On the crossing number of join of the wheel on six vertices with the discrete graph

Štefan Berežný and Michal Staš

Abstract.

The main aim of the paper is to give the crossing number of join product $W_5 + D_n$ for the wheel W_5 on six vertices, and D_n consisting of n isolated vertices. In the proofs, it will be extend the idea of the minimum numbers of crossings between two different subgraphs from the family of subgraphs which do not cross the edges of the graph W_5 onto the family of subgraphs that cross the edges of W_5 at least twice. Further, we give a conjecture that the crossing number of $W_m + D_n$ is equal to $Z(m + 1)Z(n) + (Z(m) - 1)\left\lfloor \frac{n}{2} \right\rfloor + n$ for m at least three, and where the Zarankiewicz’s number $Z(n) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor$ is defined for $n \geq 1$. Recently, our conjecture was proved for the graphs $W_m + D_n$, for any $n = 3, 4, 5$, by Klešč et al., and also for $W_3 + D_n$ and $W_4 + D_n$ due to the result by Klešč, Schröter and by Staš, respectively. Clearly, the main result of the paper confirms the validity of this conjecture for the graph $W_5 + D_n$.

References

Received: 27.02.2020; In revised form: 11.06.2020; Accepted: 18.06.2020

2010 Mathematics Subject Classification. 05C10, 05C38.

Key words and phrases. Graph, drawing, crossing number, join product, cyclic permutation.

Corresponding author: Michal Staš; michal.stas@tuke.sk

DEPARTMENT OF MATHEMATICS AND THEORETICAL INFORMATICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS
TECHNICAL UNIVERSITY OF KOŠICE
KOŠICE, SLOVAKIA

Email address: stefan.berezny@tuke.sk
Email address: michal.stas@tuke.sk