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Functional differential equations with maxima, via step by
step contraction principle

VERONICA ILEA∗and DIANA OTROCOL∗∗

ABSTRACT. T. A. Burton presented in some examples of integral equations a notion of progressive contrac-
tions on C([a,∞[). In 2019, I. A. Rus formalized this notion (I. A. Rus, Some variants of contraction principle in
the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear
Analysis and its Applications, 3 (2019) No. 3, 111–120), put ”step by step” instead of ”progressive” in this no-
tion, and give some variant of step by step contraction principle in the case of operators with Volterra property
on C([a, b],B) and C([a,∞[,B) where B is a Banach space. In this paper we use the abstract result given by I.
A. Rus, to study some classes of functional differential equations with maxima.

1. INTRODUCTION

In 1990, Corduneanu investigated functional differential equations involving abstract
Volterra operators. In this sense, around the year 2000 Corduneanu [7] presented a general
study on functional differential equations with abstract or causal Volterra operators.

On the other hand, T. A. Burton ([3]-[6]) presented in some examples of integral equa-
tions a notion of progressive contractions on C([a,∞[). In 2019, following the idea of T. A.
Burton and the forward step method ([19]), I. A. Rus formalized this notion ([21]), with
”step by step” instead of ”progressive”, and give some variant of step by step contraction
principle in the case of operators with Volterra property on C([a, b],B) and C([a,∞[,B)
where B is a Banach space.

In this paper we consider the following functional differential equation with maxima

(1.1) x′(t) = f(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a, b]

with the condition

(1.2) x(a) = α,

where α ∈ R and f ∈ C([a, b] × R2) are given. To prove our results, we shall use the
abstract result given by I. A. Rus [21].

2. PRELIMINARIES

2.1. Weakly Picard operators. In the sequel, the following results are useful for some of
the proofs in the paper (see [16, 17]).

Let (X, d) be a metric space. An operator A : X → X is called weakly Picard operator
(WPO) if the sequence of successive approximations, {An(x)}n∈N, converges for all x ∈ X
and its limit (which generally depend on x) is a fixed point of A. If an operator A is WPO
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with a unique fixed point, that is, FA = {x∗}, then, by definition, A is called a Picard
operator (PO).

If A : X → X is a WPO, we can define the operator A∞ : X → FA, by A∞(x) := lim
n→∞

An(x).

2.2. G-contractions. Let (X, d) be a metric space and G ⊂ X ×X be a nonempty binary
relation. An operator A : X → X is a G-contraction if there exists l ∈ (0, 1) such that,

d(A(x), A(y)) ≤ ld(x, y), ∀(x, y) ∈ G.

Let us give an example of G-contraction. For other examples see [2], [18], [21] and [22].
Let a < c < b and X := C[a, b], with d(x, y) := max

a≤t≤b
|x(t)− y(t)| . For H ∈ C([a, b] ×

[a, b]× R) we consider the operator, A : C[a, b]→ C[a, b] defined by

A(x)(t) :=

∫ t

a

H(t, s, max
a≤ξ≤s

x(ξ))ds.

We suppose that there exists L > 0 such that

|H(t, s, u)−H(t, s, v)| ≤ L |u− v| , t, s ∈ [a, b], u, v ∈ R.

Let G := {(x, y)| x, y ∈ C([a, b],R), x|[a,c] = y|[a,c]}. If L(b − c) < 1, then A is a G-
contraction.

Indeed for t ∈ [a, c] if x|[a,c] = y|[a,c] , then A(x)(t) = A(y)(t).

If t ∈ [c, b], then

A(x)(t) =

∫ c

a

H(t, s, max
a≤ξ≤s

x(ξ))ds+

∫ t

c

H(t, s, max
a≤ξ≤s

x(ξ))ds,

x, y ∈ G⇒ ‖A(x)−A(y)‖ ≤ L(b− c) ‖x− y‖ .

2.3. Step by step contraction. Let (B, |·|) be a (real or complex) Banach space andC([a, c],B)
the Banach space with max-norm, ‖·‖. In what follows, in all spaces of functions we con-

sider max-norm. For m ∈ N, m ≥ 2, let t0 := a, tk := t0 + k
b− a
m

, k = 1,m. Let V :

C([a, b],B) → C([a, b],B) be an operator with Volterra property. Let Vk : C([t0, tk],B) →
C([t0, tk],B), k = 1,m− 1 the operator induced by V on C([t0, tk],B). We also consider
the following sets,

Gk := {(x, y)| x, y ∈ C([t0, tk+1],B), x|[t0,tk] = y|[t0,tk]}, k = 1,m− 1.

For xk ∈ C([t0, tk],B), k = 1,m− 1, we denote

Xxk
:= {y ∈ C([t0, tk+1],B), y|[t0,tk] = xk}.

The following result is given in [21].

Theorem 2.1. (Theorem of step by step contraction). We suppose that:
(1) V : C([a, b],B)→ C([a, b],B) has the Volterra property;
(2) V1 is a contraction;
(3) Vk is a Gk−1-contraction, for k = 2,m.

Then
(i) FV = {x∗};
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(ii)

x∗|[t0,t1] = V∞1 (x), ∀x ∈ C([t0, t1],R),
x∗|[t0,t2] = V∞2 (x), ∀x ∈ Xx∗|[t0,t1]

,

...

x∗|[t0,tm−1]
= V∞m−1(x), ∀x ∈ Xx∗|[t0,tm−2]

;

(iii) x∗ = V∞(x), ∀x ∈ Xx∗|[t0,tm−1]
.

For other details and results concerning the theory of G-contraction, step by step con-
traction, Picard operator, weakly Picard Operator and equations with maxima, see: [1],
[8]-[21].

3. MAIN RESULT

In this section, we shall establish a new result of existence and uniqueness of the solu-
tion of the functional differential equation with maxima (1.1).

The problem (1.1)–(1.2), x ∈ C1([a, b],R) is equivalent with the fixed point equation

(3.3) x(t) = α+

∫ t

a

f(s, x(s), max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b].

It is clear that equation (3.3) is equivalent with x = V (x), where the operator V : C([a, b],R)→
C([a, b],R), defined by

(3.4) V (x)(t) := α+

∫ t

a

f(s, x(s), max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b].

The operator V has the Volterra property, i.e.,

t ∈ (a, b), x, y ∈ C[a, b], x|[a,t] = y|[a,t] ⇒ V (x)|[a,t] = V (y)|[a,t] .

This implies that the operator V induced, for each c with a < c < b and, the operator Vc :
C[a, c]→ C[a, c], defined by, Vc(x)(t) := V (x̃), where x̃ ∈ C[a, b] is such that, x̃|[a,c] = x.

In what follows we consider the notations from Section 2.3, where B = R.
We have

Theorem 3.2. We suppose that:

(1) There exists L > 0, such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lmax(|u1 − v1| , |u2 − v2|),

for all t ∈ [a, b], ui, vi ∈ R, i = 1, 2.
(2) m ∈ N∗ is such that

L(b− a)
m

< 1.

Then, we have

(i) FV = {x∗}, i.e., the problem (1.1)-(1.2) has a unique solution.
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(ii)

x∗|[t0,t1] = V∞1 (x), ∀x ∈ C[t0, t1],
x∗|[t0,t2] = V∞2 (x), ∀x ∈ Xx∗

...

x∗|[t0,tm−1]
= V∞m−1(x), ∀x ∈ Xx∗ |[t0,tm−1]

.

(iii) x∗ = V∞(x), ∀x ∈ Xx∗ |[t0,tm−1]
.

Proof. We shall prove that in the conditions (1) and choosing m as in (2), we are in the
conditions of Theorem of step by step contractions.

Let us prove that V1 is an contraction. We have:

|V1(x)(t)− V1(y)(t)| ≤
∣∣∣∣∫ t

a

f(s, x(s), max
a≤ξ≤s

x(ξ))ds−
∫ t

a

f(s, y(s), max
a≤ξ≤s

y(ξ))ds

∣∣∣∣
≤ L

∫ t

a

max

(
|x(s)− y(s)| ,

∣∣∣∣ max
a≤ξ≤s

x(ξ)− max
a≤ξ≤s

y(ξ)

∣∣∣∣) ds
≤ L(b− a)

m
max

t0≤t≤t1
|x(t)− y(t)| .

It follows that

max
t0≤t≤t1

|V1(x)(t)− V1(y)(t)| ≤
L(b− a)

m
max

t0≤t≤t1
|x(t)− y(t)| .

So, V1 is a contraction.
Let us prove that V2 is a G1-contraction. First we remark that, for t ∈ [t0, t1]

V2(x)(t) = V2(y)(t), for x, y ∈ G1.

|V2(x)(t)− V2(y)(t)| =
∣∣∣∣∫ t1

a

[
f(s, x(s), max

a≤ξ≤s
x(ξ))− f(s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

+

∫ t

t1

[
f(s, x(s), max

a≤ξ≤s
x(ξ))− f(s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

∣∣∣∣
=

∣∣∣∣∫ t

t1

[
f(s, x(s), max

a≤ξ≤s
x(ξ))− f(s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

∣∣∣∣
≤ L(b− a)

m
max

t0≤t≤t2
|x(t)− y(t)| .

In a similar way we prove that V3, . . . , Vm are G2, . . . , Gm−1 contractions.
Now the prove follows from the Theorem of step by step contractions. �

Remark 3.1. In the conditions of the Theorem 3.2 let us denote x∗|[t0,tk] = x∗k, 1 ≤ k ≤
m− 1. Then we have that:

The sequence of successive approximations

x1,n+1(t) =

∫ t

a

f(s, x1,n(s), max
a≤ξ≤s

x1,n(ξ))ds, t ∈ [t0, t1]

converges uniformly on [t0, t1] to x∗1 = x∗|[t0,t1] .
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The sequence of successive approximations

x2,n+1(t) =

{
x∗1(t), t ∈ [t0, t1]

x∗1(t1) +
∫ t
t1
f(s, x2,n(s), max

a≤ξ≤s
x2,n(ξ))ds, t ∈ [t1, t2]

converges uniformly on [t0, t2] to x∗2 = x∗|[t0,t2] .
· · ·
The sequence of successive approximations

xm−1,n+1(t) =

{
x∗m−2(t), t ∈ [t0, tm−2]

x∗m−2(tm−2) +
∫ t
tm−2

f(s, xm−1,n(s), max
a≤ξ≤s

xm−1,n(ξ))ds, t ∈ [tm−2, tm−1]

converges uniformly on [t0, tm−1] to x∗m−1 = x∗|[t0,tm−1]
.

The above considerations give rise to the following problem: In which conditions the
operator V is Picard operator?

From the Fibre contraction principle (see [21]) the answer is the following: In the con-
ditions of the Theorem 3.2, the operator V is a Picard operator with respect to the uniform
convergence on [t0, tm]·

In order to prove this we consider the following operators induced by the operator V.
First of all from (3.4) we have that:

(4.1) V (x)(t) := α+
∫ t
t0
f(s, x(s), max

t0≤ξ≤s
x(ξ))ds, t ∈ [t0, t1],

(4.2) V (x)(t) := α+
∫ t1
t0
f(s, x(s), max

t0≤ξ≤s
x(ξ))ds+

∫ t
t1
f(s, x(s), max

t0≤ξ≤s
x(ξ))ds, t ∈ [t1, t2],

...
(4.k) V (x)(t) := α+

∫ t1
t0
f(s, x(s), max

t0≤ξ≤s
x(ξ))ds+ ...+

∫ t
tk−1

f(s, x(s), max
t0≤ξ≤s

x(ξ))ds, t ∈

[tk−1, tk], k = 1,m.
Let R : C[t0, tm]→ C[t0, t1]× C[t1, t2]× ...× C[tm−1, tm] be defined by,

x→
(
x|[t0,t1] , x|[t1,t2] , ..., x|[tm−1,tm]

)
.

We also consider the following subset:

U ⊂
m∏
k=1

C[tk−1, tk], U :=
{
(x1,..., xm) | xk (tk) = xk+1 (tk) , k = 1,m− 1

}
·

It is clear that R : C[t0, tm]→ U is a bijection.
Let us consider the following operators induced by the operator V :
T1 : C[t0, t1]→ C[t0, t1],

T1 (x1) (t) := α+

∫ t

t0

f(s, x1(s), max
t0≤ξ≤s

x1(ξ))ds, t ∈ [t0, t1],

T2 : C[t0, t1]× C[t1, t2]→ C[t1, t2],

T2 (x1, x2) (t) := α+

∫ t1

t0

f(s, x1(s), max
t0≤ξ≤s

x1(ξ))ds+

∫ t

t1

f(s, x2(s), max
t0≤ξ≤s

x2(ξ))ds, t ∈ [t1, t2],

...
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Tk : C[t0, t1]× C[t1, t2]× ...× C[tk−1, tk]→ C[tk−1, tk],

Tk (x1, x2, ..., xk) (t) := α+

∫ t1

t0

f(s, x1(s), max
t0≤ξ≤s

x1(ξ))ds+ ...

+

∫ t

tk−1

f(s, xk(s), max
t0≤ξ≤s

xk(ξ))ds, t ∈ [tk−1, tk], k = 1,m

and

T :

m∏
k=1

C[tk−1, tk]→
m∏
k=1

C[tk−1, tk], T := (T1, T2, ..., Tm) .

In the conditions of Theorem 3.2, the operators, T1, T2 (x1, ·) , ..., Tm (x1, ..., xm−1, ·) are
contractions. From the Fibre Contraction Principle, T is a Picard operator.

Now, we observe that: V = R−1TR and V n = R−1TnR. These imply that the operator
V is a Picard operator.

4. DIFFERENTIAL INEQUALITIES

In this section we will emphasize the importance of the above result by applying for
the operator V the Gronwall type inequalities and the comparison theorem.

In this section we suppose that
(H) there exists L > 0 such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lmax(|u1 − v1| , |u2 − v2|)

for all t ∈ [a, b] and ui, vi ∈ R, i = 1, 2.

We consider on C([a, b],R) the max norm and in condition (H), the operator V de-
fined by (3.4) is a Picard operator. So, in the condition (H), the problem (1.1)-(1.2) has
in C([a, b],R) a unique solution x∗. Moreover, for t ∈ [a, b], x∗(t) = lim

n→∞
xn(t), for each

x0 ∈ C([a, b],R), where (xn)n∈N is defined by

xn+1 = α+

∫ t

a

f(s, xn(s), max
a≤ξ≤s

xn(ξ))ds, t ∈ [a, b].

Now we can apply Abstract Gronwall Lemma (see [21]).

Theorem 4.3. Let us consider the problem (1.1)-(1.2) in the condition (H) and f(t, ·, ·) : R2 → R
is increasing, i.e., u1 ≤ v1, u2 ≤ v2 ⇒ f(t, u1, u2) ≤ f(t, v1, v2), for all t ∈ [a, b]. Let us denote
by x∗ the unique solution of (1.1)-(1.2). Then the following implications holds:

(i) x ∈ C([a, b],R), x(a) = α, x′(t) ≤ f(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a, b]⇒ x ≤ x∗;

(ii) x ∈ C([a, b],R), x(a) = α, x′(t) ≥ f(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a, b]⇒ x ≥ x∗.

In a similar way, a comparison theorem for equation (1.1) can be obtained, using the
Abstract Comparison Lemma.

We consider now the following functional differential equations with maxima

(4.5) x′(t) = fi(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a, b]

with the condition

(4.6) x(a) = αi,

where αi ∈ R and fi ∈ C([a, b]× R2), i = 1, 2, 3 are given. We suppose that
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(H ′) there exists Li > 0 such that

|fi(t, u1, u2)− fi(t, v1, v2)| ≤ Limax(|u1 − v1| , |u2 − v2|),

for all t ∈ [a, b] and u1, v1, u2, v2 ∈ R, i = 1, 2, 3.

Theorem 4.4. Let us consider the problems (4.5)-(4.6) in the condition: (H ′), f2(t, ·, ·) : R2 →
R is increasing, for all t ∈ [a, b] and α1 ≤ α2 ≤ α3, f1 ≤ f2 ≤ f3. Let us denote by x∗i , i = 1, 2, 3
the unique solutions of (4.5)-(4.6). Then the following implication holds:

x1(a) ≤ x2(a) ≤ x3(a)⇒ x∗1 ≤ x∗2 ≤ x∗3.
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