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A fresh look at Cauchy’s Convergence Criterion: Some
variations and generalizations

DAVID BENKO, DAN COROIAN and LIA PETRACOVICI

ABSTRACT. We present several variations, generalizations and extensions of Cauchy’s Convergence Crite-
rion for real sequences, including some unusual 2-dimensional versions.

1. INTRODUCTION

A sequence of real numbers whose elements become arbitrarily close to each other is
called a Cauchy sequence, after Augustin-Louis Cauchy, who first introduced the idea in his
textbook Cours d’Analyse published in 1821. More precisely, a sequence of real numbers
{an} is called a Cauchy sequence, if for any number ε > 0 there exists a positive integer
N such that if m,n ≥ N , then |am − an| < ε. Let us recall Cauchy’s well-known theorem
(see [8], for example), which is equivalent to the fact that the set R of all real numbers,
equipped with the usual (Euclidean) metric d(x, y) = |x− y|, is a complete metric space:

Theorem. (Cauchy’s Convergence Criterion for Real Sequences) A sequence of real numbers
is convergent if and only if it is a Cauchy sequence.
There are numerous publications in the literature proposing extensions and alternate ver-
sions of Cauchy’s convergence criterion (see for example [2], [6], [7]). In this paper we
present several less known variations, generalizations, and extensions of this important
theorem, and also prove some new ones, including our main result, Theorem 4.10.

2. THREE VARIATIONS OF CAUCHY’S CRITERION

Throughout this paper we assume that k,m, n, i, j,N and M denote positive integers.
Below we will state three different versions of Cauchy’s Criterion which might be easier
to use in practice.

Theorem 2.1. (Cauchy’s Criterion - Reformulation I) Let {an} be a sequence of real numbers.
Then {an} is convergent if and only if for any ε > 0 there exists a positive integer N such that

(2.1) if m ≥ N then |am − aN | < ε.

This says that, in fact, one of the numbers in the definition of a Cauchy sequence can be
fixed.

Proof. First assume an → a, and let ε > 0. Then there exists a positive integer N such that
|am − a| < ε/2 if m ≥ N . Thus if m ≥ N , |am − aN | ≤ |am − a|+ |aN − a| < ε.
To prove the converse, suppose that for every ε > 0 there exists an N such that (2.1) is
satisfied. Let ε > 0. Then, we can find a positive integer N , such that if m ≥ N then
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|am − aN | < ε/2. If m,n ≥ N we have |am − an| ≤ |am − aN |+ |an − aN | < ε, thus {an} is
Cauchy, so convergent. �

Example 2.1. (see [3]) Consider the sequence

an =

n∑
k=1

sin kx

2k
, n ≥ 1, where x ∈ R.

We will use Theorem 2.1 to show that this sequence is convergent for any real number x.
For any m > n,

|am − an| =
∣∣∣∣ sin(n+ 1)x

2n+1
+

sin(n+ 2)x

2n+2
+ · · ·+ sinmx

2m

∣∣∣∣ ≤
≤ 1

2n+1
+

1

2n+2
+ · · ·+ 1

2m
=

1

2n+1
·

1− 1
2m−n

1− 1
2

=

=
1

2n

(
1− 1

2m−n

)
<

1

2n
.

For any ε > 0, choose N such that 1
2N

< ε. Then, for m ≥ N , |am − aN | < 1
2N

< ε, so the
sequence {an} is convergent by Theorem 2.1.

Theorem 2.2. (Cauchy’s Criterion - Reformulation II) Let {an} be a sequence of real numbers.
Then {an} is convergent if and only if for any ε > 0 there exist positive integers N and M such
that

(2.2) if m ≥M then |am − aN | < ε.

Proof. We will show that the above condition is equivalent to condition (2.1) from the
reformulation of Cauchy’s Criterion given in Theorem 2.1. Let ε > 0. If (2.2) holds, then
there exist positive integers N and M such that if m ≥ M then |am − aN | < ε/2, and in
particular |aM−aN | < ε/2. Then ifm ≥M we have |am−aM | ≤ |am−aN |+|aM−aN | < ε,
so (2.1) holds. Conversely, if (2.1) holds, there exists an integer N such that if m ≥ N , then
|am − aN | < ε. Thus (2.2) holds by choosing M = N . �

We also prove a more general result involving several terms of the sequence.

Theorem 2.3. (A Generalized Cauchy Criterion) Let {an} be a sequence of real numbers, and
let x1, . . . , xk be non-zero real numbers. Then {an} is convergent if and only if there exists a real
number L with the property that for every ε > 0 there exists a positive integer N such that

(2.3) if n1, n2, . . . , nk ≥ N then |x1an1
+ · · ·+ xkank

− L| < ε.

Furthermore, if x1 + · · ·+ xk = 0 then L = 0, and if x1 + · · ·+ xk 6= 0 then {an} must converge
to L/(x1 + · · ·+ xk).

Proof. First assume that an → a. We can find positive integersNi such that |ani
−a| < ε

k|xi|
for ni ≥ Ni, i = 1, 2, . . . , k. Let N = max{N1, N2, . . . , Nk} and let L := a(x1 + · · · + xk).
Then if n1, . . . , nk ≥ N we have

|x1an1
+ · · ·+ xkank

− L| ≤
k∑
i=1

|xi||ani
− a| <

k∑
i=1

|xi|
ε

k|xi|
= ε.

Conversely, let us assume that there exists a real number L with the property that for any
ε > 0, we can find a positive integer N such that condition (2.3) is satisfied. Let ε > 0.
Then there exists a positive integerN such that ifm ≥ N , then |x1aN+x2aN · · ·+xk−1aN+
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xkam−L| < ε|xk|
2 . Similarly, if n ≥ N then |x1aN+x2aN+· · ·+xk−1aN+xkan−L| < ε|xk|

2 .
If m,n ≥ N we have

|am − an| =
1

|xk|
|xkam − xkan| =

1

|xk|
|(x1aN + x2aN + · · ·+ xk−1aN + xkam − L)−

−(x1aN + x2aN + · · ·+ xk−1aN + xkan − L)| < 1

|xk|

(
ε|xk|

2
+
ε|xk|

2

)
= ε,

which shows that {an} is a Cauchy sequence, so convergent.
To prove the additional statements in the theorem, let n1, n2, . . . , nk → ∞ in equation
(2.3). Assuming an → a, we obtain |x1a+ · · ·+ xka−L| = 0, and so L = a(x1 + · · ·+ xk).
Both statements follow. �

3. RELATED CONVERGENCE CRITERIA

We note that if x and y are real numbers such that |x− y| is small compared to |x|, then
the ratio x/y is close to 1 thus the following result should not come as a surprise.

Theorem 3.4. (A Ratio Criterion) Let δ be strictly positive and let {an} be a sequence such that
|an| ≥ δ for all n. Then {an} is convergent if and only if for any ε > 0 there exists a positive
integer N such that

(3.4) if m ≥ N then |am/aN − 1| < ε.

Proof. First assume that {an} is convergent. By Theorem 2.1, for any ε > 0 there exists a
positive integer N such that if m ≥ N we have |am − aN | < δε. Then for m ≥ N

|am/aN − 1| = |am − aN |
|aN |

=
1

|aN |
|am − aN | <

1

δ
δε = ε.

Conversely, let’s assume that for any ε > 0, there exists an N such that (3.4) is satisfied.
For ε1 = 1 there exists a positive integer N1 such that

(3.5) |am/aN1
− 1| < 1 if m ≥ N1.

Take the smallest positive integer with this property and also denote it by N1. Then, by
(3.5), if m ≥ N1 we have

|am| ≤ |am − aN1
|+ |aN1

| < 2|aN1
|.

Now let ε > 0. If ε < 2|aN1 |, then by (3.4) we can find N such that |am/aN − 1| < ε
2|aN1

| if
m ≥ N . Since N1 was chosen to be the smallest positive integer for which (3.5) holds, and
since ε

2|aN1
| < ε1 = 1, we see that N ≥ N1. Thus for m ≥ N we have

|am − aN | =
∣∣∣∣am − aNaN

aN

∣∣∣∣ =

∣∣∣∣amaN − 1

∣∣∣∣ |aN | < ε

2|aN1
|
2|aN1 | = ε,

so by Theorem 2.1, {an} is convergent. If ε ≥ 2|aN1
|, then by (3.5),∣∣∣∣am − aN1

aN1

∣∣∣∣ < 1 ≤ ε

2|aN1 |
, if m ≥ N1,

so |am − aN1
| < ε, therefore {an} is convergent by Theorem 2.1. �

Remark 3.1. The condition |an| ≥ δ cannot be dropped. For example, the sequence an =
1
n! converges to 0; however, it does not satisfy the Ratio Criterion above.
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Example 3.2. Let x ≥ 1 be an irrational number, and let an be the n-place decimal expan-
sion of x. We will use Theorem 3.4 to prove that the sequence {an} is convergent. For any
m > n, ∣∣∣∣aman − 1

∣∣∣∣ =

∣∣∣∣am − anan

∣∣∣∣ ≤ 10−n−1

1
= 10−n−1.

For ε > 0, choose N such that 10−N−1 < ε. Then, for m ≥ N ,
∣∣∣amaN − 1

∣∣∣ ≤ 10−N−1 < ε, so
the sequence {an} is convergent by Theorem 3.4.

The idea of extending the usual notion of convergence to include sequences divergent
to ±∞ appears in several classical anaylsis books (see [9] or [4], for example).

Definition 3.1. We say that a sequence of real numbers is convergent in the extended sense
or x-convergent, if it either converges or if it diverges to plus or minus infinity. A sequence
{an} is called an extended sequence if an ∈ R or an = ±∞.

One obvious disadvantage of this terminology is that the sum of two x-convergent se-
quences is not necessarily x-convergent, since∞−∞ is not well defined. Nevertheless,
we now propose two versions of Cauchy’s Criterion for x-convergent sequences.

Proposition 3.1. (Cauchy’s Criterion for Extended Convergence - Version I) Let T : R →
(−1, 1) be a strictly increasing, continuous bijection between R and (−1, 1). Define T (−∞) =
−1, T (∞) = 1. Then an extended sequence {an} ⊂ R ∪ {±∞} is x-convergent if and only if
{T (an)} is a Cauchy sequence.

Proof. The sequence of real numbers {T (an)} ⊂ [−1, 1] is a Cauchy sequence if and only
if it converges to a number L ∈ [−1, 1]. But T (an) → L if and only if an → T−1(L), since
T : R ∪ {±∞} → [−1, 1] is a a homeomorphism. �

Remark 3.2. In the above proposition, T (x) could be for example (2tan−1x)/π, or x/
√

1+x2.
Or, if F is a continuous strictly increasing cumulative distribution function, then T (x) =
2F (x)− 1 could also be used.

The following theorem provides a more practical way to handle x-convergent sequences.

Theorem 3.5. (Cauchy’s Criterion for Extended Convergence - Version II) An extended
sequence {an} ⊂ R ∪ {±∞} is x-convergent if and only if for any ε > 0 there exists a positive
integer N such that if m ≥ N , then at least one of the following holds:
(a) |am − aN | < ε,
(b) am, aN ≥ 1 and |1/am − 1/aN | < ε,
(c) am, aN ≤ −1 and |1/am − 1/aN | < ε.

Proof. First asssume that {an} is convergent in the extended sense. If an → L then (a)
holds, by Theorem 2.1; if an →∞ then (b) holds; if an → −∞ then (c) holds.
To prove the converse, let ε = 1/n, for n = 1, 2, . . .. For each n we can find a positive
integer Nn such that, if m ≥ Nn, then at least one of (a), (b) or (c) holds with ε = 1/n.
We create a list as follows: for each n = 1, 2, . . ., write A, if (a) holds, write B, if (b) holds,
and write C, if (c) holds. If more than one of the conditions hold for a given n, then we
just write A (note that(b) and (c) cannot occur at the same time). At least one of the letters
A, B, C will appear infinitely many times on this list. If it is A, then {an} satisfies our
first reformulation of Cauchy’s Criterion, Theorem 2.1, (since for any ε > 0, we can solve
the inequality 1/n < ε), and therefore {an} is convergent. If B appears infinitely many
times on the list, then the sequence {1/an} satisfies the reformulated Cauchy’s Criterion
of Theorem 2.1, and therefore {1/an} converges to a real number. If this number is 0,
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then, since {an} satisfies condition (b), the sequence {1/an} must approach 0 from the
right, and therefore an → +∞. Otherwise, {an} converges to a real number. The case
when C appears infinitely many times is similar. �

4. SOME TWO-DIMENSIONAL EXTENSIONS

Let us recall the one-point compactification of the plane, R2∪{∞}. In this compactifica-
tion, the neighborhood basis of any finite point (x, y) is the usual set of open discs centered
at (x, y), while a neighborhood basis of∞ is {{(x, y) : x2 + y2 > R2} : R > 0} ∪ {∞} (see
[5] or [10], for example). In this topology, a sequence {(xn, yn)} converges to ∞ if and
only if one of the following equivalent conditions holds:
(i) For every R > 0, there exists N such that if n ≥ N then x2n + y2n ≥ R2.
(ii) lim(|xn|+ |yn|) =∞, that is, if n is large, then |xn| or |yn| is large.

Below we introduce a different extension of R2.

Definition 4.2. Let T := R2 ∪ {∞} with the following topology: the neighborhood basis
of∞ is defined to be {{(x, y) : min(x, y) > R} : R > 0} ∪ {∞}, while the neighborhood
basis of a finite point is the set of open discs centered at the point.

In this topology (which is Hausdorff), a sequence {(xn, yn)} converges to∞ if and only if
xn → +∞ and yn → +∞.

Remark 4.3. A huge disadvantage of this topology is that T is neither compact, nor se-
quentially compact. Indeed, consider the system of open discs with radius 1 around all
points (x, y), and {(x, y) : min(x, y) > 2} ∪ {∞}. This is an open covering of R2 ∪ {∞},
from which we cannot select a finite subcovering, showing non-compactness. Also, the
sequence {(1, n)}, n = 1, 2, . . ., for example, does not approach∞ (or anything else), and
it has no convergent subsequence.

In the next theorem we prove that real functions defined on T behave nicely.

Theorem 4.6. (a) Let u, v : T→ R, and let α and β be real numbers. Let P be any point in T. If
the limits lim(x,y)→P u(x, y) and lim(x,y)→P v(x, y) exist and are finite, then

lim
(x,y)→P

[αu(x, y) + βv(x, y)] = α lim
(x,y)→P

u(x, y) + β lim
(x,y)→P

v(x, y),

(b) Let A be the set of all continuous real functions on T. Then A is an algebra over R, that is, A
is a ring with respect to addition and multiplication, a vector space over R with respect to addition
and scalar multiplication, and if u, v ∈ A and α ∈ R, then (αu)v = u(αv) = α(uv).

Proof. (a) First we show that lim(u + v) = limu + lim v. Let limu(x, y) = L1 and let
lim v(x, y) = L2. If P 6=∞, for any ε > 0, there exists an open disc D1 around P such that,
if (x, y) ∈ D1, then |u(x, y)−L1| < ε/2, and an open disc D2 around P such that if (x, y) ∈
D2, then |v(x, y) − L2| < ε/2. Then, for any (x, y) ∈ D := D1 ∩D2, |(u(x, y) + v(x, y)) −
(L1 + L2)| ≤ |u(x, y) − L1| + |v(x, y) − L2| < ε, so lim(u + v) = limu + lim v. If P = ∞,
according to the way we defined open neighborhoods of∞ in T, for any ε > 0, there exists
R1 > 0 such that, if (x, y) ∈ {(x, y) : min(x, y) > R1} ∪ {∞}, then |u(x, y) − L1| < ε/2,
and there exists R2 > 0 such that, if (x, y) ∈ {(x, y) : min(x, y) > R2} ∪ {∞}, then
|v(x, y)−L2| < ε/2. Then, if R = max{R1, R2}, for (x, y) ∈ {(x, y) : min(x, y) > R}∪{∞},
we have |(u(x, y)+v(x, y))−(L1 +L2)| ≤ |u(x, y)−L1|+ |v(x, y)−L2| < ε, so lim(u+v) =
limu+ lim v.
Next, we show that lim c u = c limu. Assume that lim(x,y)→P u(x, y) = L. If c = 0, the
statement is clearly true, so assume c 6= 0. If P 6= ∞, for any ε > 0 there exists an open
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disc D around P such that, if (x, y) ∈ D, then |u(x, y)−L| < ε/|c|. Then, |c u(x, y)− cL| =
|c||u(x, y) − L| < |c| ε/|c| = ε, so lim c u = c limu. If P = ∞, for any ε > 0 there exists
R > 0 such that, if (x, y) ∈ {(x, y) : min(x, y) > R}∪ {∞}, then |u(x, y)−L| < ε/|c|. Then,
for (x, y) ∈ {(x, y) : min(x, y) > R}∪{∞}, we also have |c u(x, y)−cL| = |c||u(x, y)−L| <
|c| ε/|c| = ε, so lim c u = c limu. The two limit properties we just proved imply that (a)
holds. The proof of part (b) is a routine verification of the axioms and we leave it to the
reader. �

Definition 4.3. Consider the following subset of R2 ∪ {∞}:

S := N× N ∪ {∞} ⊂ T
where N is the set of all positive integers. We define the topology on S the same way it
was defined above for T in Definition 4.2: the neighborhood basis of∞ in S consists of the
collection of sets {{(m,n) : min{m,n} > N} : N ∈ N} ∪ {∞}. Just like in T, a sequence
{(mk, nk)} ⊂ S converges to∞ if and only if mk → +∞ and nk → +∞.

Theorem 4.7. (Cauchy’s Criterion - the S Version) Let {an} be a sequence of real numbers.
Then {an} is convergent if and only if amk

− ank
→ 0 whenever (mk, nk)→∞ in S.

Proof. First assume lim an = a. For any positive integers m and n, define u(m,n) := am
and v(m,n) := an. If (mk, nk) → ∞ in S, then mk → +∞ and nk → +∞, hence, using
the linearity of the limit provided by Theorem 4.6, lim(amk

− ank
) = limu(mk, nk) −

lim v(mk, nk) = lim amk
− lim ank

= a− a = 0.
Conversely, assume that amk

− ank
→ 0, whenever (mk, nk) → ∞. By contradiction,

assume that {an} is not convergent. Then by Theorem 2.1, there exists an ε > 0 such that
for any positive integer N there is an m ≥ N such that |am − aN | ≥ ε. Thus, for any
positive integer k, there exists a positive integer mk ≥ k such that |amk

− ak| ≥ ε. But this
is a contradiction, since (mk, k)→∞ in S, so, by hypothesis, amk

− ak should converge to
0. �

Since working with infinity could be hard to visualize, we are using the following in-
version to bring∞ to (0, 0) (see [1], for example).

Definition 4.4. Let I : R2 ∪ {∞} → R2 ∪ {∞} by

I(x, y) :=
( x

x2 + y2
,

y

x2 + y2

)
, if (x, y) 6= (0, 0),

I(0, 0) :=∞, I(∞) := (0, 0).

Definition 4.5. Let S̄ := I(S). Equip S̄ with the following topology: the neighborhood
basis of any I(i, j) is just {I(i, j)}, and the neighborhood basis of (0, 0) consists of the
collection of sets {{I(i, j) : i, j > N} : N ≥ 1} ∪ {(0, 0)}.

Note that under inversion I , the image of the set {(x, y) ∈ R2 : x, y > R} is a region DR

in the first quadrant, containing the origin, and bounded by the curves ( R
R2+y2 ,

y
R2+y2 ), y ≥

R and ( x
R2+x2 ,

R
R2+x2 ), x ≥ R. Also, DR1 ⊃ DR2 , if R1 < R2 (see Figure 1).

For any positive integer N , let BN := DN ∩ S̄ = {I(m,n)| m,n positive integers and
m,n > N}. In this notation, a neighborhood basis of (0, 0) in S̄ is the collection of sets
{BN ∪ {(0, 0)} : N ≥ 1}. Note that the sets BN satisfy B1 ⊃ B2 ⊃ · · · .

If {pk} := {(mk, nk)}k≥1 is a sequence in S, then pk →∞ if and only if I(pk)→ I(∞) =
(0, 0). This means that for every positive integer N , there exists an index k0, such that
I(pk) ∈ BN if k ≥ k0. This is different than the usual convergence to (0, 0), which only
means that the distance from (0, 0) approaches zero.
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FIGURE 1. Graph of region DR for R = 1 and R = 2.

We can now state the following:

Theorem 4.8. (Cauchy’s Criterion - the S̄ Version) Let {an} be a sequence of real numbers.
Then {an} is convergent if and only if amk

− ank
→ 0 whenever I(mk, nk)→ (0, 0) in S̄.

We omit the proof since it is similar to the proof of Theorem 4.7.

In the last part of our article we prove two Cauchy-like criteria, based on a class of
functions we call lower α-Lipschitz continuous.

Definition 4.6. Let f, g : R2 → R such that f(x, x) = g(x, x), for all x ∈ R. We say that a
sequence {an} satisfies the two variable Cauchy property with respect to f and g, if for any
ε > 0 there exists a positive integer N such that if n ≥ N then

(4.6) |f(an, aN )− g(an, aN )| < ε.

Definition 4.7. (a) A function f : D ⊆ R→ R is called lower α-Lipschitz continuous if there
exist positive constants M and α such that

|x− y| ≤M |f(x)− f(y)|α, for all x, y ∈ D.
(b) Two functions f, g : D ⊆ R2 → R are called mutually lower α-Lipschitz continuous, if

there exist positive constants M and α such that

|x− y| ≤M |f(x, y)− g(x, y)|α, for all (x, y) ∈ D.

Remark 4.4. If a function f has an inverse f−1, and if the inverse is α-Lipschitz continu-
ous, then f is certainly lower α-Lipschitz continuous. Indeed, if

|f−1(u)− f−1(v)| ≤M |u− v|α,
then for x := f−1(u) and y := f−1(v) we have

|x− y| = |f−1(u)− f−1(v)| = |f−1(f(x))− f−1(f(y))| ≤M |f(x)− f(y)|α.
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Theorem 4.9. (Two Variable Cauchy Criterion - Version I) Let {an} be a sequence of real
numbers, and let f, g : D ⊆ R2 → R be continuous and mutually lower α-Lipschitz continuous
such that f(x, x) = g(x, x), for all x ∈ D. Then {an} is convergent if and only if {an} satisfies
the two variable Cauchy property with respect to f and g.

Proof. Assume an → a. Since f and g are continuous, for any ε > 0 there exists a positive
integerM such that if n,N ≥M , then |f(an, aN )−f(a, a)| < ε/2 and |g(an, aN )−g(a, a)| <
ε/2. Since f(a, a) = g(a, a) we have

|f(an, aN )− g(an, aN )| ≤ |f(an, aN )− f(a, a)|+ |g(a, a)− g(an, aN )| < ε,

so {an} satisfies the two variable Cauchy property with respect to f and g.
Conversely, assume {an} satisfies (4.6) and let ε > 0. Then, there exists a positive integer
N such that, if n ≥ N , |f(an, aN ) − g(an, aN )| <

(
ε
M

)1/α. Then, by the mutual lower
α-Lipschitz continuity of f and g, for n ≥ N , |an − aN | ≤M |f(an, aN )− g(an, aN )|α < ε,
hence {an} is convergent by Theorem 2.1. �

Next we prove our main result, which is a generalization of Theorem 4.7.

Theorem 4.10. (Two Variable Cauchy Criterion - Version II) Let {an} be a sequence of real
numbers, and assume h1, h2, h3, h4 : D ⊆ R → R are continuous functions satisfying the
following properties:
(i) There exists c > 0 such that |h2(x)| ≥ c and |h3(x)| ≥ c, for all x ∈ D.
(ii) The function h1/h3 is lower α-Lipschitz continuous.
(iii) h1(x)h2(x) = h3(x)h4(x), for all x ∈ D.
Then {an} is convergent if and only if {an} satisfies the two variable Cauchy property with respect
to the functions f(x, y) := h1(x)h2(y) and g(x, y) := h3(x)h4(y).

Proof. If {an} is convergent, the proof that {an} satisfies the two variable Cauchy property
with respect to the functions f and g is very similar to the one in the Theorem 4.9, so we
omit it.
To prove the converse, assume that {an} satisfies (4.6) and let ε > 0. Then there exists a
positive integer N such that, if n ≥ N we have

|f(an, aN )− g(an, aN )| = |h1(an)h2(aN )− h3(an)h4(aN )| < c2

2

( ε

M

)1/α
,

where M and α are the constants appearing in the lower α-Lipschitz continuity condition
satisfied by h1(x)/h3(x). Division by |h2(aN )h3(an)| yields∣∣∣h1(an)

h3(an)
− h4(aN )

h2(aN )

∣∣∣ < 1

2

( ε

M

)1/α
.

Now from (ii), if m,n ≥ N we have

|am − an| ≤M
∣∣∣h1(am)

h3(am)
− h1(an)

h3(an)

∣∣∣α ≤
≤M

(∣∣∣h1(am)

h3(am)
− h4(aN )

h2(aN )

∣∣∣+
∣∣∣h4(aN )

h2(aN )
− h1(an)

h3(an)

∣∣∣)α <
< M

[
1

2

( ε

M

)1/α
+

1

2

( ε

M

)1/α]α
= ε.

Thus {an} is a Cauchy sequence, so convergent by Cauchy’s Criterion. �
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Remark 4.5. We note that Theorem 4.7 follows from Theorem 4.10 if we choose h1(x) =
h4(x) = x, and h2(x) = h3(x) = 1, which satisfy the hypotheses of Theorem 4.10. For this
choice of functions,

f(amk
, ank

)− g(amk
, ank

) = h1(amk
)h2(ank

)− h3(amk
)h4(ank

) = amk
− ank

.

This implies that amk
− ank

→ 0 as (mk, nk) → ∞ in the topology of S, if and only if the
sequence {an} satisfies the two variable Cauchy property with respect to f and g.
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