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On a Steklov eigenvalue problem associated with the
(p, q)-Laplacian

LUMINIŢA BARBUa and GHEORGHE MOROŞANUb,c

ABSTRACT. Consider in a bounded domain Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω, the following
eigenvalue problem

Au := −∆pu−∆qu = λa(x) | u |r−2 u in Ω,(
| ∇u |p−2 + | ∇u |q−2

)∂u
∂ν

= λb(x) | u |r−2 u on ∂Ω,

where 1 < r < q < p < ∞ or 1 < q < p < r < ∞; r ∈
(

1,
p(N−1)
N−p

)
if p < N and r ∈ (1,∞) if p ≥ N ;

a ∈ L∞(Ω), b ∈ L∞(∂Ω) are given nonnegative functions satisfying∫
Ω
a dx+

∫
∂Ω

b dσ > 0.

Under these assumptions we prove that the set of all eigenvalues of the above problem is the interval [0,∞).
Our result complements those previously obtained by Abreu, J. and Madeira, G., [Generalized eigenvalues of the
(p, 2)−Laplacian under a parametric boundary condition, Proc. Edinburgh Math. Soc., 63 (2020), No. 1,
287–303], Barbu, L. and Moroşanu, G., [Full description of the eigenvalue set of the (p, q)-Laplacian with a Steklov-
like boundary condition, J. Differential Equations, in press], Barbu, L. and Moroşanu, G., [Eigenvalues of the neg-
ative (p, q)- Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equations, 64 (2019), No. 4,
685–700], Fărcăşeanu, M., Mihăilescu M. and Stancu-Dumitru, D., [On the set of eigen-values of some PDEs with ho-
mogeneous Neumann boundary condition, Nonlinear Anal. Theory Methods Appl., 116 (2015), 19–25], Mihăilescu,
M., [An eigenvalue problem possesing a continuous family of eigenvalues plus an isolated eigenvale, Commun. Pure
Appl. Anal., 10 (2011), 701–708], Mihăilescu, M. and Moroşanu, G., [Eigenvalues of −4p − 4q under Neumann
boundary condition, Canadian Math. Bull., 59 (2016), No. 3, 606–616].

1. INTRODUCTION

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. Consider the eigenvalue
problem

(1.1)

{
Au := −∆pu−∆qu = λa(x) | u |r−2 u in Ω,
∂u
∂νA

:=
(
| ∇u |p−2 + | ∇u |q−2

)
∂u
∂ν = λb(x) | u |r−2 u on ∂Ω,

where ν is the unit outward normal to ∂Ω. As usual, ∆p denotes the p-Laplacian, i.e.,
∆pu = div (|∇u|p−2∇u).

Throughout this paper, the following hypotheses will be assumed
(hpqr) 1 < r < q < p < ∞ or 1 < q < p < r < ∞; r ∈

(
1, p(N−1)

N−p

)
if 1 < p < N and

r ∈ (1,∞) if p ≥ N ;
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(hab) a ∈ L∞(Ω) and b ∈ L∞(∂Ω) are given nonnegative functions satisfying

(1.2)
∫

Ω

a(x) dx+

∫
∂Ω

b(σ) dσ > 0.

Remark 1.1. Regarding the assumption r ∈
(

1, p(N−1)
N−p

)
if 1 < p < N and r ∈ (1,∞) if

p ≥ N,we point out that this is directly related to the well-known embeddingsW 1,p(Ω) ↪→
Lr(Ω) which hold in the cases: (i) 1 ≤ r ≤ p∗ = pN/(N−p), if 1 < p < N ; (j) p ≤ r <∞, if
p = N ; (k) r =∞, if p > N. Moreover, these embeddings are compact when 1 ≤ r < p∗ in
case (i), all r in case (j), and when reinterpreted as W 1,p(Ω) ↪→ C1(Ω) in case (k). We also
have trace compact embeddings W 1,p(Ω) ↪→ Lr(∂Ω) for all 1 ≤ p ≤ r < p(N − 1)/(N − p)
if 1 ≤ p < N, and similarly as before in the other ranges of p (see [2], [6, Section 9.3]).

The solution u of (1.1) will be sought in the space W := W 1,p(Ω), so the normal de-
rivative ∂u

∂νA
exists in a trace sense, and the above problem is satisfied in the distribution

sense. According to a Green type formula (see [7], p. 71), one can define the eigenvalues
of our problems in term of weak solution as follows

Definition 1.1. λ ∈ R is an eigenvalue of problem (1.1) if there exists uλ ∈ W \ {0} such
that ∫

Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx

= λ
(∫

Ω

a | uλ |q−2 uλw dx+

∫
∂Ω

b | uλ |q−2 uλw dσ
)
∀ w ∈W.

(1.3)

According to the above remark, all the integral terms in Definition 1.1 make sense.
Conversely, by virtue of the same Green formula, if λ is an eigenvalue then any eigen-

functions uλ ∈W \{0} corresponding to it satisfies problem (1.1) in the distribution sense.
Our goal is to determine the set of all eigenvalues of problem (1.1).

The main result of this paper is given by the following theorem

Theorem 1.1. Assume that (hpqr) and (hab) above are fulfilled. Then the set of eigenvalues of
problem (1.1) is [0,∞).

Remark 1.2. It is worth mentioning that if b ≡ 0 (Neumann boundary condition) and
1 < p < N , Theorem (1.1) holds if the condition 1 < r < p(N − 1)/(N − p) is replaced by
the weaker condition 1 < r < pN/(N − p).

In the case q = r = 2, a ≡ 1, b ≡ 0, the set of eigenvalues for problem (1.1) was
completely described by M. Mihăilescu [11] (for p > 2) and M. Fărcăşeanu, M. Mihăilescu
and D. Stancu-Dumitru [9] (for p ∈ (1, 2)). Problem (1.1) with q = r = 2, p ∈ (1,∞) \
{2}, was studied by J. Abreu and G. Madeira [1]. Note also that problem (1.1) with p ∈
(1,∞), r = q ∈ (2,∞), p 6= q, a ≡ 1, b ≡ 0, was investigated by M. Mihăilescu and G.
Moroşanu in [12]; also, problem (1.1) with p, q ∈ (1,∞), p 6= q, r = q was solved by L.
Barbu and G. Moroşanu [3, 4].

2. PRELIMINARY RESULTS

Choosing w = uλ in (1.3) shows that the eigenvalues of problem (1.1) cannot be nega-
tive. It is also obvious that λ0 = 0 is an eigenvalue of this problem and the corresponding
eigenfunctions are the nonzero constant functions. So any other eigenvalue belongs to
(0,∞).
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If we assume that λ > 0 is an eigenvalue of problem (1.1) and choose w ≡ 1 in (1.3) we
deduce that every eigenfunction uλ corresponding to λ satisfies the equation

(2.4)
∫

Ω

a | uλ |r−2 uλ dx+

∫
∂Ω

b | uλ |r−2 uλ dσ = 0.

So all eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

(2.5) Cr :=
{
u ∈W ;

∫
Ω

a | u |r−2 u dx+

∫
∂Ω

b | u |r−2 u dσ = 0
}
.

This set is a symmetric cone. Moreover, Cr is a weakly closed subset of W := W 1,p(Ω).
Indeed, let

(
un
)
n
⊂ Cr such that un ⇀ u0 in W . Since W ↪→ Lr(Ω) and W ↪→ Lr(∂Ω)

compactly, there exists a subsequence of
(
un
)
n

, also denoted
(
un
)
n

, such that

un → u0 in Lr(Ω), un → u0 in Lr(∂Ω).

By Lebesgue’s Dominated Convergence Theorem (see also [6, Theorem 4.9]) we obtain
u0 ∈ Cr. In addition, Cr has nonzero elements (see [4, Section 2]).

Let Kr : W → R be the C1−functional defined by

(2.6) Kr(u) :=

∫
Ω

a | u |r dx+

∫
∂Ω

b | u |r dσ ∀ u ∈W.

Remark 2.3. If for some λ > 0, u ∈W \ {0} satisfies the equation∫
Ω

(
| ∇u |p + | ∇u |q

)
dx = λKr(u),

then u cannot be a constant function (see assumption (1.2)) and so Kr(u) > 0. Therefore,
denoting Γ1(u) := {x ∈ Ω; a(x)u(x) 6= 0}, Γ2(u) := {x ∈ ∂Ω; b(x)u(x) 6= 0}, we see that
either |Γ1(u)|N > 0 or |Γ2(u)|N−1 > 0.

Obviously uλ corresponding to any eigenvalue λ > 0 cannot be a constant function
(see (1.3) with v = uλ and (1.2)).

The following lemmas are useful in the proof of Theorem 1.1.

Lemma 2.1. If hypotheses (hab) hold and r ∈
(

1, p(N−1)
N−p

)
for 1 < p < N and r ∈ (1,∞) for

p ≥ N, then the following norm is equivalent with the usual norm (denoted by ‖ · ‖W ) of the
Sobolev space W = W 1,p(Ω)

(2.7) ‖ u ‖r:=‖ ∇u ‖Lp(Ω) +
(
Kr(u)

) 1
r ∀ u ∈W.

Proof. This fact follows from [8, Proposition 3.9.55]. Indeed,
(
Kr(u)

) 1
r is a seminorm

which satisfies the two requirements of that proposition

(j) ∃d > 0 such that
(
Kr(u)

) 1
r ≤ d ‖ u ‖W ∀u ∈W, and

(jj) if u = constant, then
(
Kr(u)

) 1
r = 0 implies u ≡ 0. �

Lemma 2.2. If hypotheses (hab) hold and r ∈
(

1, p(N−1)
N−p

)
for 1 < p < N and r ∈ (1,∞) for

p ≥ N, then there exists a positive constant C which depends on p, r,N and Ω, such that for every
u ∈ Cr

(2.8)
(
Kr(u)

) 1
r ≤ C ‖ ∇u ‖Lp(Ω) .

Proof. Suppose that (2.8) is not true. Then we can find a sequence
(
un
)
n
⊂ Cr ⊂ W such

that Kr(un) = 1 and

(2.9) ‖ ∇un ‖Lp(Ω)≤
1

n
∀ n ≥ 1.
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Clearly, from Lemma 2.1 and (2.9), the sequence
(
un
)
n

is bounded in W , thus, by passing
to a subsequence if necessary, we may assume that there exists u0 ∈ W such that un ⇀ u
as n→∞. Since W is embedded compactly in Lr(Ω) and Lr(∂Ω) we have that

un → u0 in Lr(Ω), un → u0 in Lr(∂Ω).

As Kr(un) = 1 ∀ n ≥ 1 and
(
un
)
n
⊂ Cr we have Kr(u0) = 1 and u0 ∈ Cr. On the other

hand, from (2.9), the sequence
(
‖ ∇(un) ‖Lp(Ω)

)
n

tends to 0. Therefore ∇(u0) ≡ 0, so u0

is constant and belongs to Cr, hence u0 ≡ 0. This contradicts the fact that Kr(u0) = 1. �

3. PROOF OF THEOREM 1.1

We have already stated that λ0 = 0 is an eigenvalue of problem (1.1) and any other
eigenvalue of this problem belongs to (0,∞).

In what follows we fix λ > 0 and define Jλ : W → R,

(3.10) Jλ(u) =
1

p

∫
Ω

| ∇u |p dx+
1

q

∫
Ω

| ∇u |q dx− λ

r
Kr(u),

which is a C1 functional whose derivative is given by

〈J ′λ(u), w〉 =

∫
Ω

| ∇u |p−2 ∇u · ∇w dx+

∫
Ω

| ∇u |q−2 ∇u · ∇w dx

− λ
(∫

Ω

a | u |r−2 uw dx+

∫
∂Ω

b | u |r−2 uw dσ
)
∀u,w ∈W.

(3.11)

So, according to Definition 1.1, λ > 0 is an eigenvalue of problem (1.1) if and only if there
exists a critical point uλ ∈W \ {0} of Jλ, i. e. J ′λ(uλ) = 0.

The proof of Theorem 1.1 will follow as a consequence of several intermediate results.
We shall discuss two distinct cases.

Case 1: (hpqr) with 1 < r < q < p <∞ and (hab)

The following result shows that, for every λ > 0, the functional defined in (3.11), restricted
to the subset Cr ⊂W , is coercive.

Lemma 3.3. If hypotheses (hpqr) with 1 < r < p <∞ and (hab) hold, then for every λ > 0, we
have lim

‖u‖W→∞,u∈Cr
Jλ(u) =∞.

Proof. We know from Lemma 2.2 (for p = r) that there exists a positive constant C such
that (2.8) holds. Using Hölder’s inequality we have,

(3.12) Kr(u) ≤ Cr ‖ ∇u ‖rLr(Ω)≤ C
r | Ω |

p−r
p

N ‖ ∇u ‖
r
p

Lp(Ω) ∀ u ∈ Cr.

Here by | · |N we denote the Lebesgue measure on RN . So, we obtain from (3.12) that

(3.13) Jλ(u) ≥ 1

p
‖ ∇u ‖pLp(Ω) −

λ

r
Cr | Ω |

p−r
p

N ‖ ∇u ‖
r
p

Lp(Ω) ∀ u ∈ Cr.

Taking into account Lemma 2.1, Lemma 2.2 and (3.12), we can see that ‖ u ‖W→∞, u ∈ Cr
if and only if ‖ ∇u ‖Lp(Ω)→ ∞. Since r < p, we derive from (3.13) that Jλ(u) → ∞ if
‖ u ‖W→∞, u ∈ Cr, therefore Jλ is indeed coercive on Cr. �

Proposition 3.1. In Case 1, every number λ > 0 is an eigenvalue of problem (1.1).

Proof. Note that Cr is a weakly closed subset of the reflexive Banach space W, and func-
tionalJλ is coercive (see Lemma 3.3) and weakly lower semicontinuous on Cr with respect
to the norm ofW. Standard results in the calculus of variations (see, e.g., [13, Theorem 1.2])
ensures the existence of a global minimizer u∗ ∈ Cr for Jλ, i.e., Jλ(u∗) = minCr Jλ.
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Next, we are going to prove that u∗ 6≡ 0.
Let us choose u0 ∈ Cr \ {0} such that Kr(u0) > 0 (see [4, Section 2] for the construction

of such a function). Note that the function

t 7→ Jλ(tu0) = tr
( tp−r

p

∫
Ω

| ∇u0 |p dx+
tq−r

q

∫
Ω

| ∇u0 |q dx− λ

r
Kr(u0)

)
,

is negative for t = t0 > 0 small enough. Therefore, as tu0 ∈ Cr \ {0}, we have Jλ(u∗) < 0,
so u∗ 6≡ 0.

Next, we are going to show that the global minimizer u∗ for Jλ restricted to Cr is a
critical point of Jλ considered on the whole space W, i. e., J ′λ(u∗) = 0, in other words, u∗
is an eigenfunction of problem (1.1) corresponding to λ.

In order to show this we make use of an argument similar to that used in [5] and [3,
Lemma 3]. In this respect, we fix v ∈ Lip(Ω) arbitrarily. For each n ∈ N∗ define fn : R→ R,

fn(s) := Kr
(
u∗ +

1

n
v + s

)
=

∫
Ω

a
∣∣∣u∗ +

1

n
v + s

∣∣∣rdx+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + s

∣∣∣rdσ.
It is easily seen that fn is coercive, since we have

fn(s) ≥ | s |
r

2r
( ∫

Ω

a dx+

∫
∂Ω

b dσ
)
−
∫

Ω

a
∣∣∣u∗ +

1

n
v
∣∣∣rdx− ∫

∂Ω

b
∣∣∣u∗ +

1

n
v
∣∣∣rdσ.

We have used the inequality

| x |r≤ (| x+ y | + | y |)r ≤ 2r(| x+ y |r + | y |r) ∀ x, y ∈ R, r > 1.

Moreover, function fn is continuously differentiable on R (see [10, Theorem 2.27]) and
convex (its derivative is an increasing function). Therefore, for all n ∈ N∗, fn admits a
minimum point sn, such that f ′n(sn) = 0, that is∫

Ω

a
∣∣∣u∗ +

1

n
v + sn

∣∣∣r−2(
u∗ +

1

n
v + sn

)
dx

+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + sn

∣∣∣r−2(
u∗ +

1

n
v + sn

)
dσ = 0.

(3.14)

We denote

(3.15) un := u∗ +
1

n
v + sn ∀ n ∈ N∗.

According to (3.14),
(
un
)
n
⊂ Cr.

Next, we claim that the sequence
(
nsn

)
n

is bounded. Arguing by contradiction, let us
assume that, up to a sequence, nsn → ∞ or nsn → −∞ as n → ∞. Taking into account
that v ∈ Lip(Ω) there exists N1 large enough such that we have either

v(·) + nsn > 0 in Ω, or v(·) + nsn < 0 in Ω ∀ n ≥ N1.

Since the function τ 7→| u∗ + τ |r−2 (u∗ + τ) is strictly increasing on R, we get

0 =

∫
Ω

a | un |r−2 un dx+

∫
∂Ω

b | un |r−2 un dσ

>

∫
Ω

a | u∗ |r−2 u∗ dx+

∫
∂Ω

b | u∗ |r−2 u∗ dσ = 0 ∀n ≥ N1,

(3.16)

if v(·) + nsn > 0 in Ω, or the reverse inequality in the later case, when v(·) + nsn < 0 in Ω.
In both cases we get a contradiction.

We point out that the inequality in (3.16) is strict. Indeed, (1.2) implies that either
|{x ∈ Ω; a(x) > 0}|N > 0 or a = 0 a.e. in Ω and |{x ∈ ∂Ω; b(x) > 0}|N−1 > 0, hence we
can not have equality above, instead of ”>”.
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Consequently,
(
nsn

)
n

should be bounded. This implies that there exists S ∈ R such
that, up to a subsequence, nsn → S as n→∞. Therefore, on a subsequence, we have

(3.17) n
(
un − u∗

)
→ v + S and un → u∗ in W as n→∞.

In addition, there exists N2 ∈ N∗ such that un 6≡ 0 ∀ n ≥ N2. By using the minimality of
u∗ and the fact that un ∈ Cr \ {0} ∀ n ≥ N2, we obtain that

(3.18) 0 ≤ lim
n→∞

Jλ(un)− Jλ(u∗)

(1/n)
.

On the other hand,

(3.19) n
(
Jλ(un)− Jλ(u∗)

)
= 〈J ′λ(u∗), n(un − u∗)〉+ o(n;u∗, v),

where o(n;u∗, v) is a notation for the term which tends to zero in the definition of the
Fréchet derivative of Jλ at u∗, that is o(n;u∗, v) → 0 as n → ∞. It follows from (3.17)-
(3.19) in combination with u∗ ∈ Cr that

0 ≤ lim
n→∞

n
(
Jλ(un)− Jλ(u∗)

)
= lim
n→∞

〈J ′λ(u∗), n(un − u∗)〉+ o(n;u∗, v)

= 〈J ′λ(u∗), v + S〉 = 〈J ′λ(u∗), v〉.

A similar reasoning with −v instead of v and the density of Lipschitz functions in W
yield J ′λ(u∗) = 0, which concludes the proof. �

Case 2: (hpqr) with 1 < q < p < r <∞ and (hab)

Let λ > 0 be a fixed number. Under the assumption 1 < q < p < r <∞ we cannot expect
coercivity of the functional Jλ on Cr. From now on we analyse the action of Jλ on the
Nehari type manifold (see [14]) defined by

Nλ = {v ∈ Cr \ {0}; 〈J ′λ(w), w〉 = 0}

=
{
w ∈ Cr \ {0};

∫
Ω

(
| ∇w |p + | ∇w |q

)
dx = λKr(w)

}
.

(3.20)

It is natural to consider the restriction of Jλ to Nλ since any possible eigenfunction corre-
sponding to λ belongs to Nλ. Note that on Nλ functional Jλ has the form

(3.21) Jλ(u) =
r − p
pr

∫
Ω

| ∇u |p dx+
r − q
qr

∫
Ω

| ∇u |p dx > 0

(see also Remark 2.3).
We have

Lemma 3.4. In Case 2, for every λ > 0 we have Nλ 6= ∅.

Proof. We fix u0 ∈ Cr \ {0} such that Kr(u0) > 0. We claim that for a convenient t > 0,
tu0 ∈ Nλ. Since Cr is a cone, tu0 ∈ Cr for all t ∈ R. So the condition tu0 ∈ Nλ, t > 0, reads

h(t) := tp
∫

Ω

| ∇u0 |p dx+ tq
∫

Ω

| ∇u0 |q dx− λtrKr(u0) = 0.

Noting that the function t 7→ h(t) is continuous on (0,∞) and

t−qh(t)→
∫

Ω

| ∇u0 |q dx > 0 as t→ 0+,

t−rh(t)→ −λKr(u0) < 0 as t→∞,
we infer that there exists t0 ∈ (0,∞) such that h(t0) = 0, so t0u0 ∈ Nλ. �
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Lemma 3.5. If hypotheses (hpqr) with 1 < q < p < r < ∞ and (hab) hold, then there exists a
point u∗ ∈ Nλ where Jλ attains its minimal value,

mλ := inf
w∈Nλ

Jλ(w) > 0.

Proof. Let
(
un
)
n
⊂ Nλ be a minimizing sequence for Jλ. Since un ∈ Nλ for all n, we

obtain from (3.21)

(3.22) Jλ(un) =
r − p
pr

∫
Ω

| ∇un |p dx+
r − q
qr

∫
Ω

| ∇un |q dx→ mλ ≥ 0, as n→∞.

On the other hand, we have

(3.23)
∫

Ω

| ∇un |p dx+

∫
Ω

| ∇un |q dx = λKr(un) ∀ n ≥ 1.

Now, from (3.22) we obtain that
(
‖ ∇un ‖Lp(Ω)

)
n

and
(
‖ ∇un ‖Lq(Ω)

)
n

are bounded se-
quences, therefore taking into account (3.23), we can see that

(
Kr(un)

)
n

is also a bounded
sequence and making use of Lemma 2.1 we obtain that

(
un
)
n

is bounded in W.
Next, let us prove that mλ = inf

w∈Nλ
Jλ(w) > 0. Assume that, on the contrary, mλ = 0.

Let
(
un
)
n
⊂ Nλ be a minimizing sequence for Jλ. Note that Kr(un) > 0 for all n (see

Remark 2.3). We have (see (3.22))

(3.24) Jλ(un) =
r − p
pr

∫
Ω

| ∇un |p dx+
r − q
qr

∫
Ω

| ∇un |q dx→ 0 as n→∞.

We know that
(
un
)
n

is bounded in W, so there exists u0 ∈W such that, on a subsequence
denoted again

(
un
)
n

, un ⇀ u0 in W (hence also in W 1,q(Ω)), and un → u0 in Lr(Ω),
un → u0 in Lr(∂Ω). Clearly u0 ∈ Cr and from (3.24) we deduce that u0 is a constant
function, so u0 ≡ 0. Summarizing, we have proved that

(3.25) un ⇀ 0 in W, Kr(un)→ 0 as n→∞.

We define vn := un/
(
Kr(un)

)1/r
, n ≥ 1. By (3.23) we can see that

0 <

∫
Ω

| ∇un |qdx = λKr(un)−
∫

Ω

| ∇un |pdx ∀ n ≥ 1.

Dividing this inequality by
(
Kr(un)

)p/r
, we obtain

(3.26)
∫

Ω

| ∇vn |pdx < λ
(
Kr(un)

) r−p
r ∀ n ≥ 1.

Since p < r and
(
Kr(un)

) r−p
r → 0 as n → ∞, we get by (3.26) that

(
‖ ∇vn ‖Lp(Ω)

)
n

is
a bounded sequence. In addition, Kr(vn) = 1 for all n ≥ 1, thus,

(
vn
)
n

is bounded in W
(see Lemma 2.1). As

(
vn
)
n

is a sequence in Cr which is weakly closed in W , it follows that
there exists a v0 ∈ Cr such that, on a subsequence, vn ⇀ v0 in W and vn → v0 in Lr(Ω) as
well as in Lr(∂Ω).

Next, since vn ⇀ v0 in W , we infer from (3.26)∫
Ω

| ∇v0 |pdx ≤ lim inf
n→∞

∫
Ω

| ∇vn |p dx = 0.

Therefore v0 is a constant function and in fact v0 ≡ 0 since v0 ∈ Cr. Thus, vn → 0 in both
Lr(Ω) and Lr(∂Ω). But this contradicts the fact thatKr(vn) = 1 ∀ n ≥ 1. This contradiction
shows that mλ > 0.

Finally, we are going to prove that there exists u∗ ∈ Nλ such that Jλ(u∗) = mλ.
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Let
(
un
)
n
⊂ Nλ be a minimizing sequence: Jλ(un) → mλ. Since

(
un
)
n

is bounded in
W , on a subsequence,

(
un
)
n

converges weakly in W to some u∗ ∈W and strongly in both
Lr(Ω) and Lr(∂Ω) (to the same u∗). Thus,

(3.27) Jλ(u∗) ≤ lim inf
n→∞

Jλ(un) = mλ.

As
(
un
)
n
⊂ Nλ we have

(3.28)
∫

Ω

(
| ∇un |p + | ∇un |q

)
dx = λKr(un) ∀ n ≥ 1.

It is easily seen that u∗ is not the null function. Indeed, assuming that u∗ ≡ 0, we infer
by (3.28) that

(
un
)
n

converges strongly to 0 in W and ‖ ∇un ‖qLq(Ω)→ 0 as n → ∞. Then
(3.22) will give mλ = 0 which is a contradiction. Obviously u∗ ∈ Cr \ {0}. Letting n→∞
in (3.28) yields

(3.29)
∫

Ω

(
| ∇u∗ |p + | ∇u∗ |q

)
dx ≤ λKr(u∗).

If (3.29) holds with equality then we are done. We shall prove that assuming strict in-
equality in (3.29) leads to a contradiction. Thus, let us assume that

(3.30)
∫

Ω

(
| ∇u∗ |p + | ∇u∗ |q

)
dx < λKr(u∗).

Now, we can choose t0 ∈ (0, 1) such that t0u∗ ∈ Nλ. Indeed if we define j : (0,∞)→ R,

j(t) := tr
(∫

Ω

(
tp−r | ∇u∗ |p +tq−r | ∇u∗ |q

)
dx− λKr(u∗)

)
we have j(1) < 0 (see (3.30)) and t−rj(t) → ∞ as t → 0+. Therefore, there exists t0 ∈
(δ0, 1) such that j(t0) = 0, which implies t0u∗ ∈ Nλ.

Next, using the form of Jλ on the Nehari manifold Nλ, we get

(3.31) Jλ(t0u∗) =
tp0(r − p)

pr

∫
Ω

| ∇u∗ |p dx+
tq0(r − q)

qr

∫
Ω

| ∇u∗ |q dx.

Therefore,

0 <mλ ≤ Jλ(t0u∗) =
tp0(r − p)

pr

∫
Ω

| ∇u∗ |p dx+
tq0(r − q)

qr

∫
Ω

| ∇u∗ |q dx

< tq0

(r − p
pr

∫
Ω

| ∇u∗ |p dx+
r − q
qr

∫
Ω

| ∇u∗ |q dx
)

≤ r − p
pr

lim inf
n→∞

(∫
Ω

| ∇un |p dx
)

+
r − q
qr

lim inf
n→∞

(∫
Ω

| ∇un |q dx
)

≤ lim inf
n→∞

Jλ(un) = mλ,

which is impossible. �

The next result states that the minimizer u∗, given by Lemma 3.5, is a critical point of
Jλ considered on the whole space W .

Proposition 3.2. In Case 2, the minimizer u∗ ∈ Nλ from Lemma 3.5 is an eigenfunction of
problem (1.1) with corresponding eigenvalue λ.
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Proof. It suffices to prove that J ′λ(u∗) = 0. So, let v ∈ Lip(Ω) be an arbitrary but fixed func-
tion and let u∗ ∈ Nλ be the minimizer of Jλ overNλ. As in the Case 1 (see Proposition 3.1)
we are able to obtain a sequence

(
un
)
n
⊂ Cr \ {0},

(3.32) un := u∗ +
1

n
v + sn ∀ n ≥ 1.

The sequence
(
nsn

)
n

is also bounded, so it converges, on a subsequence, to some S ∈ R.
Therefore, we have

(3.33) n
(
un − u∗

)
→ v + S, un → u∗ in W as n→∞.

Since u∗ ∈ Kr(u∗) and Kr(un) → Kr(u∗) > 0, one can assume that Kr(un) > 0 for all
n ≥ 1.

Using the sequence
(
un
)
n

, we shall construct a sequence
(
tn
)
n
⊂ R \ {0} such that, up

to a subsequence,
(
tnun

)
n
⊂ Nλ, i.e.,

tp−rn

∫
Ω

| ∇un |p dx+ tq−rn

∫
Ω

| ∇un |q dx = λKr(un).(3.34)

Let us show that for every n ≥ 1 there exists tn > 0 such that (3.34) holds. Define

hn : (0,∞)→ R, hn(t) := tp−r
∫

Ω

| ∇un |p dx+ tq−r
∫

Ω

| ∇un |q dx− λKr(un).

Obviously, hn(t) → ∞ as t → 0+ and hn(t) → −λKab(un) < 0 as t → ∞. So, there exists
tn > 0 such that hn(tn) = 0 ∀ n ≥ 1, hence (3.34) holds, as claimed.

In what follows we shall prove that the sequence
(
n(tn − 1)

)
n

is bounded. To this
purpose, we rewrite (3.34) in the equivalent form

n
(
tp−rn − 1

)
A(un) + n

(
tq−rn − 1

)
B(un) = n

(
λKr(un)−A(un)−B(un)

)
,(3.35)

where A(un) :=
∫

Ω
| ∇un |p dx, B(un) :=

∫
Ω
| ∇un |q dx.

We shall prove first that the sequence
(
n(λKr(un) − A(un) − B(un))

)
n

is convergent.
To this purpose, let us define the C1−functional Lλ : W → R,

(3.36) Lλ(u) = −
∫

Ω

| ∇u |p dx−
∫

Ω

| ∇u |q dx+ λKr(u) ∀ u ∈W.

For all u,w ∈W

〈L′λ(u), w〉 = −p
∫

Ω

| ∇u |p−2 ∇u · ∇w dx− q
∫

Ω

| ∇u |q−2 ∇u · ∇w dx

+ λr
(∫

Ω

a | u |r−2 uw dx+

∫
∂Ω

b | uλ |r−2 uw dσ
)
.

(3.37)

From (3.36) and u∗ ∈ Nλ, we infer that Lλ(u∗) = 0, so we get

(3.38) n
(
λKr(un)−A(un)−B(un)

)
= n

(
Lλ(un)− Lλ(u∗)

)
.

We have

(3.39) n
(
Lλ(un)− Lλ(u∗)

)
→ 〈L′λ(u∗), v + S〉 as n→∞.

From (3.38) and (3.39) we deduce that the sequence
(
n(λKr(un)−A(un)−B(un)

)
n

has a
finite limit.

Returning to (3.35), we observe that
(
A(un)

)
n
,
(
B(un)

)
n

are bounded sequences of pos-
itive numbers. If we assume the contrary, that the sequence

(
n(tp−rn − 1)

)
n

has an un-
bounded subsequence converging, e.g., to +∞, then the corresponding subsequence of(
n(tq−rn − 1)

)
n

will have positive terms (since q − r < 0 and p − r < 0), so the sequence
defined by the left hand side of (3.35) will be unbounded, thus contradicting the fact that
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the right hand side defines a convergent sequence. An analogue reasoning works in the
case of a subsequence converging to−∞. Therefore,

(
n(tp−rn −1)

)
n

is a bounded sequence.
Hence, there is K > 0 such that for all n ≥ 1, n | tp−rn − 1 |≤ K, which implies

1− K

n
≤ tp−rn ≤ 1 +

K

n
∀ n ≥ 1.

Since, there exists N1 ∈ N∗ such that 1−K/n > 0 ∀ n ≥ N1, we have

(3.40) n

((
1 +

K

n

) 1
p−r − 1

)
≤ n(tn − 1) ≤ n

((
1− K

n

) 1
p−r − 1

)
∀ n ≥ N1.

Taking into account the relations

lim
x→0

(1 +Kx)1/(p−r) − 1

x
= K/(p− r), lim

x→0

(1−Kx)1/(p−r) − 1

x
= −K/(p− r),

we infer from (3.40) that the sequence
(
n(tn − 1)

)
n

is bounded, thus, by possibly passing
to a subsequence, there exists T ∈ R, such that n(tn − 1)→ T as n→∞. We define

(3.41) zn := tn

(
u∗ +

1

n
v + sn

)
= tnun ∀ n ≥ N1,

with
(
zn
)
n
⊂ Nλ. In addition, as

(
n(tn − 1)

)
n

is a bounded sequence, we can see that

(3.42) tn → 1 in R, zn → u∗ in W as n→∞.

By using the minimality of u∗ and the fact that
(
zn
)
n
⊂ Nλ we obtain that

(3.43) 0 ≤ lim
n→∞

Jλ(zn)− Jλ(u∗)
1
n

.

Since functional Jλ ∈ C1(W ;R), we can write

(3.44) n
(
Jλ(zn)− Jλ(u∗)

)
=
(
〈J ′λ(u∗), n(zn − u∗)〉+ o(n;u∗, v),

with o(n;u∗, v)→ 0 as n→∞. Taking into account (3.41) and (3.42), we can see that

(3.45) n(zn − u∗) = n
(
tn − 1

)
u∗ + v + nsn → Tu∗ + v + S as n→∞ in W.

It follows from (3.43) and (3.45) that

(3.46) 0 ≤ 〈J ′λ(u∗), v + S + Tu∗〉.

Since u∗ ∈ Nλ, we obtain that 〈J ′λ(u∗), u∗〉 = 0, 〈J ′λ(u∗), S〉 = 0, hence (3.46) implies

0 ≤ 〈J ′λ(u∗), v〉.

A similar reasoning with −v instead of v shows that the converse inequality holds, hence
0 = 〈J ′λ(u∗), v〉. Finally, using the density of Lipschitz functions in W we obtain that
J ′λ(u∗) = 0, which concludes the proof. �

Therefore, as it has already been pointed out, λ = 0 is an eigenvalue, so the conclusion
of Theorem 1.1 follows from Propositions 3.1 and 3.2.

Remark 3.4. As we have already mentioned in Introduction, in the case p, q ∈ (1,∞), p 6=
q, r ∈ {p, q}, the set of eigenvalues of problem (1.1) has been completely determined in
[3]. The case 1 < q < r < p <∞ remains open.
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[12] Mihăilescu, M. and Moroşanu, G., Eigenvalues of −4p − 4q under Neumann boundary condition, Canadian

Math. Bull., 59 (2016), No. 3, 606–616
[13] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Sys-

tems, Springer, 1996
[14] Szulkin, A. and Weth, T., The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications, Int.

Press, Somerville, MA, 597–632, 2010

aOVIDIUS UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

124 MAMAIA BLVD, 900527, CONSTANŢA, ROMANIA
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