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Approximation of solutions of split equality fixed point
problems with applications

ABUBAKAR ADAMU and AISHA A. ADAM

ABSTRACT. In this paper, we introduce and study an inertial algorithm for approximating solutions of split
equality fixed point problem (SEFPP), involving quasi-phi-nonexpansive mappings in uniformly smooth and
2-uniformly convex real Banach spaces and establish a strong convergence theorem. We give applications of
our result to split equality problem (SEP), split equality variational inclusion problem (SEVIP) and split equality
equilibrium problem (SEEP). Our results extend, generalize and unify several recent inertial-type algorithms
for approximating solutions of SEP and SEVIP. Moreover, to the best of our knowledge, our propose method
which does not require any compactness type assumption on the operators is the first inertial algorithm for
approximating solutions of SEFPP, SEP, SEVIP and SEEP in Banach spaces.

1. INTRODUCTION

Let A : R™ — R” be a bounded linear map with adjoint A*. In 1994, Censor and Elfving
[11] introduced the following problem:

(1.1) find z* € C Cc R" suchthat Az* € @Q C R™

Problem (1.1) is the so-called split feasibility problem (SFP) which was later used for mod-
eling inverse problems arising from phase retrievals and in medical image reconstruction
see, e.g., [24].

Remark 1.1. Observe that a solution of the SFP solves the fixed point equation
(1.2) T = PC(I —yA (I — PQ)A)x, x € C,

where P¢ and Py are metric projections onto C' and @, respectively, v > 0.

In 2004, Byrne [8] introduce a C(Q iterative algorithm to solve (1.2). His algorithm gener-
ates a sequence {z, } by

Tpil = PC(I —yA*(I - PQ)A):E", n>1,
where v € (0, 3) with A being the spectral radius of the operator A* A.

Extensions and generalizations of the SFP from R to infinite dimensional real Hilbert
spaces has been obtained by several authors (see, e.g., [26, 29] ).

In 2011, Moudafi [29] introduced a generalization of the SFP (1.1). He introduced and
studied the following problem:

(1.3) find z* € C, y* € @, such that Az* = By*,

where H,, H, and Hj are real Hilbert spaces, C' and () be nonempty closed and convex
subsets of H; and H,, respectively and A : H; — Hs and B : Hy — Hj are bounded
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linear maps. Observe that if B = I (the identity map on H5) and H3 = Hj, then problem
(1.3) reduces to problem (1.1). Problem (1.3) is the so-called split equality problem (SEP).
Interest in the study of the SEP stems from its usefulness in applications. For example, in
decision sciences, the setting of (1.3) allows one consider agents who interplay only via
some components of their decision variables (interested readers may see [5] for more on
how it works). In intensity-modulated radiation therapy (IMRT), the setting of (1.3) could
serve as a model that amounts to envisage a weak coupling between the vector of doses
absorbed in all voxels and that of the radiation intensity (interested readers may see [10]
for more on how it works).

We shall denote the solution set of problem (1.3) by
'={ze€C, yeQ; Az = By}.

Thus, (z,y) solves (1.3) means that there exists « € C, y € @ such that Az — By = 0. This
motivates the following minimization problem:
min 1||Aa: — Bz
z€C, yeQ 2
Motivated by these applications of problem (1.3), Moudafi [29] introduced the following
alternating C'() algorithm for solving problem (1.3):

(1.4) Tnt1 = Po(xn — mA*(Az, — Byn));
Yn+1 = PQ(yn + /BTLB* (Axn+1 - Byn))

He proved weak convergence of the sequence {(x,,y,)} generated by (1.4) to a solution
of (1.3).

Observe that setting B = I and 3, = 1, the second equality in algorithm (1.4) reduces to
Yn+1 = Pg(Ax,41) and thus, the first equality gives

Tn+1 = Po (xn — A" (Az, — PQ(Axn))) = P (mn — A (I — PQ)A(xn)),
which is exactly the algorithm of Bryrne [8].

Remark 1.2. Setting C' = F(T) and Q = F(S), which are the fixed point sets of some
nonexpansive type mappings, problem (1.3) reduces to the so-called split equality fixed
point problem (SEFPP). That is,

(1.5) find z* € F(T), y* € F(S) suchthat Az* = By".

This special case of the SEP has been studied by numerous authors in Hilbert spaces
and more general Banach spaces (see, for example, [19, 22, 32, 36, 37] and the references
therein).

In 2018, Chidume et al. [14] introduced and studied an iterative algorithm for approxi-
mating a solution of the SEFPP (1.5) in certain Banach spaces. They proved weak conver-
gence of the sequence generated by their algorithm and established strong convergence
under semi-compactness assumption on the operators.

To dispense with the semi-compactness restriction in the theorem of Chidume et al.
[14], Chidume et al. [15] introduced a CQ algorithm and proved the following strong
convergence theorem:

Theorem 1.1. Let Ey and Ey be 2-uniformly convex and smooth real Banach spaces with dual
spaces Ef and E%, respectively, and let Fs be a real Banach space with dual space E. Let T :
Ey\ — Eyand S : Eo — E, be closed quasi-¢-nonexpansive maps with nonempty fixed point sets,
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F(T) and F(S), respectively. Let A : Ey — E3and B : E5 — FEs be bounded linear maps with
adjoints A* and B*, respectively. Let {(x,,, yn)} be a sequence in Ey x E5 generated by:

1 € By, y1 € Bp, Cy = Ey, Q1 = Ey, e, € Jg,(Ax,, — Byy),

Uy = ngl(JElxn —yA*ep), zn = ngl(aJElxn + (1 —a)Jg, Tuy,),
Up = Jbizl(JEQyn +vyB*ey), wy, = Jbizl(aJEQyn + (1 —a)Jg,Sv,),
Cri1={ve€Ch:ov,2,) < (v, )},

Qni1=1{2 € Qn : d(z,wn) < O(2,yn)}

Tny1 = UHe, 71, Yo =g, 510 > 1

(1.6)

Suppose Q = {(z,y) € F(T) x F(S) : Az = By} is nonempty. Then {(z,,yn)} converges
strongly to some point (z*,y*) € Q.

An inertial-type algorithm was first introduced and studied by Polyak [31], as an accel-
eration process in solving smooth convex minimization problems. This algorithm is a
two step iterative method in which the next iterate is obtained using the previous two it-
erates. Numerical experiments have shown that an algorithm with inertial term requires
less number of iteration than its corresponding non-inertial version. Consequently, a lot
of research effort is now being put in improving existing algorithms by using inertial ex-
trapolation (see, e.g., [4, 6,7, 9, 28, 20, 31] and the references contained in them).

In 2017, Li et al. [27] introduced and studied an inertial-type algorithm for approximat-
ing solutions of SEP in real Hilbert spaces. They proved the following theorem:

Theorem 1.2. Let Hy, Hy and Hg be real Hilbert spaces and let A : Hy — Hgand B : Hy — Hg
be bounded linear maps with adjoints A* and B*, respectively. Let C = {x € Hy : ¢(z) < 0},
Q ={y € Hy : qly) < 0}, where ¢ : Hi — Roand q : H — R are convex and lower
semicontinuous functions. Let xo,x1 € Hy and yo,y1 € Ho and define the sequence {(x,,, yn)} C
H1 X H2 by

Up = Ty, + en(xn - xn—l)y

Un = Yn + en(yn - yn—1)7

Cp={x € Hy:clzy) + (en,x—2xp) <0 &, € dc(xy)},
Qn={y € Ha: q(y) + (M, y = ¥n) <0 1 € Iq(yn)},
Tn+1 = PCn (un - PYnA* (Aun - an))7

Yn+1 = PQn (Un + VnB* (Aun - an))a

(1.7)

where 0, and -y, satisfy some appropriate conditions. Then the sequence {(xy,yn)} converges
weakly to a solution of (1.3).

Another interesting case of the SEP is the split equality variational inclusion problem
(SEVIP) introduced in real Hilbert spaces by Censor et al. [12] and extended to Banach
spaces by Chang et al. [13]. The setting in Banach spaces is the following: Let £, and E,
be real Banach spaces with dual spaces, E{ and E3, respectively, and E5 be a real Banach
space. Let M : By — 251" and N : Ey — 2P2" be maximal monotone operators. Let
A:Ey — Esand B : E; — Ej3 be bounded linear operators. The SEVIP is the problem of
finding

x € M~1(0), y € N7*(0) such that Az = By,

where M~1(0) = {x € E; : 0 € Mz} and N 1(0) = {z € Ey : 0 € Nx} are called the set
of zeros of M and N, respectively.
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Recently, in 2020, Chuasuk et al. [21] introduced and studied an inertial algorithm for
approximating solutions of SEVIP in real Hilbert spaces. They proved weak convergence
of the sequence generated by their algorithm to a solution of the SEVIP.

Our Contribution.

e We propose an iterative method with inertial extrapolation step for solving SEFPP
in real Banach spaces more general than real Hilbert spaces, and use the result to
approximate solutions of split equality equilibrium problem (SEEP), split equality
variational inclusion problem (SEVIP) and split equality problem (SEP).

e Our propose method does no require the assumption that 3 0,, ||z, —z,—1]| < oo or
its alternatives imposed on 6,, in many inertial-type algorithms (see, e.g., [3, 4, 27]).

o Our propose method extends and generalizes the methods of of Li et al. [27]
and Chuasuk et al. [21] to give inertial algorithms for approximating solutions of
SEFPP, SEP, SEVIP and SEEP in real Banach spaces more general than real Hilbert
spaces. Furthermore, unlike in [27] and [21] where weak convergence theorems
were proved, we prove strong convergence theorems in the more general setting
considered here.

2. PRELIMINARIES

Let F be a real normed space. The normalized duality map J from E to 27" is defined

by
Jr:={z* € E* : (z,2") = ||z||* = ||z*|]?, V= € E}.

Remark 2.3. It is well-known that if £ is smooth, then J is single-valued and if E is
strictly convex, J is one-to-one, and J is surjective if F is reflexive. Furthermore, if E is
uniformly smooth and uniformly convex, then the dual space E* is also uniformly smooth
and uniformly convex and the normalized duality map J and its inverse, J !, are both
uniformly continuous on bounded sets.

Let E be a smooth real Banach space and ¢ : £ x E — R be a mapping defined by,
28) o, y) = ll* = 2z, Jy) + ly|*, Vao.y € E,

where J is the normalized duality mapping. This function was introduced by Alber [1]
and has been studied extensively by many authors (see, e.g., [2, 17, 18, 25]). It is easy
to see from the definition of ¢ that, in a real Hilbert space H, equation (2.8) reduces to
¢(z,y) = |z —yl*, Yo,y € H.

Furthermore, given z,y € E, the function ¢ has the following properties:

29 (lzll = llylh? < ¢, y) < Ul + Iyl
(2.10) ¢z, y) < |lzlll|Jz = Jyll + [yl = yll.

Define a mapping V : £ x E* — Rby
Ve, o) = [lz)* = 2(z,2*) + ||l=*]|*.

It is easy to see that
V(z,z*) = ¢(zx, ] 'a*),Vo € B, 2" € E*.

Definition 2.1. Let E be a smooth, strictly convex and reflexive real Banach space and
let C' be a nonempty closed and convex subset of E. The map Il¢ : E — C defined by
z = Ilg(z) € C such that ¢(Z,z) = inf,cc ¢(y, z) is called the generalized projection of E
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onto C. Clearly, in a real Hilbert space H, the generalized projection Il coincides with
the metric projection Pc from H onto C.

Definition 2.2. Let F; and E; be two reflexive, strictly convex and smooth real Banach
spaces. The collection of mappings A : E; — E5 that are linear and continuous is a
normed linear space with norm defined by [|A| = sup, < [[Az|. The dual operator
A* : E5 — Ef defined by (A*y*,x) = (y*, Az),Vx € Ey, y* € Ej is called the adjoint
operator of A. The adjoint operator A* has the property |A*|| = || A]||.

Definition 2.3. Let C' be a nonempty closed and convex subset of a real Banach space
Eandlet T : C — C be any mapping. Then: T is said to be quasi-¢-nonexpansive if
FT)={zeC:Tx =z} #0and

o(x, Ty) < d(x,y) Vo e F(T), y € C.

Lemma 2.1 ([25]). Let E be a uniformly convex and uniformly smooth real Banach space and
{zn}, {yn} be sequences in E such that either {x,} or {y,} is bounded. If lim ¢(z,,yn) =0,
n—oo

then, lim ||z, — yn|| = 0.
n—oo

Remark 2.4. Using inequality (2.10), it is easy to see that the converse of Lemma 2.1 is
also true whenever {z,, } and {y, } are both bounded.

Lemma 2.2 ([2]). Let E be a reflexive, strictly convex and smooth real Banach Space with dual
E*. Then

Ve, o*) + 2(J o —z,y*) < V(z,2* +y*), Ve € E, z*,y* € E*.
Lemma 2.3 ([34]). Let E be 2-uniformly convex and smooth real Banach space. Then, J~! is
L_Lipschitzian from E* to E, i.e., for all u,v € E*, we have that

1
|J " — J || < =|lu—v]|, for some ¢ > 0.
c

Lemma 2.4 ([1]). Let C be a nonempty closed and convex subset of a reflexive, strictly convex
and smooth Banach space E. Then

d(u, ey) + o(Iley,y) < d(u,y), Yue C, y € E.

Lemma 2.5 ([33]). Let C be a nonempty closed and convex subset of a reflexive, strictly convex
and smooth Banach space E, A : E — 2E1" be a maximal monotone operator with ATL(0) # 0,
then for any x € E,y € A~(0) and r > 0 we have

Oy, Qr'w) + $(Qr'z, ) < 6(y, ),
where Q7 : E — E is defined by Qx := (J +rA)~1Jx.

3. MAIN RESULTS

We present in this section the main results of this paper.

3.1. Strong convergence theorem.

Theorem 3.3. Let Ey and E, be uniformly smooth and 2-uniformly convex real Banach spaces
and Es be a uniformly smooth real Banach space. Let A : By — Es and B : Ey — Es (such that
A, B # 0) be bounded linear operators with adjoints A* and B*, respectively. Let T : By — E
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and S : Ea — FEs be closed quasi-¢-nonexpansive mappings. Setting I' = {(z,y) € F(T) x
F(S) : Ax = By} and assuming I # (. Let {(x,, yn)} be a sequence generated by

xo, 21 € E1, yo,11 € Ea, C1 = Ey, Q1 = Es, e, = Jg,(Aw, — Bty);

Wy = Ty + an(Ty, — Tn_1), Uy = ngl(JElwn —yA%en);

Ty = ngl(anJElun + (1 —an)Jp, Tup);

tn = Yn + n(Yn = Yn—1), vn = J g, (JEytn +¥B"eyn);

P— JE;(aHJEzvn + (1 —an)JE,Svn);

Cnt1={u € Cyp: d(u, 1) < d(u, wn)};

Qni+1={v € Qn: d(v,2,) < P(v,tn) };

=1I =TI n > 1.
n+1 n —
Tn41 Cn+121y Yn+1 Qn1Y1; M

(3.11)

where 0 < a, <1, €(0,1)0 <y < W, ¢ = min{cy, co} where ¢, co are constants as
in Lemma 2.3. Then {(x,,, y,)} converges to some point (x*,y*) in I.

Proof. We divide the proof into 4 steps.

Step 1. We show that C,, and @, are closed and convex for any n > 1.
Since Cy = Fy, Q1 = Es, C; and @ are closed and convex.
Assume C,, and @), are closed and convex for some n > 1. Since for any (u,v) € Cy, X @y,

(u,rn) < G(u, wn) < 2(u, Jw, — Jrp) < HwnH2 - ||7"n||2
and
(v, 2n) < P(v,tn) & 2(v, Jtn, — J2p) < th||2 - ||ZnH2v
its easy to deduce that C),;1 and Q1 are closed and convex. Therefore, C,, and @,, are
closed and convex for any n > 1.

Step 2. We prove thatI' C C), x @, forany n > 1. Let K; := C; x @1 and

Kn+1 = {(U,”U) € C, x Qn : ¢('U,, Tn) + ¢(Ua Zn) < ¢(uawn) + ¢(Uatn)}'
Then, by construction K,, C C,, x Q.

Claim. I' C K,,, forany n > 1. Clearly, I' C C; x Q1. Assume I' C K, for some n > 1. Let
(x,y) € T, then

¢((£, Tn) = Qb(xa ngl(anJElun + (1 - an)JElTun))
=V(z,anJg un + (1 — an)Jg, Tuy)

(3.12) < anV(z, Jg,un) + (1 — an)V(x, Jg, Tuy,)
= an@(, up) + (1 — an)o(z, Tuy)
< oz, un).

By Lemma 2.2 we get

o(x,up) = Pz, JE}(JE1 wy, — YA Jg,(Aw, — Btn))
=V(z, Jp,w, — yA* Jg,(Aw, — Btn))
<V(x,Jg,wn) — 27<J511(JE1wn —vA%e,) —x,A%ey)
= ¢(z,wy,) — 2v(Au, — Ax, e,).

(3.13)

Thus,
(3.14) d(x,7n) < Pz, wn) — 27(Au, — Az, €5).
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Using a similar argument, we obtain that

(3.15) ¢y, 2n) < ¢y, tn) — 29(By — Bun, en).
Adding inequalities (3.14) and (3.15) and using the fact that Az = By, we get
(3.16) (@, m0) + By, 20) < d(@,wn) + Gy, tn) — 27(Aun — Bun, en).

Using the fact that e,, = Jg, (Aw,, — Bt,), we estimate as follows
— 2v(Au,, — By, ey)
= —2v||Aw,, — Bt,||* — 2v(Au,, — By, en) + 2y(Aw,, — Bt,, e,)
= 29[| Aw, — Bt,||* + 2y(A(wn — up), en) + 2v(B (v, — t,), en)
= —2v||Aw,, — Bt,,||* + 2’y<JI§11JE1wn - ngl(JElwn —yA%e,), A ep)
+2v(J5, (Jeatn + ¥B en) — Jg, Jp,tn, B en)
29%)1 A% H
c

2 2|B|1?

29°(JIA]* + IIBIIQ))H(Awn _

c

— ——ll(Aw,, — Bt,)|?

(317) = —(27 - Bt,)|%.

Substituting inequality (3.17) in inequality (3.16) and using the fact that
0<y< W, we have that

A, 10) + Dy, 2n) < d(x,wn) + O(y, tn)

2UAR 1B 4, 2
C

(3.18) - (27 -
< ¢(Iawn) + ¢(y;tn)-
HenceI' C K,,, forany n > 1. Thus, I' C C,, X @y, for any n > 1.

Step 3. We shall show that 1i_>m (TnsyYn) = (x*,y") € Eq X Es.

Let (u,v) € T. Since I' C Cp1 X Qni1 C Cp X @Qp and x,,11 = Il
Lemma 2.4 we have that

d(xn, 1) = (g, x1,21) < O(u, x1) — p(u, zp)

which implies {¢(z,,x1)} is bounded. Furthermore, ¢(z,,z1) < ¢(zp41,21). Hence
{¢(xn,21)} is nondecreasing. Thus, lim ¢(x,,x1) exists. By inequality (2.9), {z,} is
n—oo

z1 C Cy, then by

n41

bounded and consequently {w, } is bounded. Similarly, ¢(y,,y1) is convergent and by
inequality (2.9), {y, } is bounded and consequently {¢, } is bounded.
By Lemma 2.4 we have that
(b(l’m,lﬂn) = gb(fEm,ch‘Tl) S ¢($m7l’1) - ¢(In,I1) — Ov asn, m — oQ.

Hence, by Lemma 2.1 we obtain that ||z, — z,| — 0, as m,n — oo, which implies that
xn, — x* € By, as n — oco. Following similar argument, we also obtain that v, — y* € E»,
asn — oo.

Step 4. We show that (z*,y*) € T

Using the definition of w,, and t,,, we have that
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|z — wn|l = lon(Tn—1 — Zn)|| < [|Tn-1 — xx|| = 0, asn — oo,
lyn — tall = llan(Yn—1 = yn)ll < Yn—1 — ynll = 0, as n — oo.

Since w,, and t,, are bounded, by Remark 2.4 we have that

lim ¢(z,,w,) =0= lim ¢(yn,tn).
n—oo

n—oo

Since (p+1, Ynt1) € Cnt1 X Qny1, we have that

A(Tnt1,7mn) < G(Tny1, wn) = 0, asn — oo,
¢(yn+1, Zn) < ¢(yn+1,tn) — 0, asn — oo.
Therefore, lim ¢(zp41,7,) =0= lim ¢(yYn+1,2n). Hence, by Lemma 2.1, we have that
n—oo n—oo

nlggo [#ns1 —rnl =0= nlggo yn+1 — 2znll-

Therefore, r, — z*. and 2z, — y*. asn — oco. Lete = (27 — , then from

inequality (3.18) we have that

ell(Awy — Btn)|* < ¢, wn) + ¢y, tn) — d(x,w0) — d(y, tn).
This implies that
lim (ellAw,, — Bt,||*) < lim (d(z, wy) + D(y, tn) — Sz, wn) — By, tn))
Using the condition on v we get
(3.19) 0= ILm |Aw,, — Bt, || = ||Az™ — By™||

272(||A||2+HBH2))
C

which implies
(3.20) Ax* = By*.
Next, we show that (z*,y*) € F(T') x F(S). Using Lemma 2.3 we obtain that

= | = 52 (T, 0 — 1A% €r) — T T,
1 « *
< E”JElwn - 7"4 €n — JElx H
1 ,
< E(HJElwn — Jg, || + || Al Aw,, — Bty)).

Using equation (3.19) and the fact that the normalized duality mapping J, 1511 is uniformly

continuous on bounded subsets of F4, this implies that lim u, = z*. Also,
n—oo

Ve rn — Je, || = |anJEyun + (1 — an) Jg, Tun — Jg, 7|
= (1 = an)(Jg, Tun — Jg, %) — an(Jg, " — T un)||
> (1 —ap)||Jg, Tun — Jg, || — anl|JE, 2" — JE,unl|,
implies that nl;n;o |Je, Tupn — Jg,z*|| = 0. By norm-to-weak continuity of Jb?ll, we have
that T'u,, — 2™ as n — oo. Furthermore,
N Tunll = ="l = e, Tunll = 1T, 2" ||| < e, Tun — Jg, 2| = 0.
Thus, nlgr;@ |Tun | = ||z*|. Hence, by Kadec-Klee property of E;, we have that

lim Tu, = z*. Using this, closeness of T' and the fact that lim u, = z*, we have that
n—00 n—00
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Tz* = z*. Following the same argument, we also have that Sy* = y*. Thus, (z*,y*) €
F(T) x F(S). This together with (3.20) imply that (z*,y*) € I'. This completes the proof.
(I

Corollary 3.1. Let Ey and Es be l,, LP(G), or the Sobolev spaces W?,,(G), 1 < p < 2 and
Es be a uniformly smooth real Banach space. Let A : Ey — Esand B : Ey — Es (such that
A, B # 0) be bounded linear operators with adjoints A* and B*, respectively. Let T : E1 — E;
and S : Ey — Es be closed quasi-$-nonexpansive mappings. Setting I' = {(x,y) € F(T) x
F(S) : Az = By} and assuming T # (). Let {(zn,yn)} be a sequence generated by (3.11). Then
{(xn,yn)} converges to some point (x*,y*) in T

4. APPLICATIONS

4.1. Split equality equilibrium problem (SEEP). Let C and () be nonempty closed con-
vex subsets of a real Banach space E, and let F' : C x C — R be a bifunction. The
equilibrium problem with respect to /' and C'is to find z € C such that

F(z,y)> 0,VyeC.

The set of solutions of the equilibrium problem above is denoted by EP(F'). For solving
the equilibrium problem, we assume that F* satisfies the following conditions:

(A1) F(z,xz)=0,forallz € C;
(A2) Fismonotone,i.e., F(z,y) + F(y,z) <0, Vx,y € C;
(A3) foreach z,y,z € C, limy o F(tz + (1 — t)z,y) < F(z,y);

(A4) foreach z € C, y — F(x,y) is nconvex and lower semi continuous.

The split equality equilibrium problem is finding

x* € C,y* € Qsuch that f(z*,z) > 0, h(y*,y) > 0 and Az* = By*,
forallz e C,ye Qand f: C x C — Rh:Q x @ — R are bifunctions satisfying (A;) to
(A4). We shall denote the solution set of SEEP by 2.

Lemma 4.6 ([38]). Let E be a reflexive, strictly convex and uniformly smooth Banach space, and
C' be a nonempty closed convex subset of E. Let F' : C x C — R be a bifunction satisfying
conditions (A1)-(A4), then for any x € E and r > 0,there exists a unique point z € C such that

1
F(z,y)+;<y—z7jz—jx> > 0,VyeC

Lemma 4.7 ([38]). let E be a reflexive, strictly convex and smooth Banach space, and C be a
nonempty closed convex subset of E. Let F' : C' x C' — R be a bifunction satisfying conditions
(A1)-(A4), then for any x € E and r > 0, define a mapping T : E — C by:

1
Te={zeC: Flzy)+ {y—zjz—jo) 2 0, vy € C}.

Then the following hold;
(1) T, is single-valued;
(2) T, is firmly nonexpansive type, i.e.
(Trx — Ty, JTxo — JTy) < (Trx — Try,x —y), Va,y € B
(3) F(T,) = EP(F);
(4) EP(F) is closed and convex;
(5) o(x, Tru) + ¢(Tru,u) < ¢(x,u), Vo € F(T,), u€ E.
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Theorem 4.4. Let Ey and E, be uniformly smooth and 2-uniformly convex real Banach spaces
and E3 be a real Banach space. Let C and Q) be nonempty closed and convex subsets of Eq and Es
respectively, and f : C x C — R h : Q x Q — R are bifunctions satisfying (A1) to (A4) such
that EP(f) and EP(h) are nonempty. Let A : Ey — E3 and B : Ey — E3 be bounded linear
operators with adjoints A* and B* such that A, B # 0. Assuming that Q@ # (. Let {(x,, y,)} be
a sequence generated by

w0, 71 € E1, yo,y1 € Bz, C1 = By, Q1 = Ea, e, = Jg,(Aw, — Bt,);
Wpn = Ty + 0 (Ty, — Tp—1), Uy = JEII(JElwn —yA%en);

Ty = J]Ell(anJEIun + (1 —an)Jg, Truy);

tn = Yn + an(Un — Yn-1), Un = JPS:(JE?tn +~vB*e,);

Zp = Jg:(anJEQvn + (1 —an)JE,Sron);

Cny1 ={u e Cy: d(u, ) < d(u,wn)};

Qn1={v € Qn: (v, 2,) < P(v,tn)};

Tnt1 = e, 21, Ynt1 =g, y1s n > 1,

4.21)

where T,z = {z € C : f(z,y) + +(y — 2, Jg,z — Jpz) > 0, Vy € C}, © € By, S,v =
{lwe@: h(w,y)Jr%(y—w,JEwaJEQm >0,VyeQ}) ve Ey r>00<a,<l,
a€ (0,1),0<y< W, ¢ = min{cy, ca }, where ¢y, ¢y are constants as in Lemma 2.3.
Then {(xn, yn)} converges to some point (z*,y*) in Q.

Proof. Setting T = T, and S = S,, from Lemma 4.7(3) and (5) we have that S and T'
are quasi-¢-nonexpansive. And by Lemma 4.7(3) and Theorem 3.3 we get the desired
result. |

4.2. Split Equality Variational Inclusion Problem (SEVIP).

Theorem 4.5. Let Ey and Ey be uniformly smooth and 2-uniformly convex real Banach spaces
and Es be a real Banach space. Let M : E; — 28T and N : Ey — 252 be maximal montone
operators such that M~1(0) and N~1(0) are nonempty. Let A : Ey — Ezand B : Ey — E3
be bounded linear operators with adjoints A* and B* such that A, B # 0. Assuming that Q =
{(z,y) € M~1(0) x N71(0) : Ax = By} # 0. Let {(zn,yn)} be a sequence generated by

xo, 71 € E1, yo,y1 € Eo, e, = Jg,(Aw, — Bt,);

Wy, = T, + O (T, — Tp—1), Up = ngl(JElwn —yA%ey);
Tn = Jbill(anJElun + (1 —an)Jg, QMuy,);

tn = Yn + n(Yn — Yn—1), Un = JE;(JEztn + B eyn);
Zy = ngl(anJEﬂn + (1= an)J5,QNvy,);
Cny1={ueCy: dlu,ry) < dlu,wy)};

Qny1 = {U €Qn: ¢(v’zn) < (b(vvtn)};

Tn1 = e, 21, Yni1 =g, 415 n > 1,
+ +

4.22)

where Q?J”VI = (JEl + TM)ilJEU Qajﬂv = (JEz + TN)71JE2/ 0 < an < 17 a € (071)7
0 <~v< m, ¢ = min{ecy, e}, where ¢1,cq are constants as in Lemma 2.3. Then
{(xn,yn)} converges to some point (z*,y*) in .

Proof. Setting T = QM and S = QF, from Lemma 2.5 we have that Q* and QY are
quasi-¢-nonexpansive. And by Theorem 3.3 we get the desired result. O
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4.3. Split equality problem. The split equality problem is to find
x € ¢, y € Q suchthat Az = By.

Theorem 4.6. Let Ey and Ey be uniformly smooth and 2-uniformly convex real Banach spaces
and Es be a real Banach space. Let A : Ey — Es and B : E; — E3 be bounded linear operators
with adjoints A* and B* such that A, B # 0. Assuming I' # (. Let {(xn,yn)} be a sequence
generated by

zo, 21 € Ev, yo,y1 € Ea, C1 = Eq, Q1 = Es, e, = Jg,(Aw,, — Bt,);
Wy = Ty + ap(Ty, — Tpe1), Uy = ngl(JElwn — vA*e,);

Ty = Jbill(anJElun + (1 —apn)Jg, Mouy);

tn = Yn + n(Yn — Yn—1), Vn = JE;(JEJH +B*ey);

Zp = JE;(anJEQvn + (1 —an)JE,dou,);

Cni1 ={u € Cy: d(u,ry) < dlu,wy)};

Qn+1 = {U €Qn: ¢(Uazn) < ¢(U7tn>};

Tny1 =g, 21, Ynp1 = Hg, ., y15 n > 1,

(4.23)

where 0 < a, < 1, € (0,1),0 < v < TATE B € = min{cy, co}, where ¢y, co are constants
as in Lemma 2.3. Then {(x,, yn)} converges to some point (z*,y*) inT.

Proof. Setting T' = Il¢ and S = Il, from Lemma 2.4 we have that II¢ and Il are quasi-
¢-nonexpansive. And by Theorem 3.3 we get the desired result. O
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