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Quadratic maps in two variables on arbitrary fields

R. DURÁN D ÍAZ1, L. HERNÁNDEZ ENCINAS2 and J. MUÑOZ MASQUÉ2

ABSTRACT. Let F be a field of characteristic different from 2 and 3, and let V be a vector space of dimension
2 over F. The generic classification of homogeneous quadratic maps f : V → V under the action of the linear
group of V , is given and efficient computational criteria to recognize equivalence are provided.

1. INTRODUCTION

Let F be a field of characteristic p 6= 2, 3 and let V be a 2-dimensional F-vector space. In
this paper we classify homogeneous quadratic maps f : V → V that satisfy certain generic
condition to be introduced later. Since there is a natural bijection between homogeneous
quadratic maps on V and symmetric bilinear composition laws F : V × V → V , the clas-
sification is carried out over the latter considering the action of the general linear group
GL(V ).

The topic has not elicited much attention and the literature is scarce. As far as we
know, only our previous work [2] has clearly focused this topic. However, homogeneous
quadratic maps play a major role in the dynamics of discrete systems (see, for example,
[1]) and may give rise to new or revamped one-way functions potentially interesting for
cryptographic applications.

Our purpose in this work is to apply to arbitrary fields the classification obtained in [2],
where such goal was achieved only for the case of an an algebraically closed field. How-
ever, it will become apparent along the coming sections that the methods employed to
classify in the latter case are no longer applicable. Actually, the main role for the present
case is played by the Clifford algebra associated to the quadratic form defining the sym-
metric bilinear law. In particular, this new tool has allowed us to deal with both the
hyperbolic and the elliptic cases of the quadratic form under a unified framework. We
want to stress that the new methods are totally different from those used in [2] so that
the present contribution cannot be qualified as a plain generalization or extension of the
former one.

The main results of the paper can summarized as follows: We give both the general
form of any symmetric bilinear law such that its associated quadratic form takes the value
−1, and the explicit expression for the maps in the group of isometries. It turns out that
such maps are parametrized by an element of the Clifford algebra whose Clifford norm
is 1. Next we compute the isotropy group, which is discrete. Last, in order to perform
the classification, we resort to the invariants computed in [2] transposed to the case we
are dealing with now. While it is true that this technique do not provide a perfect clas-
sification, we do supply efficient computational criteria, allowing one to recognize such
equivalence.
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We stick here, as we did in [2], to the case of a 2-dimensional vector space V . The
reason will become clear, since the deployed techniques are deeply connected to the 2-
dimensional case. Apparently, each dimension claims specific techniques and tools in
order to achieve the classification. In a sense, the procedure shows a kind of “artistic”
flavor that renders it not immediately or easily exportable to higher dimensions.

The paper is organized as follows: after a first section explaining some preliminar-
ies and notation, we focus on the topic of Clifford algebras, making it apparent the role
played by them in the present work; next we classify generic symmetric bilinear laws,
followed by the computation of the isotropy group; finally we undertake the task of com-
puting the criteria to recognize the equivalence of symmetric bilinear laws.

2. PRELIMINARIES AND NOTATION

If {v1, v2} is a basis for V , then f(x) = f1(x)v1 + f2(x)v2 where

f1(x1, x2) = a1(x1)2 + 2b1x1x2 + c1(x2)2,
f2(x1, x2) = a2(x1)2 + 2b2x1x2 + c2(x2)2,

ai, bi, ci ∈ F, 1 ≤ i ≤ 2,
x = x1v1 + x2v2.

As p 6= 2, there is a natural bijection between homogeneous quadratic maps on V and
symmetric bilinear composition laws F : V ×V → V , F (x, y) = x?y (in short: SBLs), which
is given by the polarization formula, e.g., see [4, XV, §§2–3]. Remember that two bilinear
laws ? : (x, y) ∈ V 2 7→ x ? y ∈ V and ◦ : (x, y) ∈ (V ′)2 7→ x ◦ y ∈ V ′ are isomorphic—or
GL(V )-equivalent—if and only if there is a vector-space isomorphism u : V

'−→ V ′ such
that, ∀(x, y) ∈ V 2, u(x) ◦ u(y) = u(x ? y).

If V, V ′ are two F-vector spaces, the space of bilinear maps is denoted by L2(V, V ′),
with the natural identification L2(V, V ) ∼= L(V ⊗ V, V ) ∼= ⊗2V ∗ ⊗ V . Hence, the classifi-
cation problem that we tackle transforms into a classification problem in the subspace of
symmetric tensors of type (1, 2) on the plane, S2V ∗ ⊗ V ⊂ ⊗2V ∗ ⊗ V . The natural action
of the linear group GL(V ) on S2V ∗ ⊗ V is given by

(2.1)
∀x, y ∈ V, F ∈ S2V ∗ ⊗ V, ∀u ∈ GL(V ),
(u · F )(x, y) = u

(
F
(
u−1(x), u−1(y)

))
.

Let {v∗1 , v∗2} be the dual basis of {v1, v2}; i.e., v∗i (vj) = δij . Every F ∈ S2V ∗ ⊗ V is written
as

F = v∗1 ⊗ v∗1 ⊗ (a1v1 + a2v2) + (v∗1 ⊗ v∗2 + v∗2 ⊗ v∗1)⊗ (b1v1 + b2v2)(2.2)

+ v∗2 ⊗ v∗2 ⊗ (c1v1 + c2v2) ,

or matricially,

F (x, y) =

(
(x1, x2)

(
a1 b1
b1 c1

)(
y1

y2

)
, (x1, x2)

(
a2 b2
b2 c2

)(
y1

y2

))
,

x = x1v1 + x2v2, y = y1v1 + y2v2.

Let tr : S2V ∗ ⊗ V → V ∗ be the trace mapping. From (2.2) we obtain

(2.3) trF = (a1 + b2)v∗1 + (b1 + c2)v∗2 .

The homomorphism F ∈ S2V ∗ ⊗ V 7→ trF ∈ V ∗ is proved to be GL(V )-equivariant. For
a given x ∈ V , let Fx : V → V be the F-linear endomorphism

(2.4) ∀y ∈ V, Fx(y) = F (x, y).
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For each bilinear symmetric map F : V × V → V , let qF : V → F be the quadratic form
defined by qF (x) = det(Fx), where Fx is the endomorphism defined in (2.4). As a compu-
tation shows,

qF (x)=(x1, x2)

(
a1b2 − a2b1

1
2 (a1c2 − a2c1)

1
2 (a1c2 − a2c1) b1c2 − b2c1

)(
x1

x2

)
(2.5)

=(a1b2−a2b1) (x1)
2
+(a1c2−a2c1)x1x2+(b1c2−b2c1) (x2)

2
,

F being given as in (2.2) and x = x1v1 + x2v2.

3. THE CLIFFORD ALGEBRA OF qF

First of all, let ? be a non-degenerate traceless SBL on V , with associated symmetric
bilinear map F : V × V → V , and let q = qF be the quadratic form introduced in the
section 2.

Given x ∈ V , the Cayley-Hamilton theorem yields (Fx)2 = −q(x) · idV , where Fx is the
endomorphism defined in (2.4). Hence, by the universal property of the Clifford algebra
(e.g., see [4, XIX, section 4]), the linear map

i : V → End(V ), i(x) = Fx, ∀x ∈ V,
extends to a homomorphism ı̄ : C(−q) → End(V ) from the Clifford algebra of −q to
End(V ). Since −q is non-degenerate with dimension 2, the algebra C(−q) is central sim-
ple (e.g., see [3, Proposition 11.6–(1)]); hence ı̄ is injective, and since dim End(V ) = 4 =
dimC(−q), we actually conclude that ı̄ is an isomorphism of F-algebras.

Moreover, C0(−q) is a quadratic F-algebra and according to [3, Proposition 12.1], the
form −q represents 1, i.e., q represents −1.

Consequently, a non-degenerate quadratic form Q : V → F is of the form Q = qF for
some F if and only if Q takes the value −1. If F is a finite field, then every quadratic
form of rank ≥ 2 on F takes any value of F∗ (see [5, 1.7. Proposition 4]), but this does not
necessarily happen in an arbitrary field.

Let x 7→ x̄ be the conjugation in the Clifford algebra C(−q); it is the unique anti-
automorphism of C(−q) that restricts to x 7→ −x on V . As q is a 2-dimensional form, it is
known that the map x 7→ N(x) = x · x̄ is multiplicative, maps into the ground field F and
extends q: This is the Clifford norm. Next, we choose v1 ∈ V such that q(v1) = −1, lead-
ing to N(v1) = −1. We consider the linear isomorphism u : V

'−→ C0(−q), u(x) = v1 · x,
∀x ∈ V , which is actually an isometry from (V, q) to (C0(−q), N). A new SBL ◦ is defined
on C0(−q) as follows: x ◦ y = u

(
u−1(x) ? u−1(y)

)
, ∀(x, y) ∈ C0(−q)2. Hence, (C0(−q), ◦)

is isomorphic to (V, F ), and its associated quadratic form is N . As −q represents 1, there
exists an orthogonal basis {v1, v2} with respect to the symmetric bilinear form attached to
q, such that,

(3.6) q(v1) = −1, q(v2) = −β, for some β ∈ F∗.

Accordingly, C(−q) = 〈1, v1, v2, v1 · v2〉 over F, where the dot denotes the Clifford prod-
uct, and (v1 · v2) · (v1 · v2) = −β.

If x = x0 + x1v1 + x2v2 + x12(v1 · v2), x̄ = x0 − x1v1 − x2v2 − x12(v1 · v2), then,
x · x̄ = (x0)2 − (x1)2 − β(x2)2 + β(x12)2.

4. CLASSIFICATION OF SBLS

Proposition 4.1. Every SBL on C0(−q) can be written in the following form:

(4.7) Fabc(x, y) = a · x · y + b · (x̄ · y + x · ȳ) + c · x · y, ∀x, y ∈ C0(−q),
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for some (a, b, c) ∈ C0(−q)3.

Proof. We have C0(−q) = {x = x0 + x12(v1 · v2) : x0, x12 ∈ F}. Hence the elements of
degree zero of the Clifford algebra admit the basis {1, v1 · v2}.

The mappings (4.7) are obviously F-bilinear and symmetric, since the Clifford product
is F-bilinear and the conjugation x 7→ x̄ is an F-linear anti-automorphism. Letting a =
a0 + a12(v1 · v2), b = b0 + b12(v1 · v2), c = c0 + c12(v1 · v2), it follows that the mappings
Fabc depend on the 6 parameters a0, a12, b0, b12, c0, c12. As dim(S2V ∗ ⊗ V ) = 6, we can
conclude. �

The equations of the isomorphism u : V
'−→ C0(−q), u(x) = v1 · x, where x = x1v1 +

x2v2 ∈ V (introduced in the section 3) and those of its inverse are the following:

u(x) = x1 + x2(v1 · v2), u−1 (x0 + x12(v1 · v2)) = x0v1 + x12v2.

In what follows, we shall identify the mappings Fabc and F = u−1 ◦ Fabc ◦ (u, u). As a
computation shows, we have the following formulas:

(4.8)

(
a1 b1
b1 c1

)
=

(
a0 + 2b0 + c0 −β (a12 − c12)
−β (a12 − c12) −β (a0 − 2b0 + c0)

)
,(

a2 b2
b2 c2

)
=

(
a12 + 2b12 + c12 a0 − c0

a0 − c0 −β (a12 − 2b12 + c12)

)
.

Theorem 4.1. The SBLs on C0(−q) with attached quadratic form N are the maps of the form
Fa,c(x, y) = a · x · y + c · x · y, for some (a, c) ∈ C0(−q)× C0(−q) with N(c)−N(a) = 1.

If G = {λ ∈ C0(−q) : N(λ) = 1}, then two mappings Fac and Fa′c′ are isomorphic if and
only if there exists λ ∈ G such that (a′, c′) = (λ−1a, λ3c) or (a′, c′) = (λ−1ā, λ3c̄).

Proof. According to (4.8) we have

a1 = a0 + 2b0 + c0, b1 = −β (a12 − c12) , c1 = −β (a0 − 2b0 + c0) ,
a2 = a12 + 2b12 + c12, b2 = a0 − c0, c2 = −β (a12 − 2b12 + c12) .

By replacing these formulas into (2.5), it follows:

eq1 ≡ a1b2 − a2b1
= (a0)2 + β(a12)2 + 2a0b0 + 2βa12b12 − 2b0c0 − 2βb12c12

−(c0)2 − β(c12)2,

eq2 ≡ 1
2 (a1c2 − a2c1)

= 2βa0b12 − 2βa12b0 + 2βb12c0 − 2βb0c12,

eq3 ≡ b1c2 − b2c1
= β(a0)2 + β2(a12)2 − 2βa0b0 − 2β2a12b12 + 2β2b12c12 + 2βb0c0
−β(c0)2 − β2(c12)2.

Hence

(4.9) eq1 = −1, eq2 = 0, eq3 = −β.

Dividing eq2 = 0 by 2β and eq3 = −β by β we obtain

(a0)2 + β(a12)2 + 2a0b0 + 2βa12b12 − 2b0c0 − 2βb12c12 − (c0)2 − β(c12)2 = −1,
a0b12 − a12b0 + b12c0 − b0c12 = 0,

(a0)2 + β(a12)2 − 2a0b0 − 2βa12b12 + 2βb12c12 + 2b0c0 − (c0)2 − β(c12)2 = −1.
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By adding and subtracting the first and third equations above and dividing the result by
2,

a2
0 + βa2

12 − c20 − βc212 + 1 = 0,

a0b0 − b0c0 + βa12b12 − βb12c12 = 0.

Accordingly, the system (4.9) is equivalent to

e1 ≡ (a0)2 + β(a12)2 − (c0)2 − β(c12)2 + 1 = 0,
e2 ≡ a0b12 − a12b0 + b12c0 − b0c12 = 0,
e3 ≡ a0b0 − b0c0 + βa12b12 − βb12c12 = 0,

which we use in what follows, because it is easier than the first one. The equation e1 can
equivalently be written as

(4.10) N(c)−N(a) = 1.

Furthermore, the equations e2 = e3 = 0 are linear in b0 and b12 and they can be written in
matrix notation as

(4.11)
(
−a12 − c12 a0 + c0
a0 − c0 β(a12 − c12)

)(
b0
b12

)
=

(
0
0

)
.

The determinant of the matrix of the system (4.11) is equal to

e4 ≡ (c0)2 + β(c12)2 − (a0)2 − β(a12)2 = N(c)−N(a) = 1,

by virtue of (4.10); hence e4 cannot vanish. Therefore, b0 = b12 = 0.
Finally, let us determine the conditions under which Fa,c and Fa′,c′ are isomorphic. As

is known, any isomorphism between them must be an isometry of (C0(−q), N), and these
isometries are the group G of the maps that have one of the following forms:

(4.12) (i) x 7→ λx,
(ii) x 7→ λx̄,

}
∀x ∈ C0(−q),∀ λ ∈ G.

Letting x′ = λx, y′ = λy, z′ = λz into the equation

(4.13) z′ = Fa′c′(x
′, y′) = a′x′y′ + c′x̄′ȳ′,

we obtain λz = a′(λx)(λy) + c′(λ̄x̄)(λ̄ȳ); hence z = λa′xy + λ̄3c′x̄ȳ, as λ−1 = λ̄ (because
N(λ) = λλ̄ = 1) and comparing it with the original equation, i.e., z = Fac(x, y) = axy +
cx̄ȳ, we deduce a′ = λ−1a, c′ = λ3c. Similarly, letting x′ = λx̄, y′ = λȳ, z′ = λz̄ into
(4.13), we obtain λz̄ = a′(λx̄)(λȳ) + c′(λ̄x)(λ̄y); hence z̄ = λa′x̄ȳ+ λ̄3c′xy and conjugating,
z = λ̄ā′xy + λ3c̄′x̄ȳ. Therefore it follows: a = λ̄ā′, c = λ3c̄′, or equivalently, a′ = λ−1ā,
c′ = λ3c̄, thus concluding the proof. �

5. ISOTROPY

Next, we discuss the index of q. The quadratic form q is said to be hyperbolic if q admits
an isotropic vector v1 6= 0. If q does not admit any non-zero isotropic vector, then q is said
to be elliptic; in this case, as we have seen above, there exists a basis {v1, v2} for V such
that, q(x) = −(x1)2 − β(x2)2, where −β /∈ F∗2.

If the discriminant of q is different from 1 modF∗2, then q is elliptic, and if the discrim-
inant of q is equal to 1 modF∗2, then q is hyperbolic.

With the same notations as in the section 3, we have (v1 · v2)2 + β = 0. The F-algebra
C0(−q) being quadratic, we deduce C0(−q) ∼= F[t]/(t2 + β) (e.g., see [3, Example 98.2]).
Hence, in the hyperbolic case,C0(−q) ∼= F×F, and in the elliptic caseC0(−q) is a quadratic
field extension of the ground field F.
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Lemma 5.1. If q is hyperbolic, then the set of zero divisors in C0(−q) coincides with the set of
elements of norm zero.

Proof. If N(x) = x · x̄ = 0, then x is a zero divisor obviously. Conversely, if x, y ∈ C0(−q)
are such that x 6= 0, y 6= 0, and x ·y = 0, then we obtain the following homogeneous linear
system:

(5.14)
(

x0 −βx12

x12 x0

)(
y0

y12

)
=

(
0
0

)
.

Since

det

(
x0 −βx12

x12 x0

)
= N(x), y 6= 0,

we can conclude the statement. �

Below we compute the isotropy subgroup G(Fac) ⊂ G of the mapping Fac in Theorem
4.1.

We denote by φλ(x) = λx, ψλ(x) = λx̄, λ ∈ G, x ∈ C0(−q), the transformations (i) and
(ii) respectively in the formula (4.12). As a computation shows, we obtain

φλ ◦ φµ = φλµ, φλ ◦ ψµ = ψλµ, ψλ ◦ ψµ = φλµ̄, ∀λ, µ ∈ G.
In particular ψλ ◦ ψλ = φλλ̄ = id, ∀λ ∈ G; i.e., every transformation in (ii) is involutive.

Proposition 5.2. With the previous notations, we have
If N(a) 6= 0 and ca3 /∈ F, then G(Fac) = {id}.
If N(a) 6= 0 and ca3 ∈ F, then G(Fac) =

{
id, ψ ā

a

}
.

If N(a) = 0, then G(Fac) =
{
φλ, ψµ : λ3 = 1, µ3 = c2

}
.

Proof. If one of the transformations (i) or (ii) in the formula (4.12) belongs to G(Fac), then
either (i) λa = a, c = λ3c, or (ii) λa = ā, c = λ3c̄. We distinguish several cases.

Assume the item (i) holds.
(1) If q is elliptic, then a 6= 0 implies λ = 1, as C0(−q) is a field, and a = 0 implies

λ3 = 1, because in this case c is invertible, as follows from (4.10).
(2) If q is hyperbolic, i.e., β = −γ2, γ ∈ F∗, then by applying Lemma 5.1 to the equa-

tion (λ − 1)a = 0 it follows that either λ = 1 or N(a) = 0. In the second case
c is invertible in C0(−q) by virtue of (4.10); hence λ3 = 1. If N(a) 6= 0, then the
equation (λ− 1)a = 0 implies λ = 1.

If q is elliptic, then N(a) = 0 if and only if a = 0. Therefore, we can group the two
previous items saying that the transformations of type (i) in (4.10) that belong to G(Fac)
are as follows: If N(a) 6= 0, then such transformations reduce to the identity map, and if
N(a) = 0, then they correspond to the values λ ∈ G such that λ3 = 1.

Assume the item (ii) holds.
From λa = ā it follows λa2 = N(a).
If N(a) = 0, then a = 0, as λ is invertible and C0(−q) has no nilpotent element. In this

case N(c) = 1 and from c = λ3c̄ it follows λ3 = c2.
• If q is elliptic, the equation λ3 = c2 may admit none (if c2 is not a cube in C0(−q)),

one (if c2 is a cube in C0(−q) and −3 is not a square in C0(−q)) or three solutions
in C0(−q) (if c2 is a cube in C0(−q) and −3 is a square in C0(−q)).

• If q is hyperbolic, then by considering the isomorphism

(5.15)
φ : F[t]/(t2 − γ2)→ F× F,
φ(u+ vτ) = (u− vγ, u+ vγ),
u, v ∈ F, τ = tmod(t2 − γ2),



Quadratic Maps in Two Variables on Arbitrary Fields 97

and by writing φ(w) = (w1, w2), it follows that the equation λ3 = c2 is equivalent
to the pair of equations (λ1)3 = (c1)2, (λ2)3 = (c2)2 in F. As N(c) = N(λ) = 1,
we have λ1λ2 = c1c2 = 1, and the equation (λ2)3 = (c2)2 is equivalent to (λ1)3 =
(c1)2. Hence even in the hyperbolic case the number of solutions to λ3 = c2 may
be 0, 1 or 3.

If N(a) 6= 0, then λ = ā
a and replacing this value into the second equation in (ii) we

obtain a3c = a3c, or equivalently a3c ∈ F.
In summary, the transformations of type (ii) in (4.10) that belong to G(Fac) are as fol-

lows:

• If N(a) = 0, then such transformations correspond to the values λ ∈ G such that
λ3 = c2, whether q is elliptic or hyperbolic.

• IfN(a) 6= 0, then such transformations do not exist, except when ca3 ∈ F, in which
case the only transformation of type (ii) in G(Fac) corresponds to λ = ā

a .

Accordingly, we have

(i)

{
N(a) 6= 0, {id}
N(a) = 0, {λ ∈ G : λ3 = 1}

(ii)

 N(a) 6= 0

 ∅, if ca3 /∈ F

λ =
ā

a
, if ca3 ∈ F

N(a) = 0, {λ ∈ G : λ3 = c2}

Putting together transformations of type (i) and type (ii), the statement follows. �

6. THE ROLE OF THE INVARIANTS

Let σ : V ∗ → S2V ∗ ⊗ V be the map defined by,

(6.16) σ(v∗)(x, y) = 1
3 (v∗(x)y + v∗(y)x) , x, y ∈ V, v∗ ∈ V ∗.

By using formula (2.1), the homomorphism σ is proved to be aGL(V )-equivariant section
of tr. If v∗ = λ1v

∗
1 + λ2v

∗
2 , then from (6.16) it follows:

(6.17)
σ(v∗)(v1, v1) = 2

3λ1v1,

σ(v∗)(v2, v2) = 2
3λ2v2,

σ(v∗)(v1, v2) = 1
3 (λ1v2 + λ2v1).

Therefore, there is a decomposition of GL(V )-modules S2V ∗ ⊗ V = W ⊕ σ(V ∗), where
W =

{
F ∈ S2V ∗ ⊗ V : trF = 0

}
.

For every F ∈ S2V ∗ ⊗ V we set F̄ = F − σ(trF ). Then, F is said to be regular if the
quadratic form QF̄ is non-degenerate.

A simple computation proves that F is regular if and only if the following condition
holds:

detQF̄ = 4
27a1b1b2c2 − 1

3a1a2b1c1 + 2
3a2b1b2c1 + 1

6a1a2c1c2(6.18)

− 1
3a2b2c1c2 − 1

27 (a1)3c1 + 1
27 (a1)2(b1)2 + 1

108 (a1)2(c2)2

+ 8
27 (b2)3c1 + 4

27 (b1)2(b2)2 + 1
27 (b2)2(c2)2 + 8

27a2(b1)3

− 1
27a2(c2)3 − 4

27b1(b2)2c2 − 1
27 (a1)2b1c2 − 4

9a(b2)2c1

+ 2
9 (a1)2b2c1 + 2

9a2b1(c2)2 − 4
9a2(b1)2c2 − 1

27a1b2(c2)2

− 4
27a1(b1)2b2 − 1

4 (a2)2(c1)2

6= 0.
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From the very definition it follows that the set of regular bilinear symmetric maps is an
open subset R ⊂ S2V ∗ ⊗ V in the Zariski topology; precisely, the set where the quartic
form (6.18) does not vanish.

If the ground field F is algebraically closed, then in [2, Theorem 4–2] it is proved that
two regular elements F,G ∈ R ⊂ S2V ∗ ⊗ V are GL(V )-equivalent, if and only if Ii(F ) =
Ii(G), i = 1, 2, where I1, I2 : R → F are the GL(V )-invariant functions defined in [2,
Theorem 4–1] and computed in [2, pp. 11–12]), namely,

I1(F ) = 1
12 detQF̄

[
(a1 + b2)2

(
(2b1 − c2)2 + 3(2b2 − a1)c1

)
+(a1 + b2)(b1 + c2)((2b2 − a1)(2b1 − c2)− 9a2c1)

+(b1 + c2)2((2b2 − a1)2 + 3(2b1 − c2)a2)
]
,

I2(F ) = 1
4 detQF̄

[
−c1(a1 + b2)3 + (a1 + b2)2(b1 + c2)(2b1 − c2)

+(a1 + b2)(b1 + c2)2(2b2 − a1)− a2(b1 + c2)3
]
,

where detQF̄ is as in (6.18). Next, we discuss the role of these invariants in the classifica-
tion problem.

The isomorphism u : V → C0(−q), u(x) = v1 · x, ∀x ∈ V , defined in the section 3,
induces an isomorphism

S2(u∗−1)⊗ u : S2(V ∗)⊗ V → S2(C0(−q)∗)⊗ C0(−q)
which allows one to transport the invariants I1 and I2 into a Zariski open subset R′ in
S2(C0(−q)∗) ⊗ C0(−q). Moreover, by applying Theorem 4.1, we can confine ourselves
to compute these new invariants J1 and J2 only on the maps Fac fulfilling the equation
(4.10). This is accomplished by using the formulas (4.8) for b0 = b12 = 0, thus obtaining
the following expressions:

(6.19)

[1] J1 (Fac) = 27 K(a,c)+2N(a)2+3N(a)
4K(a,c)+8N(a)2+36N(a)+27 ,

[2] J2 (Fac) = 27 K(a,c)+2N(a)2

4K(a,c)+8N(a)2+36N(a)+27 ,

K(a, c) = a3c+ ā3c̄,

Proposition 6.3. Let Fac, Fa′c′ be two symmetric bilinear maps in Zariski open subsetR′ defined
above.

If the pairs (a, c) and (a′, c′) are related by one of the two formulas in the second part of The-
orem 4.1, then Ji (Fac) = Ji (Fa′c′), i = 1, 2. Therefore, the functions J1 and J2 are invariant
under the action of the group of transformations G given in (4.12).

Moreover, the equations Ji (Fac) = Ji (Fa′c′), i = 1, 2, hold if and only if the following two
conditions are fulfilled:

(6.20) (i) N(a′) = N(a), (ii) K(a′, c′) = K(a, c).

In addition, we have the following mutually excluding cases:
(1) If a = 0 and (i) and (ii) in (6.20) hold, then a′ = 0, and the symmetric bilinear maps Fac

and Fa′c′ are G-equivalent if and only if c
′

c or c′

c̄ is a cube in C0(−q).
(2) If c = 0, and (i) and (ii) in (6.20) hold, then c′ = 0, and the symmetric bilinear maps Fac

and Fa′c′ are equivalent under the subgroup G0 ⊂ G of the transformations of type (i) in
(4.12).

(3) If a 6= 0 and c 6= 0, then the formulas (i) and (ii) in (6.20) hold if and only if the symmetric
bilinear maps Fac and Fa′c′ are G-equivalent.

Proof. If a′ = λ−1a, c′ = λ3c or a′ = λ−1ā, c′ = λ3c̄, then taking account of the fact that
λ−1 = λ̄ as λ ∈ G, a straightforward computation shows that Ji (Fac) = Ji (Fa′c′), i = 1, 2.
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Moreover, solving the equations [1] and [2] in (6.19) with respect to K(a, c) and N(a) it
follows

K(a, c) = −27 6J1(Fac)2−2J2(Fac)2−27J2(Fac)

[12J1(Fac)−8J2(Fac)−27]2
,

N(a) = 9 J2(Fac)−J1(Fac)
12J1(Fac)−8J2(Fac)−27 .

Hence the equations Ji (Fac) = Ji (Fa′c′), i = 1, 2, imply K(a, c) = K(a′, c′) and
N(a) = N(a′).

(1) From (6.20)-(i) it followsN(a′) = 0, and by virtue of (4.10), we conclude thatN(c) =
N(c′) = 1.

If q is elliptic, this implies a′ = 0, and c and c′ are invertible in C0(−q). If Fac and Fa′c′
are G-equivalent, then c′

c or c′

c̄ belong to the group G defined in Theorem 4.1; the converse
is obvious.

If q is hyperbolic, we can apply the isomorphism (5.15); by using the notations intro-
duced therein, the formulas (i) and (ii) in (6.20) transform respectively into: (i’) a′1a′2 = 0,
(ii’) (a′1)3c′1 + (a′2)3c′2 = 0, and N(c′) = 1 means (iii’) c′1c′2 = 1. If a′1 = a′2 = 0, (i.e., a′ = 0),
then (ii’) holds identically and we can conclude as in the previous case. If, for example,
we had a′1 6= 0, a′2 = 0, then (ii’) implies (a′1)3c′1 = 0, and since c′1 ∈ F∗ it follows a′1 = 0,
thus leading us to a contradiction.

(2) From (4.10) and (6.20)-(i) it follows N(a) = N(a′) = −1, N(c) = N(c′) = 0.
If q is elliptic, this implies c = c′ = 0, and a, a′ are invertible in C0(−q) and λ = a

a′

belongs to G.
If q is hyperbolic, then by using the isomorphism (5.15), the equation (ii) in (6.20) trans-

forms into (ii’) (a′1)3c′1+(a′2)3c′2 = 0, and furthermore we have a1a2 = a′1a
′
2 = −1, c′1c′2 = 0.

If c′1 = 0, then (ii’) becomes (a′2)3c′2 = 0, and since a′2 is invertible we deduce that c′2 = 0;
similarly, c′2 = 0 implies c′1 = 0. Hence c′ = 0, in which case we have λ = a

a′ ∈ G.

(3) If q is elliptic, then C0(−q) is a field and by virtue of the assumption it follows that
the elements a, c, ā, c̄, a′, c′, ā′, and c̄′ are invertible. Letting a′ = aā

ā′ , c′ = cc̄
c̄′ into (6.20)-(ii)

we obtain 0 = (ā3c̄− ā′3c̄′)(a3c− ā′3c̄′). Hence either a3c = (a′)3c′ or a3c = (ā′)3c̄′. In the
first case, letting λ = aa′−1, it follows: a′ = λ−1a, c′ = λ3c, and in the second case, letting
λ = āa′−1, it follows: a′ = λ−1ā, c′ = λ3c̄. As N(a) = N(a′), we deduce that N(λ) = 1, or
equivalently λ ∈ G.

Therefore, by applying Theorem 4.1 we conclude that the maps Fac and Fa′c′ are iso-
morphic.

If q is hyperbolic, then we use the isomorphism (5.15), and the equations (6.20)-(i)-(ii)
transform respectively into the following:

(i’) a1a2 = a′1a
′
2, (ii’) (a′1)3c′1 + (a′2)3c′2 = (a1)3c1 + (a2)3c2,

and from (4.10) we also deduce (iii’) c1c2 = c′1c
′
2. The equations (6.20)-(i)-(ii) being in-

variant under conjugation, by virtue of the hypothesis we can assume a1 6= 0, and we
distinguish two cases according to whether c1 6= 0 or c1 = 0 and c2 6= 0.

(1) If c1 6= 0, then by replacing a2 =
a′1a

′
2

a1
and c2 =

c′1c
′
2

c1
into (ii’) we obtain

0 =
[
(a1)3c1 − (a′1)3c′1

] [
(a1)3c1 − (a′2)3c′2

]
.

• If (a1)3c1 = (a′1)3c′1, then a′1 6= 0 and c′1 6= 0, and letting λ = (λ1, λ2), with
λ1 = a1

a′1
, λ2 = 1

λ1
, we have a′ = λ−1a, c′ = λ3c, λ ∈ G.

• If (a1)3c1 = (a′2)3c′2, then a′2 6= 0 and c′2 6= 0. Letting λ1 =
a′2
a1

, λ2 = 1
λ1

, we
have a′ = λ−1ā, c′ = λ3c̄, λ ∈ G.
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(2) If c1 = 0, c2 6= 0, then N(c) = 0 and a1a2 = a′1a
′
2 = −1 because of (4.10), and

letting a2 = −1
a1

, a′2 = −1
a′1

in (ii’) we have

(6.21) 0 = (a1)3c′2 − (a1)3(a′1)6c′1 − (a′1)3c2.

As N(c′) = 0, either c′1 = 0 or c′2 = 0. In the first case, the equation (6.21) trans-
forms into (ii’-a) (a1)3c′2 = (a′1)3c2, whereas in the second it transforms into (ii’-b)
c2 = −(a1)3(a′1)3c′1.
• If (ii’-a) holds, then a′ = λ−1a, c′ = λ3c, with λ = (λ1, λ2), λ1 = a1

a′1
, λ2 = 1

λ1
.

• If (ii’-b) holds, then a′ = λ−1ā, c′ = λ3c̄, with λ = (λ1, λ2), λ1 = a2

a′1
, λ2 = 1

λ1
.

This proves that Fac and Fa′c′ are G-equivalent in both cases. �
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