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Universal centers and composition conditions on the
complex plane

CLAUDIA VALLS

ABSTRACT. We characterize the universal centers of the ordinary differential equations in the complex plane
dρ/dθ =

∑∞
i=1 ai(θ)ρ

i+1, where ai(θ) are trigonometric polynomials with complex coefficients, in terms of the
composition conditions.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We consider the differential equation

(1.1)
dρ

dθ
=

∞∑
i=1

ai(θ)ρ
i+1

on (ρ, θ) ∈ C × S1 in a neighborhood of ρ = 0 and where ai(θ) are trigonometric polyno-
mials in θ with complex coefficients.

Following the definitions in R, we say that equation (1.1) determines a center if ρ(0) =
ρ(2π). The center problem consists on finding conditions on the coefficients ai under which
this equation has a center. This problem in R2 has a close relation with the explicit expres-
sion for the first return map of the differential equation (1.1) (see [10, 12]).

The expression of the first return map can be given in terms of the following iterated
integrals of order k

(1.2) Ii1···ik(a) :=

∫
· · ·

∫
︸ ︷︷ ︸

0 ≤ τ1 ≤ · · · ≤ τk ≤ 2π

aik(τk) · · · ai1(τ1) dτk · · · dτ1,

where by convention when k = 0 we set it equal to 1. By the Ree formula [14] the linear
space generated by all such functions is an algebra which is commutative, associative
and regularly graded (see [5, p.150] for a definition). More precisely, let ρ(θ; ρ0; a) with
θ ∈ [0, 2π] and a(θ) = (a1(θ), . . .) be the solution of equation (1.1) so that ρ(0; ρ0; a) = ρ0.
Then the first return map is P (a)(ρ0) = ρ(2π; ρ0; a) and in [10, 12] it is proved that for a
sufficiently small ρ0 the first return map P (a)(ρ0) is an absolute convergent power series
given by

ρ0 +

∞∑
n=1

cn(a)ρn+1
0

where
cn(a) =

∑
i1+···+in=n

ci1···ikIi1···ik(a),

and
ci1···ik = (n− i1 + 1)(n− i1 − i2 + 1)(n− i1 − i2 − i3 + 1) · · · 1.
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Following the definitions in R (see [11]) we say that the differential equation (1.1) has
a universal center if for all positive integers i1, . . . , ik with k ≥ 1 the iterated integral
Ii1···ik(a) = 0 (note that in the trigonometric polynomial case, this set needs not be finite).

On the other hand we say that equation (1.1) satisfies the composition conditions if there
is a trigonometric polynomial with complex coefficients q and there are polynomials pi ∈
C[w], for i ≥ 1 such that

(1.3) ãi = pi ◦ q, where ãi(θ) =

∫ θ

0

ai(τ) dτ, i ≥ 1.

There are plenty of results in the case of R of results regarding universal centers and
composition conditions either for polynomials or analytic functions (see for instance [1, 2,
3, 4, 6, 7, 8, 9] and the references therein), but there are almost no results in the case of C.
Brudnyi in [12, Corollary 1.19] proved that equation (1.1) with finitely many ai’s being all
trigonometric polynomials has a universal center if and only if it satisfies the composition
condition (1.3) for all ai with i = 1, 2, . . . , n. In the present paper we generalize this result
to the differential equation (1.1), that is, with infinitely many ai’s (see Theorem 1.1 below).
So we extend to an analytic differential equation in ρ as in (1.1). This is done in this paper
for the first time

Theorem 1.1. Every center of (1.1) is universal if and only if (1.1) satisfies the composition
condition.

The proof of Theorem 1.1 is given in Section 3. In the case of R this theorem was proved
in [13].

In Section 2 we introduce some notation and auxiliary results that will be used in the
proof of Theorem 1.1 and whose proofs are given in the Appendix.

2. AUXILIARY RESULTS

We introduce some notation and auxiliary results that will be used in the proof of The-
orem 1.1. Given a trigonometric polynomial p we call deg(p) = ` the degree of the Fourier
series corresponding to p, that is

f(θ) =
∑̀
k=−`

ake
kiθ, ak ∈ C, with a`, a−` 6= 0.

To introduce a variant of the Lüroth theorem we introduce some notation. We denote by
C(x) the quotient field of the ring of polynomials C[x] with coefficients in C and by C(θ)
the quotient field of the ring of trigonometric polynomials C[θ], also with coefficients in
C. It is well-known that C(θ) is isomorphic to C(x) by means of the map Φ: C(θ)→ C(x)
defined by

Φ(sin θ) =
x2 − 1

2ix
Φ(cos θ) =

x2 + 1

2x
.

Moreover, if we consider the function field F = C(x, y) with x2+y2 = 1 and the the ring of
trigonometric polynomials with complex coefficients T = C[x, y] (again with x2 +y2 = 1),
then the algebraic curve over C given by the equation x2 + y2 = 1 has no singularities,
and so the ring T is integrally closed. Due to the equation

(x+ iy)(x− iy) = 1 (with i2 = −1),

if we set z = x+ iy then F = C(z) and T = C[z, z−1]. In particular, every t ∈ T \ C[z] has
the form f/zm, for some m ∈ N and f ∈ C[z] not divisible by z. The first of our auxiliary
results is the following.
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We first recall Lüroth’s theorem which states that every intermediate field E with
C ⊆ E ⊆ C(θ) is a simple transcendental extension, that is E = C(s(θ)) where s(θ) is
a nonconstant quotient of trigonometric polynomials with coefficients in C. For a proof of
Lüroth’s theorem see [16, page 21]. We will adapt Lüroth’s theorem to our purposes and
prove the more convenient following theorem.

Theorem 2.2. An intermediate field E with C ⊆ E ⊆ C(θ) satisfies that E = C(r) for some
non-constant trigonometric polynomial r.

Let

ã(θ) =

∫ θ

0

a(s) ds

Lemma 2.1. If equation (1.1) has a universal center, then ãi(θ) is a trigonometric polynomial for
all i ≥ 1.

Given a k-vector of indexes i1i2 · · · ik we define

(2.4) Ii1i2···ik(θ) =

∫
· · ·

∫
︸ ︷︷ ︸

0 ≤ τ1 ≤ · · · ≤ τk ≤ 2π

aik(τk) · · · ai1(τ1) dτk · · · dτ1

and if we denote by~i = i1i2 · · · ik then by (2.4) we have

(2.5) I~ij(θ) =

∫ θ

0

I~i(τ)aj(τ) dτ,

where by convention we have I∅(θ) = 1. The Ree’s formula (see [14]) establishes a way
to write the product of two iterated integrals I~i(θ) and I~j(θ) as a summation of all the
iterated integrals indexed by the shuffle products of the indexes ~i and ~j (we recall that
a (r, s)-shuffle is a permutation σ of r + s letters with σ−1(1) < σ−1(2) < σ−1(r) and
σ−1(r + 1) < σ−1(r + 2) < · · ·σ−1(r + s)). More precisely it guarantees that

(2.6) I~i(θ)I~j(θ) =
∑
σ

Iσ(~i,~j)(θ),

where the sum runs over all σ(~i,~j) or (r, s)-shuffles. For instance, Ree’s formula gives that

Ii1(θ)Ii2(θ) = Ii1i2(θ) + Ii2i1(θ),

Imi (θ) = m! Ii · · · i︸ ︷︷ ︸
m times

(θ),

Ii1(θ)Ii2i3(θ) = Ii1i2i3(θ) + Ii2i1i3(θ) + Ii2i3i1(θ),

Ii1i2(θ)Ii3i4(θ) = Ii1i2i3i4(θ) + Ii1i3i2i4(θ) + Ii1i3i4i2(θ) + Ii3i1i2i4(θ)

+ Ii3i1i4i2(θ) + Ii3i4i1i2(θ),

and so on.
As a direct consequence of Ree’s formula (2.6) we have the following lemma

Lemma 2.2. There exist non-negative numbers nj for j = 1, 2, . . . , J such that

(2.7) ãm1
i1

(θ)ãm2
i2

(θ) · · · ãmk
ik

(θ) =

J∑
j=1

njIσj(~i)
(θ),

where ij ≥ 1, mj ≥ 0 for j = 1, . . . , k, σj runs over all permutations of the vector
~i = i1i1 · · · i1︸ ︷︷ ︸

m1 times

i2i2 · · · i2︸ ︷︷ ︸
m2 times

· · · ikik · · · ik︸ ︷︷ ︸
mk times
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and J = (m1 +m2 + · · ·+mk)!.

Given equation (1.1) we denote by Γ(a) the minimal field containing all the functions
ãi(θ) and C. We note that Γ(a) is the quotient field of the polynomial domain formed by
all the linear combinations with coefficients in C of monomials of the form

(2.8) ãm1
i1

(θ)ãm2
i2

(θ) · · · ãmk
ik

(θ)

where ij ≥ 1 and mj ≥ 0 for j = 1, 2, . . . , k. We consider two polynomials p(θ) and q(θ)
of Γ(a) that is, two functions formed by linear combinations of monomials of the form in
(2.8) with coefficients in C.

Lemma 2.3. Consider two polynomials p1, p2 ∈ Γ(a). If equation (1.1) has a universal center,
then ∫ 2π

0

p1(θ)p′2(θ) dθ = 0.

3. PROOF OF THEOREM 1.1

Assume first that equation (1.1) satisfies the composition condition

(3.9) ãi(θ) = pi(q(θ)), i ≥ 1

and we will show that equation (1.1) has a universal center. We take an iterated integral
I~i(θ) of order k and by induction over k we will show that there exists a polynomial
P~i(w) ∈ C[w] such that I~i(θ) = P~i(q(θ)) and P~i(q(0) = 0.

When k = 1, given any index i ≥ 1 we have

Ii(θ) =

∫ θ

0

ai(τ) dτ = ãi(θ).

Thus, since the equation satisfies the composition condition, there exists a polynomial
pi(w) ∈ C[w] such that Ii(θ) = pi(q(θ)). Note that pi(q(0)) = 0.

Now we assume that the statement holds for k and we will prove it for k + 1. We take
~i = i1i2 · · · ik. By induction hypothesis we have that there exists a polynomial P~i ∈ C[w]
such that I~i(θ) = P~i(q(θ)). We consider any index j ≥ 1 and by (2.5) we have

I~ij(θ) =

∫ θ

0

I~i(τ)aj(τ) dτ.

Moreover, since ã′j(θ) = aj(θ) and by the composition condition we know that there exists
a polynomial pj(w) ∈ C[w] such that ãj(θ) = pj(q(θ)) we get that

I~ij(θ) =

∫ θ

0

P~i(q(τ))p′j(q(τ))q′(τ) dτ = P~ij(q(θ))− P~ij(q(0)),

where P~ij(w) is a polynomial that is a primitive of the polynomial P~i(w)p′j(w) (that is
P ′~ij(w) = P~i(w)p′j(w). Without loss of generality we can assume that P~ij(w) satisfies that
P~ij(q(0)) = 0. We recall that equation (1.1) has a universal center if any iterated integral
I~i(a) = 0. Given any~i we have proved that there exists a polynomial P~i(w) ∈ C[w] such
that I~i(θ) = P~i(q(θ)) and P~i(q(0)) = 0. Therefore,

I~i(a) = I~i(2π) = P~i(q(2π)).

Since q(θ) is a trigonometric polynomial, we have that q(2π) = q(0) and since P~i(q(0)) = 0
we obtain that I~i(a) = 0. In short, equation (1.1) has a universal center, as we wanted to
show.
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Now we prove the converse, that is, we assume that equation (1.1) has a universal
center and we will show that it satisfies the composition condition (3.9). If equation (1.1)
has a trivial center, that is ãi(θ) ≡ 0 for all i, then the composition condition trivially holds
taking any polynomial q(θ) and pi ≡ 0 for all i. We thus assume that equation (1.1) has a
nontrivial universal center. As before we denote by Γ(a) the minimal field containing all
the function ãi(θ) and C.

In order to apply Theorem 2.2 we need to show that Γ(a) is an intermediate field be-
tween C and C(θ). By definition C ⊂ Γ(a), but if these two fields were equal then we
would have that all the function ãi(θ) would be constant and since ã′i(θ) = ai(θ) we
would have a trivial universal center, which we have already discarded. Thus we have
that C ( Γ(a). Moreover, by Lemma 2.1 we have that Γ(a) ⊂ C(θ). If these two fields
were equal then we would have that the polynomials p1(θ) = eiθ and p2(θ) = e−iθ belong
to Γ(a). Then ∫ 2π

0

p1(θ)p′2(θ) dθ =

∫ 2π

0

−i dθ = −2πi,

in contradiction with Lemma 2.3 (this integral should be zero). Therefore, we have Γ(a) (
C(θ). It follows from Lüroth’s theorem that there exists a nonconstant quotient of trigono-
metric polynomials q(θ) such that Γ(a) = C(q(θ)). Since Γ(a) contains at least one ãi(θ)
which is a non-constant trigonometric polynomial, by Theorem 2.2 we have that there ex-
ists a nonconstant trigonometric polynomial r(θ) such that Γ(a) = C(r(θ)), which proves
that equation (1.1) satisfies the composition condition. In short, Theorem 1.1 is proved.

APPENDIX: PROOF OF THE RESULTS IN SECTION 2

Proof of Theorem 2.2. We first state and prove two auxiliary results.

Lemma 3.4. A proper subfield E 6= C(θ) of C(θ) is generated by an element t ∈ T \ C[z] if and
only if it is generated by an element of the form

af + bzm

cf + dzm
with a, b, c, d ∈ C, ad− bc 6= 0,

and where f ∈ C[z] is not divisible by z, and m ∈ N.

Proof of the lemma. Assume first that E = C(t), t = f/zm for some m ∈ N, f ∈ C[z] not
divisible by z. Every generator of E has the form

at+ b

ct+ d
=
a f
zm + b

c f
zm + d

=
af + bzm

cf + dzm

with a, b, c, d ∈ C and ad − bc 6= 0. For the converse, let g := af+bzm

cf+dzm be a generator of E.
Then

dg − b
a− cg

=
f

zm
∈ T

is a generator of E. This concludes the proof of the lemma. �

Lemma 3.5. A proper subfield E 6= C of C(θ) is generated by an element t ∈ T \C if and only if
T ∩ E 6= C.

Proof of the Lemma. Let t ∈ T be an element of E \ C. If t ∈ C[z], then [15, Theorem
4, Section 1.2] guarantees that E is generated by a nonconstant polynomial in z. If t ∈
T \ C[z], then let t = f

zm ∈ E \ C for some m ∈ N and f ∈ C[z] not divisible by z. Let also
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E = C(pq ) with coprime polynomials p, q ∈ C[z]. Then there exist coprime polynomials
G,H ∈ C[pq ] such that

f

zm
=
G(pq )

H(pq )
.

Since both polynomials G and H split into linear factors of the form p
q − γ for some γ ∈ C

and p
q − γ = p−γq

q one gets

(3.10)
f

zm
= qn

∏r
i=1(p− αiq)ci∏s
j=1(p− βjq)dj

,

for some n ∈ Z, r, s, ci, dj ∈ N and where αi, βj are pairwise distinct.
Note that by assumption the polynomials p−αiq and p−βjq have no zeros in common

with q and that the two polynomials p−αq and p−βq with α 6= β have no common zeroes.
Hence, in equation (3.10) no linear factors can cancel out and since the denominator of the
left-hand-side of equation (3.10) has z as its only linear factor, only the following three
cases are possible: either the polynomial H is constant, or s = 1 (note that if m = 0 then
H must be constant).

In case H is constant then n < 0 and so q = z` for some ` ∈ N and so p
q ∈ T .

In case s = 1 we have that p − β1q = z` for some ` ∈ N and therefore p
q = β1q+z

`

q . It
follows from Lemma 3.4 that q

z`
∈ T is a generator of E. This concludes the proof of the

lemma. �

The proof of Theorem 2.2 follows directly from Lemma 3.5 �

Proof of Lemma 2.1. Given an index i ≥ 1 we consider the expansion in Fourier series of
the coefficient ai(θ) and we denote by `i the degree of the trigonometric polynomial ai(θ).
Then

ai(θ) =

`i∑
n=−`i

cnie
inθ,

where cni ∈ C for all i ≥ 1. We have that

ãi(θ) =

∫ θ

0

ai(τ) dτ = c0iθ +

`i∑
n=−`i,n6=0

1

ni
cni(e

inθ − 1).

Since equation (1.1) has a universal center and ãi(2π) = Ii(a) we have that ãi(2π) = 0 and
so c0i = 0. Hence ãi(θ) is a trigonometric polynomial. �

Proof of Lemma 2.3. Take p1(θ) a monomial of the form (2.8) and p2(θ) = ãk(θ) for some
index k ≥ 1. Then∫ θ

0

p1(τ)p′2(τ) dτ =

∫ θ

0

ãm1
i1

(τ)ãm2
i2

(τ) · · · ãmk
ik

(τ)ak(τ) dτ.

By Lemma 2.2 we have that (2.7) holds and so∫ θ

0

p1(τ)p′2(τ) dτ =

J∑
j=1

nj

∫ θ

0

Iσj(~i)
(τ)ak(τ) dτ.

Moreover, by the relation (2.5) we have∫ θ

0

Iσj(~i)
(τ)ak(τ) dτ = Iσj(~i)k

(θ).
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Since equation (1.1) has a universal center we have that Iσj(~i)k
(2π) = 0 and so∫ 2π

0

p1(τ)p′2(τ) dτ =

J∑
j=1

nj · 0 = 0,

as we wanted to show. �
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