ T i, we
have

crD(W5 +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 7(s− 1) + 6t+ 5u+ 4(n− s− t− u) + 3

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4n+ (3s+ 2t+ u)− 4 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+4n+

(
3n− 3

⌊n
2

⌋
+ 1
)
− 4 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
,

where the condition (3.4) also enforces 3s+ 2t+ u > 3n− 3
⌊
n
2

⌋
, for r = 0.

b) Let SD be the empty set, that is, each subgraph T i crosses the edges of W5 at least
twice. Further, each subgraph T i ∈ TD is uniquely represented by rotD(ti) =
(142365), that is, the edge v1v2 of C5(W5) is crossed by the edge tiv4. As t >

⌈
n
2

⌉
,

we can apply Lemma 3.2.

Case 4: crD(W5) = 3. At first, without loss of generality, we can consider the drawing of
W5 with the vertex notation in such a way as shown in Fig. 1(g). In this case, by applying
the same process as for the drawing in Fig. 1(b), we obtain at least

⌈
n
2

⌉
subgraphs T i ∈ TD

whose edges cross the edges of C5(W5). Hence, by Lemma 3.2, the discussed drawing
contradicts the assumption of D again.

Finally, without loss of generality, we assume the drawing of W5 with the vertex nota-
tion in such a way as shown in Fig. 1(h). Clearly, the set SD is empty, but the set RD can
be nonempty. So, two possible subcases may occur:

a) Let RD be the nonempty set, that is, there is a subgraph T i ∈ RD. Now, for
some T i ∈ RD, the subgraph F i = W5 ∪ T i is uniquely represented by rotD(ti) =
(123465) and one can easily verify by a discussion in possible regions ofD(W5∪T i)
that crD(W5 ∪ T i, T k) ≥ 6 holds for any subgraph T k, k 6= i. Thus, by fixing the
subgraph W5 ∪ T i, we have

crD(W5 +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(n− 1) + 3 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
.

b) Let RD be the empty set, that is, each subgraph T i crosses the edges of W5 at least
twice. Since some edges of any such subgraph T i ∈ TD cross also the edges of
C5(W5), Lemma 3.2 contradicts the assumption (3.2) in D.

Thus, it was shown in all mentioned cases that there is no good drawingD of the graph
W5 + Dn with fewer than 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n + 3

⌊
n
2

⌋
crossings. This completes the proof of

the main theorem. �
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4. CONCLUSIONS

Let Wn and Sn denote the wheel and the star on n+1 vertices, respectively. In general,
the graph Sn + Cm is isomorphic with the graph Wm + Dn for all integers n ≥ 1 and
m ≥ 3. Using the results of Klešč et al. [11] and by the aforementioned isomorphisms, the
crossing numbers of the graphs Wm +Dn for n = 3, 4, 5, and m ≥ 3 were established. The
crossing number ofW4+Dn for any n ≥ 1 was recently determined by Staš [20]. Theorem
3.1 extends this result for the graphs W5 + Dn for any n ≥ 1. The result in Theorem 3.1
has already been claimed by Ma and Cai [16] (see [4]). Since this paper does not seem to
be available in English, we have not been able to verify the results.

As we partially mentioned in the proof of Lemma 3.3, the graphsWm+D1 andWm+D2

are isomorphic with the graphs P2 + Cm and P3 + Cm, respectively. The exact values for
the crossing numbers of the graphs Pm +Cn are given by Klešč [9], that is, cr(Pm +Cn) =
Z(m)Z(n) + 1 for any m ≥ 2, n ≥ 3 with min{m,n} ≤ 6. This fact allow us to determine
another results for the join product of the wheels Wm with the discrete graph on one and
two vertices.

Theorem 4.2. cr(Wm +D1) = 1 and cr(Wm +D2) = Z(m) + 1 for m ≥ 3.

One can easily verify that these results also confirm the validity of our conjecture for
the graphs Wm +D1 and Wm +D2. Further, determining the crossing number of a graph
G + Dn is an essential step in establishing the so far unknown values of the numbers of
crossings of graphs G + Pn and G + Cn, where Pn and Cn are the path and the cycle
on n vertices, respectively. Using the result in Theorem 3.1 and the optimal drawing of
W5 +Dn in Fig. 3, we are able to postulate that cr(W5 + Pn) and cr(W5 +Cn) are equal to
6
⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+1 for n ≥ 2 and 6

⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+5 for n ≥ 3, respectively.
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