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Implicit functional differential equations with linear
modification of the argument, via weakly Picard operator
theory

ANTON S. MUREŞAN and VIORICA MUREŞAN

ABSTRACT. Let K := R or C, 0 < λ < 1 and f ∈ C([0, b]× K3,K).
In this paper we use the weakly Picard operator theory technique to study the following functional-differential

equation
y′(x) = f(x, y(x), y′(x), y(λx)), x ∈ [0, b].

1. INTRODUCTION

The theory of functional-differential equations and of functional-integral equations are
both active fields in mathematics.

Many problems from physics, chemistry, astronomy, biology, engineering, social sci-
ences lead to mathematical models described by functional-differential and functional-
integral equations (see [7], [8], [10], [13], [15], [19], [21]). The theory of this kind of equa-
tions has developed very much.

For the monographs in this field we quote here [1]-[4], such as a large number of papers,
which contain a lot of techniques, ideas and applications.

Let K := R or C, 0 < λ < 1 and f ∈ C([0, b]×K3,K).
In this paper we use the weakly Picard operator theory technique to study the follow-

ing functional differential equation

y′(x) = f(x, y(x), y′(x), y(λx)), x ∈ [0, b].

We obtain existence, uniqueness and data dependence results for the solution.

2. PRELIMINARIES

2.1. Notations and terminology. Let X be a nonempty set and A : X −→ X an operator.
We denote by A0 := 1X , A

1 := A, ..., An+1 := A ◦An, n ∈ N, the iterate operators of A.
Also:

P (X) : = {Y ⊂ X | Y 6= ∅},
I(A) : = {Y ∈ P (X) | A(Y ) ⊂ Y },

the family of all nonempty invariant subsets of A,

FA = {x ∈ X |A(x) = x},
the fixed point set of the operator A.
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227



228 Anton S. Mureşan, Viorica Mureşan

Let (X,→) be an L− space (see [14],[18]).
Following Rus I. A. ( [11], [14], [15]), we have:

Definition 2.1. A is a Picard operator if there exists x∗ ∈ X such that
1) FA = {x∗};
2) the successive approximation sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X

Definition 2.2. A is a weakly Picard operator if the sequence (An(x0))n∈N converges for
all x0 ∈ X and the limit (which generally depends on x0) is a fixed point of A.

Definition 2.3. If A : X → X is a weakly Picard operator then we define the operator A∞

as follows:
A∞ : X → X, A∞(x) := lim

n→∞
An(x), for all x ∈ X.

We remark that A∞(X) = FA. So A∞ is an retract of X on FA.

2.2. Weakly Picard operators. We have the following theorems:

Theorem 2.1. (Contraction mapping principle). Let (X, d) be a complete metric space and
A : X → X a contraction. Then A is a Picard operator.

Theorem 2.2. (Characterization theorem). Let (X, d) be a metric space and A : X → X an
operator. The operator A is a weakly Picard operator if and only if there exists a partition of X,
X = ∪λ∈ΛXλ, such that:

(i) Xλ ∈ I(A);
(ii) A|Xλ : Xλ → Xλ is a Picard operator, for all λ ∈ Λ.
Fibre generalized contraction theorem is a fixed point theorem for operators on cartezian

product. This theorem is useful for proving solution of operatorial equations to be diffe-
rentiable and it is a generalization of a result given by Hirsch and Pugh in [5]. See also
[12], [20], [21].

Theorem 2.3. (Fibre contraction theorem). Let (X, d) be a metric space, (Y, ρ) be a complete
metric space and T : X × Y → X × Y . We suppose that:

(i) T (x, y) = (T1(x), T2(x, y)), for all x ∈ X, y ∈ Y ;
(ii) T1 : X → X is a weakly Picard operator;
(iii) there exists c ∈]0, 1[, such that

ρ(T2(x, y1), T2(x, y2)) ≤ cρ(y1, y2),

for all x ∈ X, y1, y2 ∈ Y.
Then the operator T is a weakly Picard operator. Moreover, if T1 is a Picard operator, then T is

a Picard operator.

We will use the previous result to study the differentiability with respect to parameter
λ for the solution of our equation.

3. CAUCHY PROBLEM: EXISTENCE AND UNIQUENESS

Let K := R or C, 0 < λ < 1 and f ∈ C([0, b]×K3,K).
We consider the following Cauchy problem:

(3.1) y′(x) = f(x, y(x), y′(x), y(λx)), x ∈ [0, b],

(3.2) y(0) = y0,

where y0 ∈ K.
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The problem (3.1)+(3.2) is equivalent to the following:

(3.3)


y′(x) = v(x)

v(x) = f

(
x, y0 +

x∫
0

v(s)ds, v(x), y0 +
λx∫
0

v(s)ds

)
y(0) = y0,

or

(3.4)


y(x) = y0 +

x∫
0

v(s)ds, x ∈ [0, b]

v(x) = f

(
x, y0 +

x∫
0

v(s)ds, v(x), y0 +
λx∫
0

v(s)ds

)
,

x ∈ [0, b] .

Let T : C([0, b],K)→C([0, b],K) be the operator defined by

(T (v))(x) := f

x, y0 +

x∫
0

v(s)ds, v(x), y0 +

λx∫
0

v(s)ds

 .

So we obtain a fixed point problem

(3.5) v(x) = (T (v))(x), v ∈ C([0, b],K).

The problem (3.1)+(3.2) has a unique solution if and only if the problem (3.5) has a
unique solution, v∗ ∈ C([0, b],K).

Consequently, in our paper, we will study the fixed point problem (3.5).
By using Contraction principle we give an existence and uniqueness theorem.

Theorem 3.4. We suppose that there exist L1 > 0, 0 < L2 < 1, L3 > 0 such that

|f(x, u1, u2, u3)− f(x, u4, u5, u6)| ≤ L1|u1 − u4|+ L2|u2 − u5|+ L3|u3 − u6|

for all x ∈ [0, b] and all uk ∈ K, k = 1, 6.
Then
(a) the problem (3.5) has a unique solution v∗ ∈ C([0, b],K);
(b) for all v0 ∈ C([0, b],K) the sequence (vn)n∈N defined by

vn+1(x) := f

x, y0 +

x∫
0

vn(s)ds, vn(x), y0 +

λx∫
0

vn(s)ds

 ,

converges uniformly to v∗ on [0, b].

Proof. Let || · ||B be a Bielecki norm on C([0, b],K) defined by

||v||B = max
x∈[0,b]

|v(x)|e−τx, where τ > 0.

Consider the above operator T : (C([0, b],K), || · ||B)→(C([0, b],K), || · ||B).
We have

|(T (v))(x)− (T (w))(x)| ≤ L1

x∫
0

|v(s)− w(s)|ds+

+L2|v(x)− w(x)|+ L3

λx∫
0

|v(s)− w(s)|ds ≤
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≤ L1

x∫
0

|v(s)− w(s)|e−τseτsds+ L2|v(x)− w(x)|e−τxeτx+

+L3

x∫
0

|v(s)− w(s)||e−τseτsds ≤ L1 + L3

τ
(eτx − 1)||v − w||B+

+L2||v − w||Beτx ≤ (
L1 + L3

τ
+ L2)||v − w||Beτx,

for all x ∈ [0, b].
Therefore,

|(T (v))(x)− (T (w))(x)|e−τx ≤ (
L1 + L3

τ
+ L2)||v − w||B ,

for all x ∈ [0, b].
This implies that

||T (v)− T (w)||B ≤ (
L1 + L3

τ
+ L2)||v − w||B ,

for all v, w ∈ C([0, b],K).

We can choose τ large enough such that
L1 + L3

τ
+ L2 < 1.

By applying Contraction principle we obtain (a) and (b). �

Remark 3.1. Let us consider the operator

A : C([0, b],K)× C([0, b],K)→C([0, b],K)× C([0, b],K)

defined by

A(y, v)(x) :=

(
y(0) +

∫ x

0

v(s)ds, f

(
x, y(0) +

∫ x

0

v(s)ds), v(x), y(0) +

∫ λx

0

v(s)ds

))
.

From the Theorem 3.4. it is clear that the operator A, in the conditions of Theorem 3.4.,
is a weakly Picard operator. Indeed, let for y0 ∈ K

Xy0 := {y ∈ C([0, b],K) | y(0)=y0}.

Then

C([0, b],K)× C([0, b],K) =
⋃
y0∈K

(Xy0 × C([0, b],K))

is an invariant partition of C([0, b],K)× C([0, b],K), i.e.,

A(Xy0 × C([0, b],K)) ⊂ Xy0 × C([0, b],K), for all y0 ∈ K.

From a similar proof as in Theorem 3.4. we have that A|Xy0× C([0,b],K) is a Picard ope-
rator for each y0 ∈ K. So, from Theorem 2.2., the operator A is a weakly Picard operator.

From the definition of operator A we have that:
• if y is a solution of the equation 3.1., then (y, y′) ∈ FA;
• if (y, v) ∈ FA, then y is a solution of (3.1).
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4. DATA DEPENDENCE

By using Fibre contraction theorem we give a data dependence theorem for the solution
of the following equation:

(4.6) v(x, λ) = (T (v))(x, λ), v ∈ C([0, b]×]0, 1[,K).

We have

Theorem 4.5. We suppose that:
(i) f(x, ·, ·, ·) ∈ C1(K3), for all x ∈ [0, b];
(ii) there exist Mk > 0, k = 1, 3, such that∣∣∣∣ ∂f∂uk (x, u1, u2, u3)

∣∣∣∣ ≤Mk, k = 1, 3,

for all x ∈ [0, b] and all uk ∈ K, k = 1, 3;
(iii) 0 < M2 < 1.
Then
(a) the equation (4.6) has a unique solution v∗ ∈ C([0, b]×]0, 1[,K);
(b) for all v0 ∈ C([0, b]×]0, 1[,K) the sequence (vn)n∈N defined by

vn+1(x, λ) := f

x, y0 +

x∫
0

vn(s, λ)ds, vn(x, λ), y0 +

λx∫
0

vn(s, λ)ds


converges uniformly to v∗ on each compact of [0, b]×]0, 1[ ;

(c) the sequence (wn)n∈N defined by

wn+1(x, λ) :=

=
∂f

∂u1

x, y0 +

x∫
0

vn(s, λ)ds, vn(x, λ), y0 +

λx∫
0

vn(s, λ)ds

∫ x

0

wn(s, λ)ds+

+
∂f

∂u2

x, y0 +

x∫
0

vn(s, λ)ds, vn(x, λ), y0 +

λx∫
0

vn(s, λ)ds

wn(x, λ)+

+
∂f

∂u3

x, y0 +

x∫
0

vn(s, λ)ds, vn(x, λ), y0 +

λx∫
0

vn(s, λ)ds

 ·
·

(∫ λx

0

wn(s, λ)ds+ xvn(λx, λ)

)
,

where w0 =
∂v0

∂λ
, converges uniformly to

∂v∗

∂λ
on each compact of [0, b]×]0, 1[.

Proof. For 0 < λ1 < λ2 < 1, we denote X = (C([0, b]× [λ1, λ2],K), || · ||τ ), where

||v||τ = max
x∈[0,b]
λ∈[λ1,λ2]

|v(x, λ)|e−τx,

and τ > 0.
Consider the operator S1 : X → X, defined by

(S1(v))(x, λ) := f

x, y0 +

x∫
0

v(s, λ)ds, v(x, λ), y0 +

λx∫
0

v(s, λ)ds

 .
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The operator S1 is a Lipchitz operator with the constant

LS1
=
M1 +M3

τ
+M2.

Because of condition (iii), and by choosing τ large enough we have that LS1 < 1.
By applying Contraction principle to the operator S1 we obtain (a) and (b).

Let us prove that there exists
∂v∗

∂λ
and

∂v∗

∂λ
(x, ·) ∈ C([λ1, λ2],K), for all x ∈ [0, b].

We have

(4.7) v∗(x, λ) = f

x, y0 +

x∫
0

v∗(s, λ)ds, v∗(x, λ), y0 +

λx∫
0

v∗(s, λ)ds

 .

If we suppose that there exists
∂v∗

∂λ
, then from (4.7) we obtain

∂v∗

∂λ
(x, λ)=

∂f

∂u1

x, y0+

x∫
0

v∗(s, λ)ds, v∗(x, λ), y0 +

λx∫
0

v∗(s, λ)ds

∫ x

0

∂v∗

∂λ
(s, λ)ds+

+
∂f

∂u2

x, y0 +

x∫
0

v∗(s, λ)ds, v∗(x, λ), y0 +

λx∫
0

v∗(s, λ)ds

 ∂v∗

∂λ
(x, λ)+

+
∂f

∂u3

x, y0 +

x∫
0

v∗(s, λ)ds, v∗(x, λ), y0 +

λx∫
0

v∗(s, λ)ds

 ·
·

(∫ λx

0

∂v∗

∂λ
(s, λ)ds+ xv∗(λx, λ)

)
.

The previous relationship suggests us to consider the operator S2 : X ×X → X, defined
by

(S2(v, y))(x, λ) :=

=
∂f

∂u1

x, y0 +

x∫
0

v(s, λ)ds, v(x, λ), y0 +

λx∫
0

v(s, λ)ds

∫ x

0

y(s, λ)ds+

+
∂f

∂u2

x, y0 +

x∫
0

v(s, λ)ds, v(x, λ), y0 +

λx∫
0

v(s, λ)ds

 y(x, λ)+

+
∂f

∂u3

x, y0 +

x∫
0

v(s, λ)ds, v(x, λ), y0 +

λx∫
0

v(s, λ)ds

 ·
·

(∫ λx

0

y(s, λ)ds+ xv(λx, λ)

)
.

By using (i) and(ii) we obtain that

||S2(v, y1)− S2(v, y2)||τ ≤
(
M1 +M3

τ
+M2

)
||y1 − y2||τ ,
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for all y1, y2 ∈ X.
Because of condition (iii), and by choosing τ large enough, we have that S2 is a con-

traction with respect to the second argument.
If we take the operator S : X ×X → X ×X, S = (S1, S2) then we are in the conditions

of Fibre contraction theorem. Let (v∗, w∗) the unique fixed point of the operator S.

If we take v0 = 0, w0 = 0 then w1 =
∂v1

∂λ
.

By mathematical induction method we can prove that wn =
∂vn
∂λ

.

Thus (vn)n∈N converges uniformly to v∗ and
(
∂vn
∂λ

)
n∈N∗

converges uniformly to w∗.

By using a Weiestrass argument we obtain that
∂v∗

∂λ
exists and

∂v∗

∂λ
= w∗, and w∗ is a

continuous function.
So, we have (c). �
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