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Some remarks on the metrizability of some metric-like
structures

SUMIT SOM1 , ADRIAN PETRUŞEL2,3 and LAKSHMI KANTA DEY4

ABSTRACT. The main purpose of this article is to provide alternative proofs of the metrizability of metric-like
spaces like b-metric spaces, F -metric spaces, and θ-metric spaces. We improve upon the metrizability result of
An et al. [Topology Appl. 185–186 (2015)] for b-metric spaces. Moreover, we provide two shorter proofs of the
metrizability of F -metric spaces, recently introduced by Jleli and Samet. Furthermore, we give a partial answer
to an open problem regarding the openness of F -open balls in F -metric spaces. Finally, we give an alternative
proof of the metrizability of θ-metric spaces.

1. METRIZABILITY OF b-METRIC SPACES

In 1993, Czerwik [9] defined the notion of b-metric as a generalization of the metric
functional, by modifying the triangle inequality axiom. Further, in 1998, Czerwik [10]
modified again the notion, by considering instead of the coefficient 2 in the right hand
side of the relation an arbitrary coefficient K ≥ 1. Surprisingly, in 1998, Aimar et al. [1]
proved the metrizability of such spaces. In this sequel, intendant readers can see [8, 15]
more results about b-metric spaces. In 2010, Khamsi and Hussain [13] reconsidered the
concept of a b-metric under the name metric-type spaces, where they had considered the
coefficient to be K > 0. To avoid confusion, the metric-type in the sense of Khamsi and
Hussain [13] will be called b-metric in this short note. For related results and applica-
tions in b-metric spaces see also [4–6] and [17]. Before going further, we like to recall the
definition of a b-metric space from [13] as follows:

Definition 1.1. [13, Definition 6.] Let X be a non-empty set and K > 0. A distance
function D : X × X → [0,∞) is said to be a b-metric on X if it satisfies the following
conditions:

(i) D(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) D(x, y) = D(y, x) for all (x, y) ∈ X ×X ;

(iii) D(x, z) ≤ K[D(x, y) +D(y, z)] for all x, y, z ∈ X .

Then the triple (X,D,K) is called a b-metric space. If we take K = 1, then X becomes
a metric space. So, b-metric spaces are more general than the standard metric spaces. In
2015, An et al. [2] presented a proof for the metrizability of b-metric spaces with coeffi-
cient K > 0. However, they proved the metrizability result on an assumption that the
distance function is continuous in one variable. We will state first the main theorem and
its corollary due to An et al.
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Theorem 1.1. [2, Theorem 3.15.] Let (X,D,K) be a b-metric space. If D is continuous in
one variable then every open cover of X has an open refinement which is both locally finite and
σ-discrete.

Corollary 1.1. [2, Corollary 3.17.] Let (X,D,K) be a b-metric space. If D is continuous in one
variable then X is metrizable.

One of the main motivation of this short note is to give a simple proof of the metriz-
ability of b-metric spaces with coefficient K > 0 without considering any continuity as-
sumption. We use metrization theorem due to Niemytski and Wilson in our proof. Before
proceeding to our metrizability result, we like to recall the metrization theorem due to
Niemytski and Wilson as follows:

Theorem 1.2. [11, Page 137.] Let X be a topological space and F : X × X → [0,∞) be a
distance function on X . If the distance function F satisfies

(i) F (x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) F (x, y) = F (y, x) for all (x, y) ∈ X ×X

and one of the following conditions:
(iii-A) Given a point a ∈ X and a number ε > 0, there exists φ(a, ε) > 0 such that if F (a, b) <

φ(a, ε) and F (b, c) < φ(a, ε) then F (a, c) < ε;
(iii-B) if a ∈ X and {an}n∈N, {bn}n∈N are two sequences in X such that F (an, a) → 0 and

F (an, bn)→ 0 as n→∞ then F (bn, a)→ 0 as n→∞;
(iii-C) for each point a ∈ X and positive number k, there is a positive number r such that if

b ∈ X for which F (a, b) ≥ k, and c is any point then F (a, c) + F (b, c) ≥ r,
then the topological space X is metrizable.

In [16], Niemytski had considered the condition (iii-A) of Theorem 1.2 and showed that
a space with a distance function satisfying the conditions (i), (ii) and (iii-A) is metrizable.
This condition (iii-A), given by Niemytski in [16], is known as the local axiom of the
triangle. In [16], Niemytski also showed that the conditions (iii-A) and (iii-B) of Theorem
1.2 are equivalent. Also it can be easily seen that conditions (iii-C) and (iii-A) of Theorem
1.2 are also equivalent. In [19], Wilson considered condition (iii-C) and showed that a
space with a distance function satisfying the conditions (i), (ii) and (iii-C) is metrizable.

Theorem 1.3. Let (X,D,K), K > 0 be a b-metric space. Then X is metrizable.

Proof. Let (X,D,K) be a b-metric space. By the definition of a b-metric space, the distance
function D : X × X → [0,∞) on X satisfies the first two conditions of Niemytski and
Wilson’s metrization result, i.e,

(i) D(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) D(x, y) = D(y, x) for all (x, y) ∈ X ×X .

Now we prove the third condition, i.e., the “locally regular” condition and for that, we
prove the condition (iii-C) of Theorem 1.2. Let a ∈ X and t be a positive real number.
Assume that b ∈ X such that D(a, b) ≥ t. If c is any point in X then by the definition of a
b-metric space we have,

D(a, b) ≤ K
(
D(a, c) +D(c, b)

)
=⇒

(
D(a, c) +D(c, b)

)
≥ t

K
= r > 0.

This shows that the distance function D : X ×X → [0,∞) of a b-metric space satisfies
the locally regular condition. Similarly conditions (iii-A) and (iii-B) of Theorem 1.2 are
easily satisfied by any b-metric. Consequently, by Niemytski and Wilson’s metrization
theorem we can conclude that the b-metric space X is metrizable. �
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Remark 1.1. The above metrizability result is superior, in some sense, to the ones in
[1, 2, 8].

Remark 1.2. From Theorem 1.3, we can conclude that if (X,D,K), K > 0 is a b-metric
space, then there exists a metric d : X × X → [0,∞) on X such that X is metrizable
with respect to the metric d. Thus, the topological properties of b-metric spaces discussed
in [13, Proposition 2, Proposition 3] are equivalent to those of the standard metric spaces.

2. METRIZABILITY OF F -METRIC SPACES

Recently, Jleli and Samet [12] proposed a new generalization of the usual notion of
metric spaces. By means of a certain class of functions, the authors defined the notion of
an F-metric space. Let us first recall the definition of such spaces. Let F denote the class
of functions f : (0,∞)→ R which satisfy the following conditions:

(F1) f is non-decreasing, i.e., 0 < s < t⇒ f(s) ≤ f(t).
(F2) For every sequence {tn}n∈N ⊆ (0,+∞), we have

lim
n→+∞

tn = 0⇐⇒ lim
n→+∞

f(tn) = −∞.

The definition of an F-metric space has been introduced as follows.

Definition 2.2. [12, Definition 2.1.] Let X be a non-empty set and D : X ×X → [0,∞) be a
given mapping. Suppose there exists (f, α) ∈ F × [0,∞) such that:

(D1) D(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X .
(D2) D(x, y) = D(y, x) for all (x, y) ∈ X ×X .
(D3) For every (x, y) ∈ X × X , for each N ∈ N, N ≥ 2 and for every (ui)

N
i=1 ⊆ X with

(u1, uN ) = (x, y), we have

D(x, y) > 0 =⇒ f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be an F-metric on X and the pair (X,D) is said to be an F-metric
space. Hence, the class of all F-metric spaces contains the class of all metric spaces, ob-
tained for f(t) = lnt and α = 0. The following definitions and propositions from [12] will
be needed.

Definition 2.3. [12, Definition 4.1.] Let (X,D) be an F-metric space. A subset C of X is
said to be F-open if for every x ∈ C, there is some r > 0 such that B(x, r) ⊂ C, where
B(x, r) := {y ∈ X : D(y, x) < r}. We say that a subset C of X is F-closed if X \ C is
F-open. The family of all F-open subsets of X is denoted by τF .

Definition 2.4. [12, Definition 4.3.] Let (X,D) be an F-metric space. Let {xn}n∈N be a
sequence in X. We say that {xn}n∈N is F-convergent to x ∈ X if {xn}n∈N is convergent to
x ∈ X with respect to the topology τF .

Proposition 2.1. [12, Proposition 4.4.] Let (X,D) be an F-metric space. Then, for any
nonempty subset A of X , the following implication holds x ∈ Ā, r > 0 =⇒ B(x, r) ∩A 6= ∅.
Proposition 2.2. [12, Proposition 4.5.] Let (X,D) be an F-metric space. Let {xn}n∈N be a
sequence in X and x ∈ X. Then the following are equivalent:

(i) {xn}n∈N is F-convergent to x.
(ii) D(xn, x)→ 0 as n→∞.

Proposition 2.3. [12, Proposition 4.6.] Let (X,D) be an F-metric space and {xn}n∈N be a
sequence in X. Then

(x, y) ∈ X ×X, lim
n→∞

D(xn, x) = lim
n→∞

D(xn, y) = 0 =⇒ x = y.
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Very recently Som et al. [18] proved that this newly defined structure is metrizable by
using the definition of metrizability. However, their proof is technical and a bit lengthy.
In this short note, we give two alternative proofs of metrizability of this structure using
Chittenden’s metrization theorem [7] and metrization theorem due to Niemytski and Wil-
son (discussed in Theorem 1.2). It may be noted that these proofs are very simple. Before
proceeding to the metrizability result for F-metric spaces, we recall the metrization result
due to Chittenden [7].

Theorem 2.4. [7] Let X be a topological space and F : X ×X → [0,∞) be a distance function
on X . If the distance function F satisfies the following conditions:

(i) F (x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) F (x, y) = F (y, x), for all (x, y) ∈ X ×X ;

(iii) (Uniformly regular) For every ε > 0 there exists φ(ε) > 0 such that for all x, y, z ∈ X,
F (x, y) < φ(ε) and F (y, z) < φ(ε) imply F (x, z) < ε,

then the topological space X is metrizable.

Now in the upcoming theorem, we present, by two different approaches, two short
proofs of the metrizability of F-metric spaces. The first approach is by using Chittenden’s
metrization theorem, while the second one is by using Niemytski and Wilson’s metriza-
tion theorem.

Theorem 2.5. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then X is metrizable.

Proof. Approach I. Let X be an F-metric space with (f, α) ∈ F × [0,∞). By the definition
of an F-metric space, the distance function D : X × X → [0,∞) satisfies the first two
conditions of Chittenden’s metrization result, i.e,

(i) D(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X .
(ii) D(x, y) = D(y, x) for all (x, y) ∈ X ×X .

Now we prove the third condition, i.e., the “uniformly regular” condition. Let ε > 0 and
x, y, z ∈ X. If x = z, then D(x, z) = 0. So in this case φ(ε) = c where c is any positive real
number will serve the purpose. Let x 6= z. Then D(x, z) > 0. So, by the definition of an
F-metric space we have

(2.1) f(D(x, z)) ≤ f(D(x, y) +D(y, z)) + α.

By the F2 condition, for (f(ε) − α) ∈ R there exists δ > 0 such that 0 < t < δ =⇒ f(t) <

f(ε)−α. Let us choose φ(ε) = δ
2 . IfD(x, y) < δ

2 andD(y, z) < δ
2 thenD(x, y)+D(y, z) < δ.

Thus, by (2.1), the following implication holds f(D(x, z)) < f(ε) =⇒ D(x, z) < ε. This
shows that the distance function D of an F-metric space satisfies the uniformly regular
condition. Consequently, by Chittenden’s metrization result we can conclude that the
F-metric space X is metrizable.

Approach II. In this part we show that any F-metric D : X × X → [0,∞) satisfies
condition (iii-B) of Theorem 1.2. The interested reader can also check that, the F-metric
D : X ×X → [0,∞) satisfies condition (iii-A) of Theorem 1.2, by proceeding similarly as
the proof of “uniformly regular” condition in Theorem 2.5 under approach I. Let a ∈ X
and {an}n∈N, {bn}n∈N are two sequences in X such that D(an, a) → 0 and D(an, bn) → 0
as n → ∞. Let ε > 0. By F2 condition, for (f(ε) − α) ∈ R there exists δ > 0 such that
0 < t < δ =⇒ f(t) < f(ε)− α. For δ

2 > 0, there exists k1, k2 ∈ N such that

D(an, a) <
δ

2
, ∀ n ≥ k1 and D(an, bn) <

δ

2
, ∀ n ≥ k2.

Now if n ≥ max{k1, k2} and a 6= bn, then by the definition of an F-metric space, we have

f(D(a, bn)) ≤ f(D(a, an) +D(an, bn)) + α =⇒ f(D(a, bn)) < f(ε) =⇒ D(a, bn) < ε.
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This shows that D(bn, a)→ 0 as n→∞.
Thus, by the metrization criterion due to Niemytski and Wilson, we can conclude that

the F-metric space X is metrizable. �

Remark 2.3. From Theorem 2.5 we can conclude that if (X,D) be an F-metric space then
there exists a metric d : X × X → [0,∞) on X such that X is metrizable with respect to
the metric d. So, the topological properties of F-metric spaces discussed in Proposition
2.1-2.3 are equivalent to those of the standard metric counterparts.

In [12], Jleli and Samet obtained a few interesting results regarding the topology of F-
metric spaces. This study was further continued by Bera et al. [3], where they posed the
following interesting open problem.

Open question. Is every open ball an F-open set in F-metric spaces?

Next, we give a partial answer to this problem by finding an upper bound of the radius
of the open balls for which the open balls become open. We also acquire a necessary and
sufficient condition under which an open ball in F-metric spaces becomes F-open.

Theorem 2.6. Let X be an F-metric space with (f, α) ∈ F × [0,∞) and BD(x, r) = {y ∈ X :
D(y, x) < r} denotes an F-open ball with center at x and radius r > 0. Then BD(x, r) is F-open
if and only if BD(x, r) is open with respect to the metric d defined by
(2.2)

d(x, y) = inf

{
N−1∑
i=1

D(ui, ui+1) : N ∈ N, N ≥ 2, {ui}Ni=1 ⊆ X with (u1, uN ) = (x, y)

}
.

Proof. The proof can be easily done using [18, Theorem 2.1.], so it is omitted. �

Let X be an F-metric space with (f, α) ∈ F × [0,∞). Let r > 0. By the condition (F2),
for (f(r)−α) ∈ R, there exists δ > 0 such that 0 < t < δ =⇒ f(t) < f(r)−α. This quantity
δ depends on r and α. We will denote this δ by W (r, α). In our next theorem, we present
a sufficient condition under which the open ball BD(x, r) is F-open.

Theorem 2.7. Let X be an F-metric space with (f, α) ∈ F × [0,∞) and BD(x, r) = {y ∈ X :

D(y, x) < r} denotes an F-open ball with center at x and radius r > 0. If r < W (r,α)
2 , then

BD(x, r) is F-open.

Proof. We will prove that BD(x, r)c = {y ∈ X : D(y, x) ≥ r} is closed with respect
to the metric d defined in equation (2.2). Let z ∈ BD(x, r)c. Then there exists a se-
quence {zn}n∈N ⊂ BD(x, r)c such that zn → z as n → ∞ with respect to the metric d.
So D(zn, x) ≥ r for all n ∈ N and d(zn, z) → 0 as n → ∞. Let z /∈ BD(x, r)c. Then
z ∈ BD(x, r). So D(z, x) < r. This implies d(z, x) ≤ D(z, x) < r. Take W (r,α)

4 > 0. So
there exists K ∈ N such that d(zn, z) <

W (r,α)
4 for all n ≥ K. Now we take zn ∈ BD(x, r)c

with n ≥ K. So, D(zn, x) > 0. From the relation between the F-metric D and the metric d
defined in equation (2.2) we have

f(D(zn, x)) ≤ f
(
d(zn, x) +

W (r, α)

4

)
+ α

≤ f
(
d(zn, z) + d(z, x) +

W (r, α)

4

)
+ α

≤ f
(
d(zn, z) + r +

W (r, α)

4

)
+ α

≤ f
(
d(zn, z) +

W (r, α)

2
+
W (r, α)

4

)
+ α < f(r)

⇒ D(zn, x) < r.
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This is a contradiction, since zn ∈ BD(x, r)c. Thus z ∈ BD(x, r)c. This shows thatBD(x, r)c

is closed with respect to the metric d. So, BD(x, r) is open with respect to d. So, by [18,
Theorem 2.1.], we can conclude that BD(x, r) is F-open. �

3. METRIZABILITY OF θ-METRIC SPACES

In 2013, Khojasteh et al. [14] introduced the notion of a θ-metric space by using the
concept of a B-action on the set [0,∞) × [0,∞). Before proceeding to the definition of
θ-metric space, we recall the definition of a B-action (see [14]), as follows:

Definition 3.5. [14, Definition 4.] Let θ : [0,∞)×[0,∞)→ [0,∞) be a continuous mapping
with respect to each variable. Let Im(θ) = {θ(s, t) : s, t ≥ 0}. Then θ is called a B-action if
and only if the following conditions are satisfied:

(i) θ(0, 0) = 0 and θ(s, t) = θ(t, s) for all s, t ≥ 0;
(ii) θ(x, y) < θ(s, t) if either x ≤ s, y < t or x < s, y ≤ t;

(iii) For each m ∈ Im(θ) and for each t ∈ [0,m], there exists s ∈ [0,m] such that
θ(s, t) = m;

(iv) θ(s, 0) ≤ s for all s > 0.

Authors denoted the collection of all suchB-actions by Y . Now, we will recall (see [14])
the definition of a θ-metric space, as follows.

Definition 3.6. [14, Definition 11.] Let X be a non-empty set. A distance function d :
X × X → [0,∞) is said to be a θ-metric on X with respect to a B-action θ ∈ Y if the
following conditions are satisfied:

(i) d(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) d(x, y) = d(y, x) for all (x, y) ∈ X ×X ;

(iii) d(x, z) ≤ θ(d(x, y), d(y, z)) for all x, y, z ∈ X .

The triple (X, d, θ) is called a θ-metric space. If we take θ(s, t) = s + t, s, t ≥ 0 then
θ-metric space reduce to metric space. In the same paper, Khojasteh et al. [14] also de-
veloped some topological structure induced by the θ-metric and concluded that it is a
metrizable topological space. However their proof of metrizability relies on the prior
knowledge of the uniformity of an uniform space X. In our paper, we prove the metriz-
ability of θ-metric spaces by using the well-known Niemytski and Wilson’s metrization
theorem.

Theorem 3.8. Let (X, d, θ) be a θ-metric space, where θ is a B-action on [0,∞) × [0,∞). Then
X is metrizable.

Proof. Throughout this proof, we will use the standard norm on the set [0,∞) × [0,∞)

as ‖(x, y)‖ =
√
x2 + y2, x, y ≥ 0. First of all, we show that the B-action θ is continuous

at the point (0, 0). Suppose that {(sn, tn)}n∈N is a sequence in [0,∞) × [0,∞), such that
(sn, tn) → (0, 0) as n → ∞. This implies sn → 0 and tn → 0 as n → ∞ in the standard
norm in [0,∞)× [0,∞). Now, as the B-action θ is continuous in both of the variables, we
get that θ(sn, tn) → θ(0, 0) = 0 as n → ∞. This shows that the B-action θ is continuous
at the point (0, 0). Now we prove that X is metrizable. By the definition of a θ-metric
space, the distance function d : X ×X → [0,∞) on X satisfies the first two conditions of
Niemytski and Wilson’s metrization result, i.e,

(i) d(x, y) = 0⇐⇒ x = y for all (x, y) ∈ X ×X ;
(ii) d(x, y) = d(y, x) for all (x, y) ∈ X ×X .

We show that any θ-metric d : X × X → [0,∞) satisfies the condition (iii-B) and (iii-C)
of Theorem 1.2. It is easy to check that the θ-metric d : X ×X → [0,∞) also satisfies the
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condition (iii-A) of Theorem 1.2. Let a ∈ X and {an}n∈N, {bn}n∈N are two sequences in X
such that d(an, a)→ 0 and d(an, bn)→ 0 as n→∞. We show that d(bn, a)→ 0 as n→∞.
Now (d(an, a), d(an, bn))→ (0, 0) as n→∞ in the standard norm on [0,∞)×[0,∞).As the
B-action θ is continuous at the point (0, 0), we get that θ(d(an, a), d(an, bn))→ θ(0, 0) = 0
as n→∞. Now from the definition of θ-metric space we have,

d(a, bn) ≤ θ(d(an, a), d(an, bn)) =⇒ d(a, bn)→ 0 as n→∞.
So the θ-metric d : X ×X → [0,∞) satisfies the condition (iii-B) of Theorem 1.2. Now we
check for condition (iii-C). Let a ∈ X and k > 0. Let b ∈ X such that d(a, b) ≥ k. As the
B-action θ is continuous at the point (0, 0), so for k > 0 there exists δ > 0 such that

θ(x, y) < k whenever (x, y) ∈ B
(

(0, 0), δ
)⋂(

[0,∞)× [0,∞)
)
.

Here B
(

(0, 0), δ
)

denotes the open ball centered at (0, 0) and radius δ in the standard

norm, i.e, B
(

(0, 0), δ
)

=
{

(x, y) ∈ R2 : ‖(x, y)‖ < δ
}
. Let c ∈ X. From the definition of

θ-metric space we have

d(a, b) ≤ θ(d(a, c), d(c, b)) =⇒ θ(d(a, c), d(c, b)) ≥ k =⇒

(d(a, c), d(c, b)) /∈ B
(

(0, 0), δ
)⋂(

[0,∞)× [0,∞)
)

=⇒

d2(a, c) + d2(c, b) ≥ δ2,

as (d(a, c), d(c, b)) ∈ [0,∞)× [0,∞), so, (d(a, c), d(c, b)) /∈ B
(

(0, 0), δ
)
.

So, either d(a, c) ≥ δ√
2

or d(c, b) ≥ δ√
2
. So we have d(a, c) + d(c, b) ≥ δ√

2
. This shows

that the θ-metric on X satisfies condition (iii-C) of Theorem 1.2. Thus, by the metrization
criterion due to Niemytski and Wilson, we can conclude that, the θ-metric space X is
metrizable. �

Open question. Can an explicit metric d be constructed with respect to which b-metric
spaces with coefficient K > 0 and, respectively θ-metric spaces are metrizable ?
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