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Conversions between generalized metric spaces and
standard metric spaces with applications in fixed point
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ALEXANDRU-DARIUS FILIP

ABSTRACT. In this paper we discuss similar problems posed by I. A. Rus in Fixed point theory in partial metric
spaces (Analele Univ. de Vest Timişoara, Mat.-Inform., 46 (2008), 149–160) and in Kasahara spaces (Sci. Math.
Jpn., 72 (2010), No. 1, 101–110). We start our considerations with an overview of generalized metric spaces
with R+-valued distance and of generalized contractions on such spaces. After that we give some examples
of conversions between generalized metric spaces and standard metric spaces with applications in fixed point
theory. Some possible applications to theoretical informatics are also considered.

1. INTRODUCTION

In [28], I. A. Rus presented three interesting open problems in the context of partial
metric spaces. Let (X, p) be a complete partial metric space and dsp : X × X → R+ be
the metric induced by the partial metric p, dsp(x, y) := 2p(x, y) − p(x, x) − p(y, y), for all
x, y ∈ X .

Problem 1. If f : (X, p)→ (X, p) is a generalized contraction, which conditions satisfies
f with respect to the metric dsp ?

Problem 2. State fixed point theorems for these new classes of operators on the metric
space (X, dsp).

Problem 3. Use the results of the above problems to give fixed point theorems in a
partial metric space.

Similar problems are also considered in the case of dislocated metric spaces.
Some answers to these problems can be found in [1], chapter 7. See also [2], [34].
In this paper we discuss these problems and give some applications. The terminology

and notations given in [28], [29] and [9] are followed.

2. SOME NOTIONS CONCERNING GENERALIZED METRIC SPACES

There is an impressive number of generalized metric spaces in the fixed point literature,
mostly due to the conditions satisfied by the generalized metric. A solution to unify the
terminology in the theory of generalized metric spaces was given in [28]. We recall the
main terminology and notations, with some additions.

By a generalized metric on a given nonempty set X , we understand a functional d :
X×X → R+ (also called distance functional) which satisfies some axioms. The following
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axioms appear in the definitions of several types of generalized metrics ( [1], [4], [7], [9],
[11], [16], [14], [19], [28], [31]):

(i) d(x, y) = 0 if and only if x = y;
(i1) d(x, x) = 0, for all x ∈ X ;
(i2) d(x, y) = 0 implies x = y;
(i3) d(x, y) = d(y, x) = 0 if and only if x = y;
(i4) d(x, y) = d(y, x) = 0 implies x = y;
(i5) d(x, x) = d(y, y) = d(x, y) if and only if x = y;
(i6) d(x, x) ≤ d(x, y), for all x, y ∈ X ;
(i7) d(y, y) ≤ d(x, y), for all x, y ∈ X ;
(ii) d(x, y) = d(y, x), for all x, y ∈ X ;
(ii1) d(x, y) ≤ cd(y, x), for all x, y ∈ X , with c > 0;
(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X ;
(iii1) d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ X ;
(iii2) d(x, y) ≤ max{d(x, z), d(z, y)}, for all x, y, z ∈ X ;
(iii3) for all ε > 0, d(x, z) ≤ ε, d(z, y) ≤ ε imply d(x, y) ≤ ε;
(iii4) d(x, y) ≤ b[d(x, z) + d(z, y)], for all x, y, z ∈ X , with b > 1;
(iii5) d(x, y) ≤ amax{d(x, z), d(z, y)}, for all x, y, z ∈ X , with a > 1;
(iii6) d(x, y) ≤ d(x, z) + d(z, y)− d(z, z), for all x, y, z ∈ X .

By definition, d is called:

� metric if d satisfies (i) + (ii) + (iii) or (i1) + (i4) + (ii) + (iii);
� pseudometric if d satisfies (i1) + (ii) + (iii);
� quasimetric (or halfmetric) if d satisfies (i1) + (i4) + (iii);
� semimetric if d satisfies (i) + (ii);
� symmetric if d satisfies (i2) + (ii);
� b-metric if d satisfies (i) + (ii) + (iii4);
� ultrametric if d satisfies (i) + (ii) + (iii2) or (i) + (ii) + (iii3);
� quasiultrametric if d satisfies (i) + (ii1) + (iii5);
� quasi-pseudo-ultrametric if d satisfies (i1) + (iii2);
� quasi-pseudometric (or premetric) if d satisfies (i1) + (iii);
� pseudo-ultrametric if d satisfies (i1) + (ii) + (iii2);
� partial metric if d satisfies (i5) + (i6) + (ii) + (iii6);
� dislocated metric (or d-metric) if d satisfies (i4) + (ii) + (iii);
� dislocated-quasimetric if d satisfies (i4) + (iii);
� dislocated-quasi-ultrametric if d satisfies (i4) + (iii2);
� dislocated-ultrametric if d satisfies (i4) + (ii) + (iii2).

If X is a nonempty set and d : X ×X → R+ is a generalized metric on X , then the pair
(X, d) is called generalized metric space. The generalized metric d induces a convergence

structure on X , denoted here by d→. Let {xn}n∈N be a sequence of elements in X . The
notions of convergent sequence and Cauchy sequence with respect to the generalized
metric d will be recalled in the sequel. Due to the large variety of generalized metrics,
we will consider several classes of generalized metrics, taking into account the symmetry
axiom (i.e., (ii)) and the zero self-distance axiom (i.e., (i), or (i1) & (i4)) of d.

Case 1. If d satisfies the symmetry axiom and d is a zero self-distance (e.g. standard
metric, pseudometric, semimetric, b-metric, ultrametric, pseudo-ultrametric) then the no-
tions of convergent sequence and Cauchy sequence are the same as in the standard metric
spaces, as follows:

xn
d→ x ∈ X ⇔ d(xn, x)→ 0 as n→∞.
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{xn}n∈N ⊂ X is called Cauchy sequence⇔ d(xn, xm)→ 0 as n,m→∞.
Case 2. If d satisfies the symmetry axiom and d is a nonzero self-distance (e.g. dislo-

cated metric, partial metric, symmetric, dislocated ultrametric), there exists different and
distinct notions regarding convergent sequences and Cauchy sequences. A notion of con-
vergent sequence is defined as in the Case 1. But there are also notions of convergent
sequence which derives from the axioms that are satisfied by the generalized metric d.
For example, in the case of partial metric spaces (X, p), we have

{xn}n∈N ⊂ X, xn
p→ x ∈ X ⇔ p(x, x) = lim

n→∞
p(x, xn) = lim

n,m→∞
p(xn, xm).

{xn}n∈N ⊂ X is a Cauchy sequence⇔ the sequence {p(xn, xm)}n,m∈N converges in (X, p).
Case 3. If d does not satisfy the symmetry axiom and d is a zero self-distance (such

as quasimetric, quasiultrametric, quasi-pseudo-ultrametric, quasi-pseudometric) then we
have the same notions of convergent sequence and Cauchy sequence as in the quasimetric
spaces. So, a sequence {xn}n∈N ⊂ X is called:
• forward-Cauchy if d(xn, xm)→ 0 as m ≥ n→∞;
• backward-Cauchy if d(xn, xm)→ 0 as n ≥ m→∞;
• forward convergent to x ∈ X if it is forward-Cauchy and d(xn, x)→ 0 as n→∞;
• backward convergent to x ∈ X if it is backward-Cauchy and d(x, xn)→ 0 as n→∞;
• Cauchy if it is forward-Cauchy and backward-Cauchy;
• convergent to x ∈ X if it is forward-convergent to x and backward convergent to x.

In generalized metric spaces (X, d), there are various order relations induced by d on X :

Example 2.1. Let (X, q) be a quasimetric space. Then
for all x, y ∈ X , x ≤q y⇔ q(x, y) = 0.

Example 2.2. Let (X, p) be a partial metric space. Then
for all x, y ∈ X , x ≤p y⇔ p(x, x) = p(x, y).

These order relations can be used in the fixed point theory in some generalized metric
spaces ([7], [14], [33]).

If f : X → X is an operator defined on a generalized metric space (X, d), there are
several generalized metric conditions which are usually imposed on f with respect to d.
Due to these conditions, the operator f is called ([16], [31], [9], [1], [21]):

(o1) contraction with constant α (or α-contraction) if there exists a constant α ∈ [0, 1) such
that d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X .

(o2) graphic contraction if there exists a constant α ∈ [0, 1) such that
d(f(x), f2(x)) ≤ αd(x, f(x)), for all x ∈ X .

(o3) Rakotch operator if there exists a decreasing function α : R+ → R+ such that α(t) <
1 for all t > 0 and d(f(x), f(y)) ≤ α(d(x, y))d(x, y), for all x, y ∈ X .

(o4) Caristi operator if there exists a functional ϕ : X → R+ such that
d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X .

(o5) ϕ-contraction if there exists a comparison function ϕ : R+ → R+ (i.e. ϕ is increasing
and ϕn(t)→ 0, as n→∞, for all t ∈ R+) such that
d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X .

(o6) Kannan operator if there exists a constant k ∈ [0, 12 ) such that
d(f(x), f(y)) ≤ k

[
d(x, f(x)) + d(y, f(y))

]
, for all x, y ∈ X .

(o7) C̆iric̆-Reich-Rus operator if there exist two constants a, b ∈ R+ with a+ 2b < 1 such
that d(f(x), f(y)) ≤ ad(x, y) + b

[
d(x, f(x)) + d(y, f(y))

]
, for all x, y ∈ X .

(o8) Chatterjea operator if there exists a constant c ∈ [0, 12 ) such that
d(f(x), f(y)) ≤ c

[
d(x, f(y)) + d(y, f(x))

]
, for all x, y ∈ X .
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(o9) Zamfirescu operator if there exist three constants a, b, c ∈ R+ with a < 1, b < 1
2 and

c < 1
2 such that at least one of the following conditions is true:

(z1) d(f(x), f(y)) ≤ ad(x, y) for all x, y ∈ X ;
(z2) d(f(x), f(y)) ≤ b

[
d(x, f(x)) + d(y, f(y))

]
for all x, y ∈ X ;

(z3) d(f(x), f(y)) ≤ c
[
d(x, f(y)) + d(y, f(x))

]
for all x, y ∈ X .

(o10) Hardy-Rogers operator if there exist three constants a, b, c ∈ R+ with a + 2b + 2c ∈
(0, 1) such that
d(f(x), f(y)) ≤ ad(x, y) + b

[
d(x, f(x)) + d(y, f(y))

]
+ c
[
d(x, f(y)) + d(y, f(x))

]
,

for all x, y ∈ X .
(o11) Berinde operator (or almost contraction) if there exist two constants δ ∈ [0, 1) and

L ≥ 0 such that d(f(x), f(y)) ≤ δd(x, y) + Ld(y, f(x)), for all x, y ∈ X .
By endowing a generalized metric space (X, d) with another distance functional ρ :

X × X → R+, we obtain, under certain conditions, some other mathematical structures,
such as Kasahara spaces, introduced by I. A. Rus in [29].

3. FROM A DISLOCATED METRIC SPACE TO A METRIC SPACE

The notion of dislocated metric was introduced by S.G. Matthews in [18] (see also [14]),
along with some other interesting results. Let us consider (X, ρ) be a dislocated metric
space and {xn}n∈N be a sequence in X . We recall that

xn
ρ→ x ∈ X ⇔ ρ(xn, x)→ 0 as n→∞.

{xn}n∈N is called Cauchy sequence in (X, ρ)⇔ ρ(xm, xn)→ 0 as m,n→∞.
A dislocated metric space (X, ρ) is called complete if and only if every Cauchy sequence

with elements in X is convergent in (X, ρ).
Any dislocated metric on a nonempty set X generates a standard metric on X . Some

important results regarding this aspect are given below ([14], [13]).

Proposition 3.1. Let (X, ρ) be a dislocated metric space. Then ρ induces on X the distance
functional:

(3.1) dρ : X ×X → R+, dρ(x, y) :=

{
ρ(x, y), x 6= y

0, x = y

The following assertions hold:
(1) dρ is a metric on X ;
(2) if {xn}n∈N ⊂ X is convergent in (X, ρ) then {xn}n∈N is convergent in (X, dρ);
(3) if {xn}n∈N ⊂ X is a Cauchy sequence in (X, ρ) then {xn}n∈N is Cauchy in (X, dρ);
(4) (X, ρ) is complete if and only if (X, dρ) is complete;
(5) if f : (X, ρ) → (X, ρ) is an α-contraction then f : (X, dρ) → (X, dρ) is also an α-

contraction.

From the fixed point theory point of view it is important to remark that, in general, a
metric condition with respect to the distance ρ implies the same metric condition with re-
spect to the metric dρ. For example, ρ(f(x), f(y)) ≤ k[ρ(x, f(x))+ρ(y, f(y))], for all x, y ∈
X, implies that dρ(f(x), f(y)) ≤ k[dρ(x, f(x)) + dρ(y, f(y))], for all x, y ∈ X. In this way
we have at least the set-theoretical conclusions which appear in the fixed point theorems:
Ff 6= ∅, Ff = {x∗}, Ff = Ffn = {x∗}, for all n ∈ N∗.

In a dislocated metric space (X, ρ), we have the order relation induced by ρ on X :
for all x, y ∈ X , x ≤ρ y⇔ ρ(x, x) = ρ(x, y).

On the other hand, we have the order relation induced by the metric dρ on X :
for all x, y ∈ X , x ≤dρ y⇔ dρ(x, y) = 0⇔ x = y.
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So, the order relation, ≤ρ, induced by the dislocated metric ρ, cannot be wielded by the
metric dρ.
In the context of metric spaces, we recall the following result, given by I. A. Rus in [30]:

Theorem 3.1 (Saturated principle of contractions in metric spaces). Let (X, d) be a complete
metric space and f : X → X be an α-contraction. Then we have:

(1) There exists x∗ ∈ X such that Ffn = {x∗}, for all n ∈ N.
(2) For all x ∈ X , fn(x)→ x∗ as n→∞.
(3) d(x, x∗) ≤ ψ(d(x, f(x))), for all x ∈ X , where ψ(t) = t

1−α , t ≥ 0.
(4) if {yn}n∈N ⊂ X with d(yn, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞.
(5) if {yn}n∈N ⊂ X with d(yn+1, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞.
(6) If Y ⊂ X is a closed subset such that f(Y ) ⊂ Y , then x∗ ∈ Y . Moreover, if in addition

Y is bounded, then
⋂
n∈N

fn(Y ) = {x∗}.

Taking into account these results, we obtain the main result of this section: the saturated
principle of contractions in a metric space generated by a dislocated metric.

Theorem 3.2. Let (X, ρ) be a complete dislocated metric space and f : X → X be an α-
contraction with respect to ρ. Then we have:

(1) There exists x∗ ∈ X such that Ffn = {x∗}, for all n ∈ N and ρ(x∗, x∗) = 0.
(2) For all x ∈ X , fn(x) ρ→ x∗ as n→∞.
(3) ρ(x, x∗) ≤ ψ(ρ(x, f(x))), for all x ∈ X , where ψ(t) = t

1−α , t ≥ 0.
(4) if {yn}n∈N ⊂ X with ρ(yn, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞.
(5) if {yn}n∈N ⊂ X with ρ(yn+1, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞.

Proof. Since ρ is a dislocated metric onX , ρ induces the metric dρ onX , defined as in (3.1).
We have the following conclusions:

(1). By Proposition 3.1, (X, dρ) is a complete metric space and f : (X, dρ) → (X, dρ) is
α-contraction, so, (1) follows from Theorem 3.1.

(2). By Theorem 3.1, fn(x)
dρ→ x∗ as n → ∞, with ρ(x∗, x∗) = 0. This implies that,

fn(x)
ρ→ x∗ as n→∞.

(3). By Theorem 3.1 we have that
dρ(x, x

∗) ≤ 1
1−αdρ(x, f(x)), for all x ∈ X.

Since ρ(x∗, x∗) = 0, we have dρ(x, x∗) = ρ(x, x∗). So,
ρ(x, x∗) ≤ 1

1−αdρ(x, f(x)) ≤
1

1−αρ(x, f(x)), for all x ∈ X.
(4). Let {yn}n∈N be a sequence in X with ρ(yn, f(yn)) → 0 as n → ∞. By Proposition

3.1, item (2), dρ(yn, f(yn))→ 0 as n→∞. By Theorem 3.1, item (3), we have
dρ(yn, x

∗) ≤ 1
1−αdρ(yn, f(yn))→ 0 as n→∞.

This implies that yn
dρ→ x∗ as n→∞ and so, yn

ρ→ x∗, since ρ(x∗, x∗) = 0.
(5). Let {yn}n∈N be a sequence in X with ρ(yn+1, f(yn)) → 0 as n → ∞. Then

dρ(yn+1, f(yn)) → 0 as n → ∞. It follows that yn
dρ→ x∗ as n → ∞. Since ρ(x∗, x∗) = 0 we

get that yn
ρ→ x∗ as n→∞. �

In a similar way as above, we can extend to dislocated metric spaces the saturated fixed
point results given in [30], [27], [23], [32] and [5].

4. FROM A PARTIAL METRIC SPACE TO A METRIC SPACE

A relevant generic example of dislocated metric space is the partial metric space, notion
that was introduced by S. G. Matthews in [19] (see also [2], [7], [14], [13], [17], [22]). So,
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each result in the dislocated metric spaces is a result in the partial metric spaces. For
example, if (X, p) is a partial metric space, then the functional dp : X ×X → R+ defined
by

dp(x, y) :=

{
p(x, y), if x 6= y

0, if x = y

where x, y ∈ X , is a metric on X .
A partial metric induces another important metric on X , dsp : X ×X → R, defined by

dsp(x, y) := 2p(x, y)− p(x, x)− p(y, y), for all x, y ∈ X.
In what follows we shall call (0)-convergence the convergence induced on X by p as a

dislocated metric, i.e.,
xn

(0)→ x as n→∞ ⇔ p(xn, x)→ 0 as n→∞.
The specificity of a partial metric space (X, p) is defined by the metric dsp. The conver-

gence induced on X by dsp will be denoted here by
p→, i.e.,

xn
p→ x as n→∞ ⇔ xn

dsp→ x as n→∞.
If (X, p) is a partial metric space, then we have on X three types of convergence of the

sequences:
(0)→, dp→ and

p→ .

We remark that the convergence,
(0)→, in general, is not an F -convergence and

dp→,
p→ are

F -convergences.
Now, let f : X → X be an operator defined on a partial metric space (X, p). The following
question arises: if f is an α-contraction with respect to p, does it remain an α-contraction
with respect to dsp and dp ? Some answers are given in the sequel.

Proposition 4.2. Let (X, p) be a partial metric space. If f : X → X is an α-contraction then
f : (X, dp)→ (X, dp) is also an α-contraction.

Proposition 4.3 (I. A. Rus [28]). Let (X, p) be a partial metric space. If f : X → X is
an α-contraction then dsp(f(x), f(y)) ≤ αdsp(x, y) + αp(x, x) − p(f(x), f(x)) + αp(y, y) −
p(f(y), f(y)), for all x, y ∈ X .

In order to have a relation for f only with respect to the metric dsp, we will use the
notion of Schröder’s pair defined by I. A. Rus in [28]:

Definition 4.1. Let X be a nonempty set, f : X → X be an operator and ψ : X → R+

be a functional. The pair (f, ψ) is called Schröder’s pair if there exists α ∈ (0, 1) such that
ψ(f(x)) ≤ αψ(x), for all x ∈ X .

Lemma 4.1. If (f, ψ) is a Schröder’s pair, then Ff ⊂ Zψ := {x ∈ X | ψ(x) = 0}.

Lemma 4.2. If x0 ∈ Zψ then fn(x0) ∈ Zψ , for all n ∈ N∗.

Theorem 4.3. Let (X, d) be a complete metric space, α ∈ (0, 1), ψ : X → R+ and f : X → X
be an operator. We suppose that:

(i) (f, ψ) is a Schröder’s pair;
(ii) if fn(x)→ x∗, then ψ(fn(x))→ ψ(x∗);
(iii) d(f(x), f(y)) ≤ αd(x, y) + αψ(x)− ψ(f(x)) + αψ(y)− ψ(f(y)), for all x, y ∈ X .

Then:
(1) Ff = {x∗f};
(2) fn(x)→ x∗f as n→∞;

(3) d(fn(x), x∗f ) ≤ αn

1−αd(x, f(x)) +
nαn+(1−n)αn+1

(1−α)2 ψ(x), for all x ∈ X ;
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(4) d(x, x∗f ) ≤ 1
1−αd(x, f(x)) +

α
(1−α)2ψ(x), for all x ∈ X .

We consider now the case of Kannan operators.

Proposition 4.4. Let (X, p) be a partial metric space. If f : X → X is a Kannan operator, then
dsp(f(x), f(y)) ≤ k[dsp(x, f(x)) + dsp(y, f(y))] + kp(x, x) + (k − 1)p(f(x), f(x)) + kp(y, y) +
(k − 1)p(f(y), f(y)), for all x, y ∈ X .

Proof. The proof follows from the definition of the metric dsp. �

Theorem 4.4. Let (X, d) be a complete metric space, k ∈ (0, 12 ), ψ : X → R+ be a functional
and f : X → X be an operator. We suppose that:

(i) (f, ψ) is a Schröder’s pair, i.e. ψ(f(x)) ≤ kψ(x), for all x ∈ X ;
(ii) if fn(x)→ x∗, then ψ(fn(x))→ ψ(x∗);
(iii) d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))] + kψ(x) + (k − 1)ψ(f(x)) + kψ(y) + (k −

1)ψ(f(y)), for all x, y ∈ X .
Then:

(1) Ff = {x∗f};
(2) fn(x)→ x∗f as n→∞;

(3) d(fn(x), x∗f ) ≤
(

k
1−k

)n 1−k
1−2kd(x, f(x)) +

(
k

1−k
)n−1 (1+k)2

1−2k ψ(x), for all x ∈ X ;

(4) d(x, x∗f ) ≤ 1−k
1−2kd(x, f(x)) +

(1+k)2

1−2k ψ(x), for all x ∈ X .

Proof. (1)+(2)+(3). The assumption (iii) and the Lemma 4.1 assures that Card(Ff ) ≤ 1.
From the estimation d(f j(x), f j+1(x)) ≤

(
k

1−k
)j
d(x, f(x)) +

(
k

1−k
)j (1+k)2

k ψ(x), for all x ∈
X and j ∈ N, we obtain

d(fn(x), fn+m(x)) ≤
n+m−1∑
j=n

d(f j(x), f j+1(x)) ≤ ζnd(x, f(x)) + ξnψ(x)

where ζn :=
(

k
1−k

)n 1−k
1−2k → 0 as n → ∞ and ξn :=

(
k

1−k
)n−1 (1+k)2

1−2k → 0 as n → ∞.
From the completeness of the metric d, we get that the sequence (fn(x))n∈N is convergent
in (X, d). Let x∗ = lim

n→∞
fn(x). By letting m → ∞ we get (3). On the other hand, we

have d(f(x∗), x∗) ≤ d(f(x∗), fn(x))+d(fn(x), x∗)≤ k[d(x∗, f(x∗)) + d(fn−1(x), fn(x))] +
d(fn(x), x∗) and by letting n→∞, we get (1−k)d(x∗, f(x∗)) ≤ 0. Hence d(x∗, f(x∗)) = 0,
and so, Ff = {x∗}.

(4). d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ 1−k
1−2kd(x, f(x)) +

(1+k)2

1−2k ψ(x) for all x ∈ X . �

Now, let us consider the case of a Caristi operator on a partial metric space (X, p) and the
corresponding operator on (X, dsp).

Let f : (X, p) → (X, p) be a ϕ-Caristi operator, i.e., ϕ : X → R+ is an arbitrary functio-
nal and p(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X .

If ϕ is lower semi-continuous, then the ϕ-Caristi operator f is called a ϕ-Caristi-Kirk
operator and if f is a ϕ-Caristi operator with f continuous with respect to the metric dsp,
then f is called a ϕ-Caristi-Browder operator (see [6]).

In this case we have:

Theorem 4.5. Let (X, p) be a complete partial metric space and f : X → X be a ϕ-Caristi-
Browder operator. If 2ϕ(x) ≥ p(x, x), for all x ∈ X , then Ff 6= ∅ and f : (X, dsp)→ (X, dsp) is a
weakly Picard operator.

Proof. We have dsp(x, f(x)) = 2p(x, f(x)) − p(x, x) − p(f(x), f(x)) ≤ 2ϕ(x) − p(x, x) −
[2ϕ(f(x)) + p(f(x), f(x))− 2p(f(x), f(x))] ≤ 2ϕ(x)− p(x, x)− [2ϕ(f(x))− p(f(x), f(x))],
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for all x ∈ X . This implies that f : (X, dsp) → (X, dsp) is a ψ-Caristi-Browder operator,
with ψ : X → R+, ψ(x) = 2ϕ(x) − p(x, x). From the Caristi-Browder theorem (see [6]) in

(X, dsp), we have that Ff 6= ∅ and f is a weakly Picard operator with respect to
dsp→. �

5. FROM A DISLOCATED METRIC SPACE TO A KASAHARA SPACE

The notions of Kasahara space, generalized Kasahara space and large Kasahara space
were introduced by I. A. Rus in [29]. More considerations on these spaces can be found in
[8]-[10]. In this paper, by a Kasahara space we understand a mixed structure, denoted by
(X,

F→, ρ), in which the following conditions hold:

(j) (X,
F→) is a Fréchet L-space;

(jj) ρ : X ×X → R+ is a dislocated metric;
(jjj) if {yn}n∈N is a Cauchy sequence in (X, ρ) then {yn}n∈N is convergent in (X,

F→).

In what follows, we present a result for the following problem, given by I. A. Rus in
[29]: To construct a common fixed point theory on a Kasahara space.

Theorem 5.6. Let (X, F→, ρ) be a Kasahara space and f, g : X → X be two operators.
We suppose that:
(i) f, g : (X,

F→)→ (X,
F→) are continuous;

(ii) there exists l ∈ (0, 12 ) such that ρ(f(x), g(y)) ≤ l[ρ(x, f(x)) + ρ(y, g(y))], for all x, y ∈ X .
In these conditions we have:
(1) Ff ∩ Fg = {x∗} and ρ(x∗, x∗) = 0;
(2) for each x0 ∈ X , the sequence {xn}n∈N defined by x2n = (g ◦ f)n(x0), x2n+1 = f(x2n),

n ∈ N, converges in (X,
F→) to x∗;

(3) for each y0 ∈ X , the sequence {yn}n∈N defined by y2n = (f ◦ g)n(y0), y2n+1 = g(y2n),
n ∈ N, converges in (X,

F→) to x∗;
(4) the operators f and g are graphic contractions;
(5) ρ(f(x), x∗) ≤ l

1−lρ(x, x
∗), for all x ∈ X and ρ(g(x), x∗) ≤ l

1−lρ(x, x
∗), for all x ∈ X .

Proof. (1)+(2)+(3). First we remark that if x0 ∈ Ff ∩Fg then by the assumption (ii) we get
ρ(x0, x0) = 0. Also, if x0, x1 ∈ Ff ∩Fg we have that ρ(x0, x1) ≤ l[ρ(x0, x0)+ρ(x1, x1)] = 0.
Since ρ is a dislocated metric, we have that x0 = x1. So, Card(Ff ∩ Fg) ≤ 1.

For x0 ∈ X , let {xn}n∈N be the sequence in (2). From (ii) we get ρ(x1, x2) ≤ l
1−lρ(x0, x1)

and by induction, ρ(xn, xn+1) ≤ ( l
1−l )

nρ(x0, x1), for all n ∈ N∗. From this, it follows

that {xn}n∈N is a Cauchy sequence. Since (X,
F→, ρ) is a Kasahara space, {xn}n∈N is a

convergent sequence in (X,
F→). Let xn

F→ x∗ as n → ∞. From the continuity of f in
(X,

F→) and the relation x2n+1 = f(x2n), we have that x∗ ∈ Ff . Also, from the continuity
of g in (X,

F→) and the relation x2n+2 = g(x2n+1), we have that x∗ ∈ Fg .
So, we have (1) and (2). In a similar way, we prove (3).
(4). Let us prove, for example, that f is a graphic contraction. We have that
ρ(f2(x), f(x)) ≤ ρ(f2(x), g(x∗)) + ρ(g(x∗), f(x)) ≤ l[ρ(f2(x), f(x)) + ρ(x, f(x))],

for all x ∈ X . This implies that ρ(f2(x), f(x)) ≤ l
1−lρ(x, f(x)), for all x ∈ X , i.e., f is a

graphic contraction.
(5). We have ρ(f(x), x∗) = ρ(f(x), g(x∗)) ≤ lρ(x, f(x)) ≤ l[ρ(x, x∗) + ρ(x∗, f(x))], for

all x ∈ X . Hence, ρ(f(x), x∗) ≤ l
1−lρ(x, x

∗), for all x ∈ X . In a similar way, we get
ρ(g(x), x∗) ≤ l

1−lρ(x, x
∗), for all x ∈ X . �
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There exists in the literature, large classes of metric conditions imposed on a pair of
operators f, g : X → X (see [26] and [24]). The problem is to find those for which we can
obtain a similar result as Theorem 5.6.

6. APPLICATIONS TO THEORETICAL INFORMATICS

Generalized metric spaces are used in the domain of Theoretical Informatics. In many
cases, the solution of a problem is being approximated in a recursive process, made by
a computational program, designed to solve the problem. This process consist of several
steps, each step giving a better approximation of solution than the previous one. The
final step of the recursive process, also called the limit-step gives the best approximation
of solution.

The notion of order in generalized metric spaces is also applied. It is seen as the amount
of information brought by each step of computation in a recursive process. Each step
brings a larger amount of information regarding the solution approximation than the pre-
cedent step.

Fixed point theorems in generalized metric spaces are used in the study of algorithmic
asymptotic complexity, especially in the case when there are more algorithms that can
solve a specific problem. It is of great interest to determine the one which uses the least
quantity of resources, especially the running time, in order to find the problem solution.

Several applications are present also in the theory of logic programming and artificial
intelligence. One of the most difficult problem in these fields is to find a precise meaning
of a program, in order to obtain its specification in an independent way, without taking
into account the context or the procedural considerations.

More aspects regarding the applications of fixed point results and generalized metric
spaces in the theoretical informatics domain can be found in [14], [3], [7], [12], [17], [25],
[33], [15], [20].
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