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diminishing to zero IFSs

RADU MICULESCU, ALEXANDRU MIHAIL and CRISTINA-MARIA PĂCURAR

ABSTRACT. In this paper we provide another characterization of hyperbolic diameter diminishing to zero
iterated function systems that were studied in [R. Miculescu, A. Mihail, Diameter diminishing to zero IFSs,
arXiv:2101.12705]. The primary tool that we use is an operator HS , associated to the iterated function system
S, which is inspired by the similar one utilized in Mihail (Fixed Point Theory Appl., 2015:75, 2015). Some fixed
point results are also obtained as byproducts of our main result.

1. INTRODUCTION

This paper deals with iterated function systems that were introduced by J. Hutchinson
(see [7]) and popularized by M. Barsnley (see [3]). As they induce a large and important
class of fractal sets, a lot of generalizations of this concept have been studied. One of
them is due to A. Kameyama (see [10]) who introduced a topological generalization of
the attractor of an iterated function system. Let us mention some papers along this line of
research: [1], [2], [4], [12], [13], [14], [15], [16], [17], [20] and [21]. From the point of view of
this paper, an important role is played by [17] where the concept of (hyperbolic) diameter
diminishing to zero iterated function system was introduced and its properties were stud-
ied. Moreover, using the concepts of hyperbolic ϕ-contractive iterated function system,
hyperbolic (locally) uniformly point fibred iterated function system and iterated function
system having hyperbolic attractor, characterizations of hyperbolic diameter diminishing
to zero iterated function systems were provided.

Given an iterated function system S = ((X, d), (fi)i∈I), we shall consider the following:
- IN

∗ not
= Λ(I) endowed with the Baire metric which is denoted by dΛ (for details see

Preliminaries)

-
ˆ

C(X) = {f : Λ(I) × X → X | f is continuous and bounded} endowed with the
uniform metric, Λ(I) × X being furnished with the metric ρ given by ρ((ω, x), (θ, y)) ={
dΛ(ω, θ) + 1, if x 6= y
dΛ(ω, θ), if x = y

for every (ω, x), (θ, y) ∈ Λ(I)×X

- the operatorHS :
ˆ

C(X)→
ˆ

C(X) acting as follows:

HS(f)(ω, x) = fω1
(f(ω2...ωn..., x)),
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for every f ∈
ˆ

C(X), ω = ω1ω2...ωn... ∈ Λ(I) and x ∈ X . On the one hand, we prove
that if S is ϕ-contractive, ϕ being a comparison function, then HS is a Picard operator (see
Proposition 3.2). On the other hand, we prove that ifHS is a Picard operator, thenS has at-
tractor and admits canonical projection (see Theorem 3.3). In this way we provide another
characterization of hyperbolic diameter diminishing to zero iterated function systems that
were studied in [17].

2. PRELIMINARIES

By N we mean the set {0, 1, 2, ..., n, ...} and by N∗ we mean the set {1, 2, ..., n, ...}.
By BA, where A and B are two sets, we mean the set of functions from A to B.
Given a function f : X → X and n ∈ N∗, by f [n] we mean the composition of f by itself

n times. By f [0] we mean the identity function IdX : X → X given by IdX(x) = x for
every x ∈ X .

Given a metric space (X, d), by:
- P (X) we designate the class of all non-empty subsets of X
- Pb(X) we designate the set of non-empty bounded subsets of X
- Pb,cl(X) we designate the set of non-empty bounded and closed subsets of X
- Pcp(X) we designate the set of non-empty compact subsets of X .

The Hausdorff-Pompeiu metric.

Definition 2.1. (Hausdorff-Pompeiu metric) Given a metric space (X, d), the generalized
Hausdorff-Pompeiu pseudometric is the functionHd : P (X)× P (X)→ [0,+∞] given by

Hd(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)}

for all A,B ∈ P (X).
The Hausdorff-Pompeiu metric is the function Hd : Pb,cl(X) × Pb,cl(X) → [0,+∞)

given by
Hd(A,B) = Hd(A,B)

for all A,B ∈ Pb,cl(X).

Remark 2.1. In the framework of the above Definition, we have:

a)Hd(A,B) = Hd(A,B), for all A,B ∈ P (X).
b) Hd( ∪

i∈I
Ai, ∪

i∈I
Bi) ≤ sup

i∈I
Hd(Ai, Bi), for any two families (Ai)i∈I and (Bi)i∈I of ele-

ments from P (X).
The shift space.

Let I be a non-empty set and n ∈ N∗.
Λ(I) is the set of infinite words with letters from the alphabet I and a standard element

ω of Λ(I) can be presented as ω = ω1ω2...ωnωn+1... . So Λ(I) is IN
∗
.

Λn(I) is the set of words with letters from the alphabet I of length n and a standard
element ω of Λn(I) can be presented as ω = ω1ω2...ωn. So Λn(I) is I{1,2,...,n}.

Λ0(I) is the set having only one element, namely the empty word denoted by λ.
Endowed with the distance described by

dΛ(ω, θ) =

{
0, if ω = θ
1

2min{k∈N∗|ωk 6=θk}
, if ω 6= θ

,

where ω = ω1ω2ω3...ωnωn+1... and θ = θ1θ2θ3...θnθn+1..., Λ(I) becomes a metric space.
Note that (Λ(I), dΛ) is compact if I is finite.
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Form ∈ N∗ and ω = ω1ω2...ωnωn+1... ∈ Λ(I), by [ω]m we designate the word ω1ω2...ωm ∈
Λm(I).

For i ∈ I , one can consider the function τi : Λ(I)→ Λ(I) given by

τi(ω) = iω1ω2...ωnωn+1...,

for every ω = ω1ω2...ωnωn+1... ∈ Λ(I).

Comparison functions and ϕ-contractions.

Definition 2.2. (comparison function) A function ϕ : [0,∞)→ [0,∞) is called a compari-
son function if: i) ϕ is increasing; ii) ϕ(t) < t for every t > 0; iii) ϕ is right-continuous.

Definition 2.3. (ϕ-contraction) Given a metric space (X, d) and a comparison function ϕ,
a function f : X → X is called ϕ -contraction if

d(f(x), f(y)) ≤ ϕ(d(x, y)),

for all x, y ∈ X .

Picard operators.

Definition 2.4. (Picard operator) Given a metric space (X, d), a function f : X → X is
called Picard operator if:

i) there exists a unique fixed point α of f ;
ii)

lim
n→∞

f [n](x) = α

for every x ∈ X .

Theorem 2.1. (see Theorem 1 from [6] or Theorem 1 from [8]) Given a complete metric space
(X, d) and a comparison function ϕ, each ϕ-contraction f : X → X is a Picard operator.
Iterated function systems.

Definition 2.5. (iterated function system) A pair ((X, d), (fi)i∈I) is called iterated function
system (IFS for short) if:

i) (X, d) is a complete metric space;
ii) I is a finite set;
iii) fi : X → X is continuous for each i ∈ I ;
iv) fi(B) ∈ Pb(X) for every B ∈ Pb(X) and every i ∈ I .

Under the framework of the above definition, in the sequel, we shall use the following
notations:

- an IFS ((X, d), (fi)i∈I) will be denoted by S;
- for ω = ω1ω2...ωn ∈ Λn(I), fω1

◦ ... ◦ fωn will be denoted by fω .

Definition 2.6. (fractal operator) Given an IFS S =((X, d), (fi)i∈I), the function

FS : Pb,cl(X)→ Pb,cl(X),

given by
FS(B) = ∪

i∈I
fi(B),

for every B ∈ Pb,cl(X), is called the fractal operator associated to S .

Definition 2.7. (ϕ-contractive IFS) Given a comparison function ϕ, an iterated function
system S = ((X, d), (fi)i∈I) is called ϕ-contractive if each fi is a ϕ-contraction.

Definition 2.8. (point fibred IFS, locally uniformly point fibred IFS, uniformly point fibred
IFS) An iterated function system S = ((X, d), (fi)i∈I) is called:
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a) point fibred if for every ω ∈ Λ(I) there exists aω ∈ X such that

lim
n→∞

f[ω]n(x) = aω ,

for all x ∈ X ;
b) locally uniformly point fibred if it is point fibred and for each x ∈ X there exists

an open set Dx containing x such that

lim
n→∞

sup
ω∈Λ(I)

sup
y∈Dx

d(f[ω]n(y), aω) = 0;

c) uniformly point fibred if it is point fibred and

lim
n→∞

sup
ω∈Λ(I)

sup
x∈B

d(f[ω]n(x), aω) = 0,

for every B ∈ Pb,cl(X).

Definition 2.9. (diameter diminishing to zero iterated function system) An iterated func-
tion system S = ((X, d), (fi)i∈I) is called diameter diminishing to zero iterated function
systems if for every B ∈ Pb,cl(X) there exists MB ∈ Pb,cl(X) such that:

i) B ⊆MB ; ii) FS(MB) ⊆MB iii) lim
n→∞

max
ω∈Λn(I)

diam(fω(MB)) = 0.

Definition 2.10. (IFS having attractor) We say that the iterated function system S =
((X, d), (fi)i∈I) has attractor if there exists AS ∈ Pb,cl(X) such that:

i) FS(AS) = AS ;

ii) lim
n→∞

Hd(F
[n]
S (B), AS) = 0,

for each B ∈ Pb,cl(X).

Remark 2.2. a) (see [5]) IfK ∈ Pcp(X) and (Kn)n∈N ⊆ Pcp(X) are such that lim
n→∞

Hd(Kn,K) =

0, then lim
n→∞

Hd(FS(Kn), FS(K)) = 0.

b) Actually AS is the only fixed point of FS . It belongs to Pcp(X) and it is
called the attractor of S.

Definition 2.11. (hyperbolic ϕ-contractive IFS, hyperbolic locally uniformly point fibred
IFS, hyperbolic uniformly point fibred IFS, IFS having hyperbolic attractor and hyperbolic
diameter diminishing to zero IFS) Given a comparison function ϕ, an iterated function
system S = ((X, d), (fi)i∈I) is called hyperbolic ϕ-contractive if there exists a distance d1

on X such that:
i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) S1 = ((X, d1), (fi)i∈I) is ϕ-contractive.

The concepts of hyperbolic locally uniformly point fibred IFS, hyperbolic uniformly point
fibred IFS, IFS having hyperbolic attractor and hyperbolic diameter diminishing to zero
IFS are defined in a similar manner.

Let us recall the main result from [17].

Theorem 2.2. For an iterated function system S =((X, d), (fi)i∈I), the following statements are
equivalent:

1. There exists a comparison function ϕ such that S is hyperbolic ϕ-contractive.
2. S is hyperbolic locally uniformly point fibred.
3. S is hyperbolic uniformly point fibred.
4. S is a hyperbolic diameter diminishing to zero iterated function system.
5. S has hyperbolic attractor and there exists a continuous surjection π : Λ(I)→ AS1 such

that π ◦ τi = fi ◦ π for all i ∈ I , where S1 is the IFS mentioned in Definition 2.11, iii).
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3. THE MAIN RESULTS

The metric space
ˆ

C(X).

Definition 3.12. (the metric space
ˆ

C(X)) Given an IFS S = ((X, d), (fi)i∈I), one can con-

sider the metric space (
ˆ

C(X), du), where
ˆ

C(X) = {f : Λ(I)×X → X | f is continuous and bounded},
du(f, g) = sup

ω∈Λ(I),x∈X
d(f(ω, x), g(ω, x)),

for every f, g ∈
ˆ

C(X) and the metric ρ on Λ(I)×X is given by

ρ((ω, x), (θ, y)) =

{
dΛ(ω, θ) + 1, if x 6= y
dΛ(ω, θ), if x = y

for every (ω, x), (θ, y) ∈ Λ(I)×X .

Remark 3.3. The metric space
ˆ

C(X) is complete.

The operator HS .

Definition 3.13. (the operatorHS ) Given an IFS S = ((X, d), (fi)i∈I), one can consider the

operator HS :
ˆ

C(X)→
ˆ

C(X) given by

HS(f)(ω, x) = fω1(f(ω2...ωn..., x)),

for every f ∈
ˆ

C(X), ω = ω1ω2...ωn... ∈ Λ(I), x ∈ X .

Note that the above defined operatorHS is inspired by the one introduced by A. Mihail

in [18] but it maps
ˆ

C(X) into itself while the one used in [18] maps {f : Λ(I) → X |
f continuous} into itself.

Remark 3.4. HS is well defined i.e. HS(f) ∈
ˆ

C(X) for every f ∈
ˆ

C(X).

Indeed, for every f ∈
ˆ

C(X) and every i ∈ I , the restriction of HS(f) to τi(Λ(I)) × X
is continuous as the functions fi, f and ω = ω1ω2...ωn... ∈ Λ(I) → ω2...ωn... ∈ Λ(I) are
continuous. Since Λ(I)×X = ∪

i∈I
(τi(Λ(I))×X) and τi(Λ(I))×X is an open subset of Λ(I)

for every i ∈ I , in view of Theorem 18.2 from [19], we conclude that HS(f) is continuous.
The fact that HS(f) is bounded is a consequence of Definition 2.5, iv).

Remark 3.5.

(∗) H
[n]
S (f)(ω, x) = f[ω]n(f(ωn+1ωn+2...ωm..., x)),

for every n ∈ N∗, ω = ω1ω2...ωn... ∈ Λ(I), f ∈
ˆ

C(X) and x ∈ X .

Indeed, the above equality could be proved by induction on n.
One could see that (∗) is valid for n = 1 just by the definition of the operator HS .
Let us suppose that (∗) is true for n.
Then

H
[n+1]
S (f)(ω, x) = H

[n]
S (HS(f))(ω, x)

(∗) is true for n
= f[ω]n(HS(f)(ωn+1ωn+2...ωm..., x)) =

= f[ω]n(fωn+1
(f(ωn+2...ωm..., x))) = f[ω]n+1

(f(ωn+2...ωm..., x)),
for every ω = ω1ω2...ωn... ∈ Λ(I) and x ∈ X , i.e. (∗) is true for n+ 1.
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The properties of HS .

Proposition 3.1. If there exists a comparison function ϕ such that the iterated function
system S = ((X, d), (fi)i∈I) is ϕ-contractive, then HS is a ϕ-contraction.

Proof. We have
d(HS(f)(ω, x), HS(g)(ω, x)) =

= d(fω1(f(ω2...ωn..., x)), fω1(g(ω2...ωn..., x)))
fω1

is ϕ-contraction
≤

≤ ϕ(d(f(ω2...ωn..., x), g(ω2...ωn..., x)))
Definition 2.2, i)

≤ ϕ(du(f, g)),

for every ω = ω1ω2...ωn... ∈ Λ(I), x ∈ X , f, g ∈
ˆ

C(X), so

du(HS(f), HS(g)) = sup
ω∈Λ(I),x∈X

d(HS(f)(ω, x), HS(g)(ω, x)) ≤ ϕ(du(f, g)),

for every f, g ∈
ˆ

C(X). �

Proposition 3.2. If there exists a comparison function ϕ such that the iterated function
system S is ϕ-contractive, then HS is a Picard operator.

Proof. We have just to use Theorem 2.1, Remark 3.3 and Proposition 3.1. �

Some properties of S in case that HS is a Picard operator.

Theorem 3.3. If the iterated function system S =((X, d), (fi)i∈I) has the property that HS is a

Picard operator and p ∈
ˆ

C(X) is its fixed point, then:
i) for every ω ∈ Λ(I) there exists aω ∈ X such that

p({ω} ×X) = {aω};
ii) S is point fibred;

iii) S has attractor;
iv) the function π : Λ(I)→ AS , given by

π(ω) = aω ,

for every ω ∈ Λ(I), where AS is the attractor of S , has the following properties:
a) it is continuous and onto;
b)

π ◦ τi = fi ◦ π,
for all i ∈ I .

Proof. According to the hypothesis, we have

HS(p) = p and lim
n→∞

H
[n]
S (g) = p,

for every g ∈
ˆ

C(X).

i) For u0 ∈ X arbitrarily chosen, but fixed, let us consider g0 ∈
ˆ

C(X) given by

g0(ω, x) = u0,

for every (ω, x) ∈ Λ(I)×X .
Then

lim
n→∞

H
[n]
S (g0) = p,
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so
lim
n→∞

H
[n]
S (g0)(ω, x) = p(ω, x),

for every x ∈ X and ω ∈ Λ(I).
Then, via Remark 3.5, we obtain

lim
n→∞

f[ω]n(g0(ωn+1ωn+2...ωm..., x)) = p(ω, x),

i.e.

(3.1) lim
n→∞

f[ω]n(u0) = p(ω, x),

for every x ∈ X and ω ∈ Λ(I).
Hence, for every ω ∈ Λ(I), the set {p(ω, x) | x ∈ X} is a singleton and the justification

of i) is completed.
ii) It results from (3.1) which can be rewritten as

lim
n→∞

f[ω]n(x) = aω ,

for all x ∈ X .
iii) Let us choose x0 ∈ X and note that

p(Λ(I)×X)
i)
= p(Λ(I)× {x0})

Λ(I)×{x0} compact and p continuous
∈ Pcp(X).

In the sequel, we shall use the following notation

p(Λ(I)×X)
not
= AS .

Claim 1.
lim
n→∞

Hd(F
[n]
S (B), AS) = 0,

for each B ∈ Pb,cl(X).
Justification of Claim 1. Let us consider for arbitrarily chosen, but fixed,B ∈ Pb,cl(X) and

b ∈ B, the function g ∈
ˆ

C(X) given by g(ω, x) =

{
x, x ∈ B
b, x /∈ B for every (ω, x) ∈ Λ(I)×X .

Then

(3.2) lim
n→∞

du(H
[n]
S (g), p) = 0.

We have

(3.3) F
[n]
S (M) = ∪

ω∈Λ(I)
f[ω]n(M)

for every n ∈ N∗ and every M ∈ Pb,cl(X).
Indeed, relation (3.3) is valid for n = 1 just by the definition of FS .
Let us suppose that it is true for n.
Then

F
[n+1]
S (M) = F

[n]
S (FS(M)) = ∪

ω∈Λ(I)
f[ω]n(FS(M)) =

= ∪
ω∈Λ(I)

f[ω]n( ∪
i∈I
fi(M))

f[ω]n continuous
⊆ ∪

ω∈Λ(I)
f[ω]n( ∪

i∈I
fi(M)) =

= ∪
ω∈Λ(I)

f[ω]n+1
(M) = ∪

i∈I
fi( ∪

ω∈Λ(I)
f[ω]n(M)) ⊆

⊆ ∪
i∈I
fi( ∪

ω∈Λ(I)
f[ω]n(M)) = ∪

i∈I
fi(F

[n]
S (M)) =

= FS(F
[n]
S (M)) = F

[n+1]
S (M).
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Hence, by mathematical induction method, we proved (3.3) .
We also have

(3.4) H
[n]
S (g)(Λ(I)×X) = ∪

ω∈Λ(I)
f[ω]n(B)

for every n ∈ N∗.
Indeed,

H
[n]
S (g)(Λ(I)×X) = ∪

ω∈Λ(I), x∈X
H

[n]
S (g)(ω, x) =

Remark 3.5
= ∪

ω∈Λ(I), x∈X
f[ω]n(g(ωn+1ωn+2 . . . ωm . . . , x))

g(Λ(I)×B)=B
=

= ∪
ω∈Λ(I)

f[ω]n(B)

for every n ∈ N∗.
From (3.3) and (3.4) we get

(3.5) H
[n]
S (g)(Λ(I)×X) = F

[n]
S (B)

for every n ∈ N∗.
Note that

(3.6) Hd(F
[n]
S (B), AS) ≤ du(H

[n]
S (g), p)

for every n ∈ N∗.
Indeed, we have

Hd(F
[n]
S (B), AS)

(3.5)
= Hd

(
H

[n]
S (g)(Λ(I)×X), p(Λ(I)×X)

)
Remark 2.1, a)

= Hd(H
[n]
S (g)(Λ(I)×X), p(Λ(I)×X)) =

= Hd( ∪
ω∈Λ(I), x∈X

H
[n]
S (g)(ω, x), ∪

ω∈Λ(I), x∈X
p(ω, x)) ≤

Remark 2.1, b)
≤ sup

ω∈Λ(I), x∈X
Hd({H [n]

S (g)(ω, x)}, {p(ω, x)}) =

= sup
ω∈Λ(I), x∈X

d(H
[n]
S (g)(ω, x), p(ω, x)) = du(H

[n]
S (g), p)

for every n ∈ N∗.
In view of (3.2), by passing to limit as n→∞ in (3.6), we conclude that

lim
n→∞

Hd(F
[n]
S (B), AS) = 0.

Claim 2.
FS(AS) = AS .

Justification of Claim 2. For a fixed K ∈ Pcp(X) we have

FS(AS)
Claim 1

= FS( lim
n→∞

F
[n]
S (K))

Remark 2.2, a)
= lim

n→∞
FS(F

[n]
S (K)) =

= lim
n→∞

F
[n+1]
S (K)

Claim 1
= AS .

iv)
a) As for a fixed x0 ∈ X we have π(ω) = p(ω, x0) for every ω ∈ Λ(I) we infer that π is

continuous as p is continuous.
Moreover, since AS = p(Λ(I)× {x0}) = π(Λ(I)) we conclude that π is onto.
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b) We have

(π ◦ τi)(ω) = π(iω) = p(iω, x0) = HS(p)(iω, x0) = fi(p(ω, x0)) = fi(π(ω)) = (fi ◦ π)(ω),

for every ω ∈ Λ(I). �

Now we are able to state our main result.
Theorem 3.4. For an iterated function system S =((X, d), (fi)i∈I), the following statements are
equivalent:

1. There exists a comparison function ϕ such that S is hyperbolic ϕ-contractive.
2. S is hyperbolic locally uniformly point fibred.
3. S is hyperbolic uniformly point fibred.
4. S is a hyperbolic diameter diminishing to zero iterated function system.
5. S has hyperbolic attractor and there exists a continuous surjection π : Λ(I)→ AS1 such

that π ◦ τi = fi ◦ π for all i ∈ I , where S1 is the IFS mentioned in Definition 2.11, iii).
6. There exists a distance d1 on X such that

i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) HS1 is a Picard operator, where S1 = ((X, d1), (fi)i∈I).

Proof. In view of Theorem 2.2 the statements 1), 2), 3), 4) and 5) are equivalent.
Proposition 3.2 ensures us that the implication 1)⇒ 6) is valid.
Theorem 3.3 guarantees the validity of the implication 6)⇒ 5). �

A closer look at the case of iterated function systems comprising just one element yields
the following:

Corollary 3.1. For a complete metric space (X, d) and f : X → X a continuous function such
that f(B) ∈ Pb(X) for each B ∈ Pb(X), the following properties are equivalent:

1. There exist a comparison function ϕ and a distance d1 on X such that:
i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) f is ϕ-contractive with respect to d1.
2. There exist x∗ ∈ X and a distance d1 on X such that:
i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) lim

n→∞
sup
x∈B

d1(f [n](x), x∗) = 0 for every B ∈ Pb,cl(X).

3. There exists a distance d1 on X such that:
i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) for every B ∈ Pb,cl(X) there exists MB ∈ Pb,cl(X) with the following properties: B ⊆

MB , f(MB) ⊆MB and lim
n→∞

sup
x,y∈MB

d1(f [n](x), f [n](y)) = 0.

4. There exists a distance d1 on X such that:
i) d and d1 are topologically equivalent;
ii) (X, d1) is complete;
iii) there exists a d1 bounded function p : {ω}×X → X with the following properties: f ◦p = p

and lim
n→∞

sup
x∈X

d1((f [n] ◦ g)(ω, x), p(ω, x)) = 0 for every d1 bounded function g : {ω} ×X → X ,

where ω is the unique element of the shift space associated to a singleton.
The last part of our paper is devoted to some fixed point flavored comments generated

by the above corollary.
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Remark 3.6. Statement 2 of Corollary 3.1 implies that f is a Picard operator, with respect
to d1, whose fixed point is x∗, so Statement 3 of the same Corollary could be seen as a
sufficient condition for the existence and uniqueness of a fixed point of f .
Remark 3.7. The implications 3⇒1 and 2⇒1 from Corollary 3.1 are kind of converses to
Browder’s fixed point theorem (see Theorem 2.1) in the spirit of the Janos’ and Leader’s
results (see [9] and [11]) which are converses to Banach’s fixed point theorem.
Remark 3.8. Note that the image of the function p whose existence is stated in Statement
4 of Corollary 3.1 has just one element (see Theorem 3.3, i)) , let us say x∗, which is the
fixed point of f and that lim

n→∞
d1(f [n](x), x∗) = 0 for every x ∈ X , so f is a Picard operator

with respect to d1.
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