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Semi–definite programming for the nearest circulant
semi–definite matrix problem

SULIMAN AL-HOMIDAN

ABSTRACT. Positive semi–definite circulant matrices arise in many important applications. The problem
arises in various applications where the data collected in a matrix do not maintain the specified structure as is
expected in the original system. The task is to retrieve useful information while maintaining the underlying
physical feasibility often necessitates search for a good structured approximation of the data matrix. This paper
construct structured circulant positive semi–definite matrix that is nearest to a given data matrix. The problem
is converted into a semi–definite programming problem as well as a problem comprising a semi–defined pro-
gram and second-order cone problem. The duality and optimality conditions are obtained and the primal-dual
algorithm is outlined. Some of the numerical issues involved will be addressed including unsymmetrical of the
problem. Computational results are presented.

1. INTRODUCTION

We are interested in finding the nearest approximation of a given data matrix by a
circulant positive semi–definite matrix. Circulant matrices are not symmetric, hence, dif-
ficulty arise in solving the problem since most methods for solving problems involving
semi–definite matrices required the matrix to be symmetric. The circulant matrix is a ma-
trix where each row is cyclic shift to the right in one place of the previous one. The study
of circulant matrices and their use in realizing lists of complex numbers have produced
many useful results [5].

Circulant matrices appear naturally in a variety of applications in mathematics and
engineering. The significant applications of circulant matrices have attracted attention of
researchers working in different disciplines. Several problems in digital signal processing,
tensor decompositions and structural coupling require the computation of a positive defi-
nite circulant matrix that closely approximates a given matrix. Circulant matrices play an
important role in investigation of tensor decompositions [15].

A general forms of coupling uses circulant matrices through a base substructure. These
structural arise naturally in certain types of rotating machines. Circulant matrices arise
also in stationary structures such as satellite antennae. The nature of rotationally periodic
systems imposes a cyclic structure, which are circulant matrices [11].

Solving many systems requires approximating a data matrix to the nearest circulant
positive semi–definite matrix. This data matrix supposes to be circulant but because of
rounding or truncation errors incurred while evaluating the data matrix, it does not satisfy
one or all conditions. Sometime because the data matrix is estimated from autocorrelation
coefficients is often losses some or all its properties.

The problem was studied by Al-Homidan [1]. He solves the problem using sequential
quadratic programming method. He also solves the problem using projection method
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that was successfully used in solving similar approximation problems for distance matri-
ces [3] and Hankel approximation [4]. The theory and properties of circulant matrix are
discussed and presented in [7]. A semi–definite programming approach for the nearest
correlation matrix problem has been studied by [6].

In the present paper we address the problem of finding the best approximation of a
given data matrix by a positive semi–definite circulant matrix. The problem is solved
using methods specialized for nonsymmetric matrices, it is formulated as an optimization
problem with quadratic objective function and semi–definite programming constraints,
several algorithms developed to solve this problem. More precisely, we have discussed
the solution of the following problem:

Given an arbitrary data matrix D ∈ IRn×n, find the nearest positive semi–definite cir-
culant matrix C to D, i. e.,

minimize φ =
1

2
‖C − D‖2F

subject to C ∈ P ∩ C,(1.1)

where P is the set of all n × n real symmetric or nonsymmetric positive semi–definite
matrices, P = {A : A � 0, A ∈ Mn }, and A � 0 means positive semi–definite matrix. C
is the set of all circulant matrices andMn is the space of all n × n matrices. Here, ‖.‖F
denotes the Frobenius norm given by ‖A‖2F = 〈A,A〉 and A† means conjugate transpose
of A. The inner product 〈A,B〉 = traceATB =

∑
ij aijbij .

The paper is organized as follows: Section 2 contains some characterization of circulant
matrices and notations needed in the paper. In Section 3, we solve (1.1) using the von Neu-
mann projection method. In Section 4, the problem is formulated as a semi–defined pro-
gramming problem (SDP), then as a mixed SDP and second-order cone problem (SOC).
The duality and optimality conditions for quadratic programs are presented in Section 5.
The primal-dual algorithm is outlined in Section 6 with crossover criteria. Computational
results are presented in Section 7.

2. CIRCULANT MATRIX CHARACTERIZATION AND NOTATION

Circulant matrices are diagonalized by the Fourier matrix F ; i.e., C = F †ΛF, where the
entries of F are given by

fjk =
1√
n
e2πijk/n, 0 ≤ j, k ≤ n− 1

and Λ is a diagonal matrix holding the eigenvalues of C; see, for instance, Davis [7]. The
diagonal entries of Λ are given by

λk =

n−1∑
j=0

cje
2πijk/n, k = 0, . . . n− 1.

To solve problem (1.1) we introduce a preliminary result that allows the matrix D be
replaced by a certain circulant matrix C. To find the nearest matrix C ∈ C to D, we
proceed as follows, if D ∈ C then C = D. Otherwise the solution is the near point in C to
D, which is unique by convexity of C. Now let D = [dij ] be an arbitrary n×n data matrix
and C = [cij ] be an n× n circulant matrix. Then

(2.2) 〈D,C〉 = c1

n∑
j=1

djj +

n−1∑
k=2

ck

n∑
j=k

d(j−k+1)j +

n−1∑
k=2

cn−k+1

n∑
j=k

dj(j−k+1)
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Let B be the average of the diagonals of D in circulant form, that is,

(2.3) b1 =
1

n

n∑
j=1

djj , bk =
1

n
{
k−1∑
j=1

d(n−k+j)j +

n∑
j=k

d(j−k+1)j}, k = 2, . . . , n.

Then it is clear that B is circulant matrix and 〈D,C〉 = 〈B,C〉 for all circulant matrices
C. Define B = PC(D) to be the orthogonal projection of D onto the subspace of circulant
matrices C. These observations prove the following lemma.

Lemma 2.1. Let D be a given n× n data matrix and define B by (2.3). For all circulant matrices
min{‖D − C‖ : C is circulant} = ‖D − PC(D)‖ = ‖D −B‖.

Several linear transformations between vector spaces and notations needed are de-
fined. For a general rectangular matrix M = [m1 m2 . . . mn] ∈ Mn , v = vec (M)
forms a vector from columns of M . The inverse mapping, vec−1, and the adjoint map-
ping, vec ∗, are given by Mat = vec−1 = vec ∗, the adjoint formula following from
〈vec (M), u〉 = 〈M, vec ∗(u)〉. Mat and vec is an isometry.

If A is symmetric, then define svec (A) = a, be the vector obtained columnwise from
the upper triangular part of A, where the strictly upper triangular part is multiplied by√

2.
We also need the operator C : IRn −→ C

C(c) =


c1 cn . . . c2
c2 c1 . . . c3
...

...
. . .

...
cn cn−1 . . . c1

 ,
where c =

√
n[c1, . . . , cn]T . Also, define the isometry operator cvec : C −→ IRn as

cvec (C(c)) =
√
n[c1, c2, · · · , cn]T = c

for any c ∈ IRn. Now, for any U, V ∈ C, there exist u,v ∈ IRn, such that C(u) = U and
C(v) = V . Note that u is equal to the first column of U multiplied by

√
n. Therefore, cvec

is a linear operator satisfying the following: For any U, V ∈ C

〈U, V 〉 = 〈C(u),C(v)〉 = traceC(u)TC(v) = n

n∑
i=1

uivi

= cvec (C(u))T cvec (C(v)) = uTv(2.4)

where u =
√
n[u1, · · · , un]T and v =

√
n[v1, · · · , vn]T . Also,

‖C(u)− C(v)‖2F = (cvec (C(u))− cvec (C(v))T (cvec (C(u))− cvecC(v))

= (u− v)T (u− v) = n

n∑
i=1

(ui − vi)2.(2.5)

Now C = cvec−1 denote the inverse mapping into C, i.e., the one-one mapping between
IRn and C. The adjoint operator C∗ = cvec , since for any U, V ∈ C

〈C(u), V 〉 = traceC(u)TV = uTv by (2.4)

= 〈u,C∗(V )〉 = 〈u, cvec (V )〉.

It is well known that circulant matrices commute under multiplication. The inverse
of a non-singular circulant matrix is circulant. The product of two circulant matrices is
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circulant. Moreover, the product of C(a) and C(b) is C(c) where

cj =

n∑
k=1

akbn+j−k, j = 1, . . . , n,

where bn+g = bg, for g ≥ 0. Let e denote a vector of unities, then Be = te, where t is
the row sum of B (the same for every row); and when B−1 exists, its row sum is 1/t, [13].
These properties are very useful when constructing matrix derivative in Section 5 and 6.

3. THE PROJECTION ALGORITHM

Now, a projection method for solving problem (1.1) will be explained. This method
is obtained from an oscillating projection method given by Dykstra [9] for finding the
nearest distance from a fixed point to a convex sets intersection.

Defined in the previous section the two convex sets P is a convex cone with dimension
n2 and C is a subspace with dimension n.

When applying projection method to the circulant matrices, it is important to use the
Frobenius norm, as expressed (1.1). To apply the algorithm, we need the projection maps
PP(.) and PC(.). These are the maps fromMn on to P and C.

To take the advantage of the isometry operator C(.), we need D to be circulant. If we
project D onto C, we get PC(D). The following lemma shows that the nearest circulant
positive semi–definite matrix to D is exactly equal to the nearest circulant positive semi–
definite matrix to PC(D).

Lemma 3.2. Let C(x) be the nearest circulant positive semi–definite matrix to PC(D), then C(x)
is the nearest circulant positive semi–definite matrix to D.

Proof. If PC(D) is positive semi–definite, then we are done. If not, then for any C(x) ∈ C,
we have

〈(C(x)− PC(D)), (PC(D)−D)〉 = 0

since PC(D) is the orthogonal projection of D. Thus,

‖C(x)−D‖2F = ‖C(x)− PC(D)‖2F + ‖PC(D)−D‖2F .

This complete the proof since the second part of the above equation is constant. �

The matrix D is not symmetric, hence, to find the projection of D onto P, first, we find
the symmetric and skew–symmetric parts of D, they are B = D+DT

2 ; F = D−DT

2 , then,

since B is symmetric, there exists a decomposition B = UΛUT , let Λ+ =

(
Λr 0
0 0

)
,

and Λr = diag [λ1, λ2, . . . , λr] is a diagonal matrix consist from the non–negative
eigenvalues of Λ. Then, the projection maps PP(D) and PC(D) are

(3.6) PP (D) = UΛ+UT + F and PC(D) = C(c)

where ci are given in (2.3), and for more details see [10, 1].
The projection maps PP(D) and PC(D) given by (3.6) can now be carried out to apply

the method. For D ∈ IRn×n, the algorithm start by D(0) = D and then the formula for the
iterations is as follow

(3.7) D(k+1) = D(k) + (PC(PP(D(k))))− PP(D(k)).

Both sequences {PP(D(k))} and {PC(PP(D(k)))} generated by (3.7) converged globally to
the solution C∗ of (1.1), [9].
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4. MIXED-CONE FORMULATION

A brief linear direct approach for solving (1.1) will be introduced. This approach is
obtained by formulating (1.1) first as an SDP problem then as a mixed SDP and second-
order cone problem.

In view of Lemma 3.2, (1.1) is equivalent to the problem

p∗ = minimize
1

2
||C(x)− PC(D)||2F

subject to C(x) � 0.(4.8)

Now, we have the following equivalences (for α ≥ 0 ∈ IR):

‖C(x)− PC(D)‖2F ≤ α ⇔ (x− d)T (x− d) ≤ α by (2.5)

⇔ α− (x− d)T I(x− d) ≥ 0

⇔
[

I (x− d)
(x− d))T α

]
� 0

where C(d) = PC(D), the last inequality hold by Schur Complement. Since SDP requires
the matrix constrains to be symmetric and since C(x) is positive semi–definite if and only
if C(x)T+C(x)

2 is positive semi–definite. Hence, we have the following SDP problem:

minimize α

subject to

C(x)T+C(x)
2 0 0
0 I x− d
0 (x− d)T α

 � 0.(4.9)

This SDP problem has dimensions n+ 1 and 2n+ 1. The original problem (1.1) can also be
formulated as a mixed SDP and second-order (or Lorentz) cone problem as follows: Since
‖C(x)− PC(D)‖2F = ‖x− d‖22 we have the following equivalent problem:

minimize α

subject to
C(x)T + C(x)

2
� 0[

α
x− d

]
≥Q 0.(4.10)

The dimension of SOC is n+1. The constraint≥Q is the second-order cone constraint. For
more details see [2].

These two equivalent problem will be solved in computational results section using
public domain software packages. The main work per iteration for solving this problem
is to form and solve the usually normal equations for the Newton search direction. There
are many complications when forming and solving this system, since it is usually ill-
conditioned at the solution.

5. DUALITY AND OPTIMALITY CONDITIONS

An equivalent problem to (4.8) and hence to (1.1) is:

(5.11) p∗ = minimize 1
2‖x− d‖22

subject to C(x) � 0,

To obtain optimality conditions, we use a dual problem. Slater’s condition (strict feasibil-
ity) holds for (5.11). This implies that we have strong duality with the Lagrangian dual

(5.12) d∗ = max
C(c)�0

min
x

1

2
||x− d||22 − traceC(c)TC(x),
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here, note that both C(c) and C(x) are not symmetric. Let φ = 1
2 ||x− d||22, then

(5.13) ∆xφ =
√
n(x− d).

Similarly

(5.14) ∆x(traceC(c)TC(x)) = ∆x(cTx) =
√
n c.

Now, we change (5.12) to the Wolfe dual by noting that the inner problem is a convex
unconstrained problem. Using (5.13) and (5.14) the optimal solution for (5.12) is charac-
terized by stationary: c = x− d. Hence, the objective of the dual can be expressed as:

1

2
||x− d||22 − cTx =

1

2
(dTd− xTx).

Thus we obtain the equivalent dual problem:

(5.15) minimize 1
2‖c + d‖22

subject to C(c) � 0.

Slater’s condition is satisfied for both primal and dual programs. Therefore, we get the
following optimality conditions.

Theorem 5.1. The optimal values p∗ = d∗ and the primal-dual pair x, c are optimal for (5.11)
and (5.15) if and only if

C(x) � 0 (primal feasibility)
c = x− d, C(c) � 0 (dual feasibility)

C(x)TC(c) = 0 (complementary slackness)

Proof. By convexity of the problem there is no duality gap, then the Slater’s condition
hold. �

For our primal-dual interior-point algorithm, we use C(x)TC(c) = µI perturbed com-
plementary slackness. By substituting the primal and dual feasibility equations into the
perturbed complementary slackness equation and obtain a single bilinear equation in x that
characterizes optimality for the perturbed barrier problem:

(5.16)
Fµ(x) : IRn → IRn2

,

Fµ(x) : = vec [{C(x)− C(d)}C(x)]− µvec I = 0.

Note that the original problem has n variables and the semi–definiteness constraint on
C(x). Therefore, the dual problem has n variables. Hence, dual based algorithms do
not reduce the size of the problem and standard primal-dual based algorithms have 2n
variables.

We solve (5.16) using an inexact Gauss-Newton method. Let linearize (5.16) then, we
obtain a linear system for the search direction ∆x:

(5.17)
Fµ(x + ∆x) = Fµ(x) + F ′µ(x)(∆x) + o(‖∆x‖)

= Fµ(x) + vec {C(c)TC(∆x) + C(∆x)TC(x)} + o(‖∆x‖).
Hence,

F ′µ(x)(∆x) = vec {C(c)TC(∆x) + C(∆x)TC(x)}
Note that the adjoint of C(c)B is 1

2 (C(c)TB + BTC(c)); while the adjoint of BC(x) is
1
2 (C(x)BT +BC(x)T ). Therefore, the adjoint (F ′µ)∗ for w ∈ IRn2

is

(F ′µ)∗(w) =
1

2
svec {[C(c)TMat (w) + Mat (w)TC(c)] + [C(x)Mat (w)T + Mat (w)C(x)T ]}.
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Let simplify notation by defining the transformations with their adjoints,

X (·) = vec
{
C(·)TC(x)

}
; X ∗(·) =

1

2
svec

{
C(x)Mat (·)T + Mat (.)C(x)T

}
;

C(·) = vec
{
C(c)T sMat (·)

}
; C∗(·) =

1

2
svec

{
C(c)TMat (·) + Mat (·)TC(c)

}
.

Therefore,

F ′µ(∆x) = C(∆x) + X (∆x), ∆x ∈ IRn;(5.18)

(F ′µ)∗(w) = C∗(w) + X ∗(w), w ∈ IRn2

.(5.19)

F ′µ(x)(∆x) is a linear, full rank, overdetermined system. We use its least squares solution
as the search direction ∆x in our algorithm.

6. THE ALGORITHM

A primal-dual interior-exterior-point algorithm is developed using equation (5.16), i.e.,
we linearize to find the search direction, assuming that we start from a feasible point,
using a linear least squares problem. First, we explain crossover criteria.

We work with an overdetermined nonlinear system; thus we use inexact Gauss–Newton
approach, which has many advantages including full rank of the Jacobian at each itera-
tion, optimality and a zero residual. A centering parameter σ is included in the perturbed
complementary slackness equation, i.e. we replace µI by σµI . Hence, once we are close
enough to the optimum we set centering parameter σ to zero (crossover step) and use step
lengths of one without backtracking to maintain positive definiteness. That is to say, there
is a local neighborhood of quadratic convergence around each point on the central path
and this neighborhood is not restricted to C(c),C(x) � 0. This allows fast quadratic con-
vergence. Standard convergence results, e.g. [8], show that the Gauss-Newton method
applied to Fµ(x) = 0 is locally quadratically convergent, since the Jacobian at the opti-
mum is full column rank. We follow [4] to discuss several constants used to determine
the region of quadratic convergence. The centering parameter is set to zero since we have
a zero residual. Now,

(6.20)

‖F ′µ(∆x)‖F = ‖{C(c)TC(∆x) + C(∆x)TC(x)‖F
≤ ‖C(c)‖F ‖C(∆x))‖F + ‖C(∆x)‖F ‖C(x)‖F
= ‖∆x‖2(‖C(c)‖F + ‖C(x)‖F )

≤ ‖∆x‖2
√
‖c‖22 + ‖x‖22

(by Cauchy − Schwartz inequality),

the norm of the Jacobian bound is α =
√
‖c‖22 + ‖x‖22, and

‖F ′µ(x− x̄)(∆x)‖F = ‖(C(x)− C(x̄))C(∆x) + C(∆x)(C(c)− C(c̄))‖F
≤ ‖∆x‖2(‖x− x̄‖2 + ‖c− c̄‖2).

Hence, the Lipschitz constant is γ = 1.
If we assume nondegeneracy of optimum, i.e. x∗ is unique and the smallest singular

value satisfies σmin(F ′µ(x)) ≥
√
K, for all x in an ε1 neighborhood of x∗, for some constant

K > 0. Following [8, Page 223], define

ε = min

{
ε1;

K

αγ

}
= min

{
ε1;

K√
‖x∗‖22 + ‖c∗‖22

}
.
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Then quadratic convergence is guaranteed once the current iterate is in this ε neighbor-
hood of the optimum. One possible heuristic for this is to start the crossover if

ρσmin(F ′µ(x)) ≥ ‖∆x‖
√
‖x‖22 + ‖c‖22, ρ ∈ (0, 1).

This bound is overly restrictive since it does not take into account the direction of the step.
In our tests we started the crossover when the relative duality gap

xT c
1
2‖C(x) − D‖2F + 1

< 0.5.

This simpler heuristic never failed to converge, and quadratic convergence was observed.
Equation (5.16) and the linearization (5.17) is used to develop the primal-dual interior-

point Algorithm 6.2.

Algorithm 6.2. (Primal-Dual Gauss-Newton via Conjugate Gradients)
Input: Objective: data matrix D
Input: Tolerances: δ1 (gap), δ2 (crossover)
Initialization:

C(x0) � 0 and C(c0) = PC(D)− C(x0) � 0

g = traceC(c0)C(x0); µ = g/n; σ = 1; φ =
1

2
‖C(x)− PC(D)‖2F .

while min{ g
φ+1 , φ} > δ1

if min{ g
φ+1 , φ} < δ2 then

σ = 0
else

update σ
end if
Solve F ′σµ(x) (∆x) = −Fσµ(x) for ∆x
update C(x) = C(x) + α C(∆x), α > 0,

C(c) = C(x)− PC(D), (C(x),C(c) � 0)
g = traceC(x)C(c); µ = g/n;
φ = 1

2‖C(x)− PC(D)‖2F
endwhile

This approach eliminate the primal and dual linear feasibility equations and work with
the overdetermined nonlinear system. For each iteration, we find a new iterate by taking a
step in the inexact Gauss-Newton search direction ∆x. The search direction is found using
a conjugate gradient method, LSQR [12]. The cost of each conjugate gradients iteration is
a matrix multiplication. We ensure that before crossover, the new iterate x + α∆x results
in both C(x), C(c) sufficiently positive definite; then, after crossover we take α = 1. By
our construction, the iterates maintain both primal and dual feasibility.

7. COMPUTATIONAL RESULTS

Numerical testing was performed to illustrate some features of our algorithm. The
crossover using a step length of one has a significant effect on both the number of iter-
ations and linear system condition. This allow the algorithm to run without maintain
interiority and to use affine scaling.

The tests were done using MATLAB 7. We solve a set of problems using four ap-
proaches: (i) Algorithm 6.2, (ii) the SDP formulation (4.9), (iii) the mixed SDP and second
order formulation (4.10) and (iv) projection method. We use the SDPT3-3.0 code [14] for
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approaches (ii) and (iii). We applied all approaches to problems starting from small dense
problems with n = 10 up to a large problems with n = 500.

We obtained results by applying the methods as follows: A positive definite circulant
matrix C was formed randomly, then this matrix was perturbed by adding random noise
matrix N to C, where elements of C vary between −0.50 and 0.50. The problem is to
recover the matrix before the noise was added. In all these cases, we found the optimum
to high accuracy, at least ten decimals, except for the projection method we stop with
seven decimals of accuracy. Table 1, shows how close, in Frobenius norm for selected test
problem, the optimal solution of each method, C∗, to the data matrix D.

TABLE 1. Performance comparison (norm ‖C∗ −D‖F ) among the four methods.

Methods\n 50 100 150 200 300 400 500
Algorithm 6.2 287.3321 843.3121 1214.1162 1743.7537 2843.1630 3638.2813 5134.4367

SDP 287.3321 843.3123 1214.1165 1743.7539 2843.1633 3638.2821 5134.4378
SDP & SOC 287.3322 843.3131 1214.1170 1743.7542 2843.1642 3638.2834 5134.4404

Pro. 287.3321 843.3121 1214.1161 1743.7537 2843.1629 3638.2812 5134.4366

The projection method is clearly the slowest. The results appear in Figure 1. We can see
from the figure the correlation between the CPU time and size of the matrix D = N + C.
The number of iterations required by Algorithm 6.2 remains essentially and efficiently
constant from 9 to 17 iterations for all the test problems. The number of LSQR iterations
required for small problems by one iteration of Algorithm 6.2 ranges from 7 to 18 itera-
tions. However, this number increases for the mid-size problems from 4 to 33 iterations.
Then, in the larger problems, the number of iterations ranges from 23 to 42 iterations.
Note in Figure 1 the CPU time become very large for the projection method, the SDP and
the mixed SDP when n is very large, therefore, we stop reporting

The CPU time to make the graph with in the figure frame. Figure 1 shows the total
number of iterations by LSQR against the size of the matrix D.
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We will explain now our strategy for choosing µ and σ with different values of s the
step length. If the step is less than 0.001 then µ will be multiplied by 2.1 and σ = 1. If the
step is less than 0.25 then we will multiply µ by 1.5 and σ = 1. If s < 1 then µ will be
multiplied by 1.2 and σ = 1− 0.3min(s, 1). However, if the step is larger than or equal to
1 then µ will be multiplied by 0.7 and σ = 1 − 0.3s. We get quadratic convergence after
crossover, centering σ is set to 0 and steplength α is set to one. This step allows for warm
starts. Then, long steps can be taken beyond the bounds of positivity. This will improves
the convergence rates in all the numerical problems; the crossover starts in most tests at
the 9− 10th iteration and converges in 2− 4 iterations.

The data matrix D is always dense. Even if some of the elements are zeros, these ele-
ments will disappear when we project to the circulant space C. However, if any of anti-
diagonals elements of D is all zeros, then these anti-diagonals elements can be eliminated
and the dimension of the problem will be reduced by the number of zero anti-diagonals.
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