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Existence results and two step proximal point algorithm for
equilibrium problems on Hadamard manifolds

SULIMAN AL-HOMIDAN1 , QAMRUL HASAN ANSARI1,2 and MONIRUL ISLAM2

ABSTRACT. In this paper, we study the existence of solutions of equilibrium problems in the setting of
Hadamard manifolds under the pseudomonotonicity and geodesic upper sign continuity of the equilibrium
bifunction and under different kinds of coercivity conditions. We also study the existence of solutions of the
equilibrium problems under properly quasimonotonicity of the equilibrium bifunction. We propose a two-step
proximal point algorithm for solving equilibrium problems in the setting of Hadamard manifolds. The conver-
gence of the proposed algorithm is studied under the strong pseudomonotonicity and Lipschitz-type condition.
The results of this paper either extend or generalize several known results in the literature.

1. INTRODUCTION

It is well-known that the equilibrium problem is a unified model of several math-
ematical problems, namely, variational inequality problems, hemivariational inequality
problems, complementarity problems, fixed point problems, saddle point problems, op-
timization problems, Nash equilibrium problems, etc, see, for example [5, 10, 14] and the
references therein. Kim et al. [15] proposed a proximal point-type algorithm for pseu-
domonotone equilibrium problems in the setting of finite dimensional Euclidean space
Rn, and studied its convergence without Lipschitizian assumption. Recently, two-step
proximal algorithm for solving equilibrium problems has been introduced and studied
in [12, 19] under the pseudomonotonicity and Lipschitz-type condition of the underly-
ing equilibrium bifunction. Hieu [11] considered two-step algorithm with underlying
constant is not fixed but it is a sequence of positive real numbers, and studied the con-
vergence of the sequence generated by the algorithm under strongly pseudomonotonicity
and Lipschitz-type condition.

During the last decade, several known theories and methods from optimization and
nonlinear analysis have been extended from linear structures to Riemannian / Hadamard
manifolds because some constrained optimization problems can be seen as unconstrained
ones from Riemannian geometry point of view. Colao et al. [6] extended well-known
KKM lemma [16] from Euclidean space to Hadamard manifolds. By using this result, they
proved the existence of solutions of the equilibrium problems defined on the Hadamard
manifold. As consequences, they derived the existence results for solutions of mixed
variational inequality problems, fixed point problems for set-valued mappings and Nash
equilibrium problem for noncooperative games. They also studied the convergence of
Picard iteration for firmly nonexpansive mappings along with the definition of resolvents
for equilibrium bifunction which is used to propose an algorithm for solving equilib-
rium problems in this setting. Ferreira and Oliveira [9] extended proximal point method
for solving optimization problems from linear structure to Riemannian manifolds (see,
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also [4]). Recently, Cruz Neto et al. [7] proposed extragradient algorithm for solving
equilibrium problems on Hadamard manifolds where the equilibrium bifunction is not
necessarily pseudomonotone.

In this paper, we consider the equilibrium problems in the setting of Hadamard mani-
folds and study the existence of their solutions under pseudomonotonicity and geodesic
upper sign continuity of the equilibrium bifunction. We extend the two-step proximal
point algorithm [11] from Hilbert space to Hadamard manifolds setting.

The present paper is organized as follows: In the next section, we collect some basic
definitions, notions and results from manifolds. The formulations of equilibrium prob-
lem and dual equilibrium problem are presented, and the equivalence of these problems
is also studied under pseudomonotonicity and geodesic upper sign continuity of the equi-
librium bifunction. Section 3 deals with the existence of solutions of equilibrium problems
and dual equilibrium problems without compactness assumption on the underlying set
but under different kinds of coercivity conditions. In the last section, we present a two-
step proximal point algorithm for solving equilibrium problems on Hadamard manifolds.
We study the convergence of the sequences generated by the proposed algorithm to a so-
lution of the equilibrium problem under strong pseudomonotonicity and Lipschitz-type
condition. The results of this paper either improve or extend several known results in the
literature.

2. PRELIMINARIES

2.1. Elements from manifolds. We recall some known definitions, notations, concepts
and results from manifolds which can be found in any standard book on manifolds, see,
for example [8, 23, 24, 26].

Let M be a finite dimensional differentiable manifold and TxM be the tangent space at
the point x ∈M toM . Such tangent space forms a real vector space of the same dimension
as M . The collection of all the tangent spaces to M is called a tangent bundle of M and it
is denoted by TM .

A C∞ mapping V : M → TM which assigns a tangent vector V (x) at x for each x ∈M ,
is called a vector field on M .

A scalar product 〈·, ·〉x on TxM is called Riemannian metric on TxM and the associated
norm is denoted by ‖ · ‖x. If no ambiguity occurs, then we omit the subscript x,

Let g be a C∞ tensor field of type (0, 2) on M . If for each x ∈ M , the tensor g(x) is a
Riemannian metric on TxM , then the tensor field g is called Riemannian metric on M and
the pair (M, g) is called the Riemannian manifold. By using the Riemannian metric, the
length of a piecewise smooth curve γ : [0, 1] → M joining x to y such that γ(0) = x and
γ(1) = y, is defined as L(γ) :=

∫ 1

0
‖γ̇(t)‖γ(t)dt, where γ̇(t) denotes the tangent vector at

γ(t). The minimum length of the function L(γ) over the set of all piecewise smooth curves
joining x to y is called the Riemannian distance and it is denoted by d(x, y).

Let ∇ be the Levi-Civita (or Riemannian) connection on M . A curve γ : [0, 1] → M
joining x to y such that γ(0) = x, γ(1) = y and ∇γ̇(t)γ̇(t) = 0 on [0, 1], is called a geodesic.
To emphasis the initial point γ(0) = x and terminal point γ(1) = y of the geodesic γ, some
time we write γxy instead of γ.

A geodesic γ joining x to y inM is said to be minimal if its length equals its Riemannian
distance between x and y. If for any x ∈M , all geodesic emanating from x are defined for
all t ∈ R, then the Riemannian manifold M is said to be complete.

A simply connected complete Riemannian manifold M with nonpositive sectional cur-
vature is called a Hadamard manifold.
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The exponential map expx : TxM → M at x is defined by expx v = γv(1, x) for each
v ∈ TxM , where γ(·) = γv(·, x) is the geodesic starting from x with the velocity v, that is,
γ(0) = x and γ̇(0) = v. Moreover, expx tv = γv(t, x) for each real number t.

We denote by Pγ(b),γ(a) the parallel transport from Tγ(a)M to Tγ(b)M along the geodesic
γ with respect to∇ and defined by

Pγ(b),γ(a)(v) = V (γ(b)), for all a, b ∈ R and v ∈ Tγ(a)M,

where V is the unique vector field such that∇γ̇(t)V = 0 for all t and V (γ(a)) = v.

Proposition 2.1. [8] Let M be a Hadamard manifold. For any given x ∈M , expx : TxM →M
is a diffeomorphism. Furthermore, for any two points x, y ∈ M , there exists a unique minimal
geodesic γ joining x to y such that γ(t) = expx(t exp−1

x y) for all t ∈ [0, 1]. In particular, the
exponential map and its inverse are continuous on a Hadamard manifold.

A geodesic triangle 4(x1, x2, x3) of a Riemannian manifold M is a set consisting of
three points x1, x2 and x3, and three minimal geodesics γi joining xi to xi+1 with i = 1, 2, 3
(mod 3).

Proposition 2.2. [23] Let 4(x1, x2, x3) be a geodesic triangle in a Hadamard manifold M . For
each i = 1, 2, 3 (mod3), let γi : [0, li] → M be the geodesic segment joining xi to xi+1, and set
li = L(γi) and θi = ∠ (γ̇i(0),−γ̇i−1(li−1)) the angle between the vector γ̇i(0) and −γ̇i−1(li−1).
Then

(2.1) θ1 + θ2 + θ3 ≤ π,

and

(2.2) l2i + l2i+1 − 2lili+1 cos θi+1 ≤ l2i−1.

Since 〈exp−1
xi+1

xi, exp−1
xi+1

xi+2〉 = d(xi, xi+1)d(xi+1, xi+2) cos θi+1 for all i = 1, 2, 3 (mod3)

(see [23]), the inequality (2.2) can be re-written in terms of the Riemannian distance and
exponential map as

(2.3) d2(xi, xi+1) + d2(xi+1, xi+2)− 2〈exp−1
xi+1

xi, exp−1
xi+1

xi+2〉 ≤ d2(xi−1, xi).

Lemma 2.1. [22] Let4(x1, x2, x3) be a geodesic triangle in a Hadamard manifoldM . Then there
exists x′1, x′2, x′3 ∈ R2 such that

d(x1, x2) = ‖x′1 − x′2‖, d(x2, x3) = ‖x′2 − x′3‖ and d(x3, x1) = ‖x′3 − x′1‖.

The triangle 4(x′1, x
′
2, x
′
3) is called the comparison triangle of the geodesic triangle

4(x1, x2, x3), which is unique up to isometry of M . The points x
′

1, x
′

2, x
′

3 are called com-
parison points of the points x1, x2, x3, respectively.

Lemma 2.2. [17] Let4(x1, x2, x3) be a geodesic triangle in a Hadamard manifoldM and4(x′1, x
′
2, x
′
3)

be its comparison triangle.

(a) Let θ1, θ2, θ3 (respectively, θ′1, θ′2, θ′3) be the angles of4(x1, x2, x3) (respectively,4(x′1, x
′
2, x
′
3))

at vertices x1, x2, x3 (respectively, x′1, x′2, x′3). Then

(2.4) θ′1 ≥ θ1, θ′2 ≥ θ2 and θ′3 ≥ θ3.

(b) Let x̄ be the point on the geodesic joining x1 to x2 and x̄′ its comparison point on the line
segment [x′1, x

′
2]. Suppose that d(x̄, x1) = ‖x̄′ − x′1‖ and d(x̄, x2) = ‖x̄′ − x′2‖. Then

(2.5) d(x̄, x3) ≤ ‖x̄′ − x′3‖.
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A subset K of a Hadamard manifold M is said to be geodesic convex if for any pair
of distinct points x, y ∈ K, the geodesic γ joining x to y belongs to K, that is, if for any
γ : [0, 1] → M such that γ(0) = x and γ(1) = y, then γ(t) = expx(t exp−1

x y) ∈ K for all
t ∈ [0, 1].

Let C be a subset of a Hadamard manifold M . The smallest geodesic convex subset of
M that contains C is called the convex hull of C, and it is denoted by co(C). As pointed
out in [6] that co(C) =

⋃∞
n=1 Cn, where C0 = C and Cn = {z ∈ γx,y : x, y ∈ Cn−1}, where

γx,y denotes the geodesic joining x to y.
Zhou et al. [27] gave the following geometrical definition of geodesic convex combina-

tion of finite number of points in terms of exp.
The following two theorems provide the relationship among geodesic convex combi-

nation, geodesic convex set and geodesic convex hull.

Theorem 2.1. [27] Let M be a Hadamard manifold. A set K ⊂M is geodesic convex if and only
if it contains all the geodesic convex combinations of its elements.

Theorem 2.2. [27] Let K ⊂ M be any set in a Hadamard manifold M . Then co(K) consists of
all the geodesic combinations of elements of K.

Theorem 2.3. [27] For any two subsets K1,K2 of a Hadamard manifold M such that K1 ⊆ K2,
then co(K1) ⊆ co(K2).

Let K be a geodesic convex subset of a Hadamard manifold M . A real-valued function
f : K → R is said to be geodesic convex if

f(expx(t exp−1
x y)) ≤ (1− t)f(x) + tf(y), for all x, y ∈ K and all t ∈ [0, 1].

Colao et al. [6] extended the well-known KKM lemma [16] from finite dimensional
space to Hadamard manifold settings and used it to prove the existence of solutions of
equilibrium problems.

Let K be a geodesic convex subset of a Hadamard manifold M . A set-valued mapping
T : K ⇒ K is said to be a KKM mapping if for any finite subset {x1, x2, . . . , xm} of K,
co({x1, x2, . . . , xm}) ⊂

⋃m
i=1 T (xi).

Lemma 2.3. [6] Let K be a nonempty geodesic convex subset of a Hadamard manifold M and
T : K ⇒ K be a KKM mapping such that for each x ∈ K, T (x) is closed and for at least one
x0 ∈ K, T (x0) is compact. Then

⋂
x∈K T (x) 6= ∅.

2.2. Formulation of the problems. Let K be a nonempty geodesic convex subset of a
Hadamard manifoldM and f : K×K → R be a real-valued bifunction such that f(x, x) ≥
0 for all x ∈ K. The equilibrium problem (in short, EP) is to find x̄ ∈ K such that

(2.6) f(x̄, y) ≥ 0, for all y ∈ K.
It includes several problems, namely, optimization problems, variational inequality prob-
lems [21], hemivariational inequality problems [25], nonsmooth variational inequality
problems [2], fixed point problems, Nash equilibrium problem, as special cases, see, for
example [5]. Colao et al. [6] first considered the equilibrium problem in the setting of
Hadamard manifolds and studied the existence of its solutions. They also suggested Pi-
card iterative method for finding the solution of EP.

We also consider the following problem which is closely related to the equilibrium
problem and known as dual equilibrium problem or Minty equilibrium problem.

(2.7) Find x̄ ∈ K such that f(y, x̄) ≤ 0, for all y ∈ K.
Let V : K → TM be a vector filed, that is, A(x) ∈ TxM for all x ∈ K, and J : M → R

be a locally Lipschitz function, that is, for each x in the domain of J , there exist εx > 0
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and Lx > 0 such that

|J(z)− J(y)| ≤ Lxd(z, y), for all z, y ∈ B(x, εx),

where B(x, εx) denotes an open ball centered at x ∈ M and radius εx, that is, B(x, εx) :=
{y ∈M : d(x, y) < εx}. Tang et al. [25] considered the following hemivariational inequal-
ity problem: Find x̄ ∈ K such that

(2.8) 〈V (x̄), exp−1
x̄ y〉+ J◦(x̄; exp−1

x̄ y) ≥ 0, for all y ∈ K,

where J◦(x;w) denotes the Clarke directional derivative at the point x ∈ K and in the di-
rection w ∈ TxM , [13]. The hemivariational inequality problem contains several kinds of
variational inequality problems considered and studied in [2,17,18,21] and the references
therein.

If J◦(x;w) = 0 for all x and w, then the hemivariational inequality problem (2.8) re-
duces to the following variational inequality problem, considered and studied by Németh
[21]: Find x̄ ∈ K such that

〈V (x̄), exp−1
x̄ y〉 ≥ 0, for all y ∈ K.

Definition 2.1. A bifunction f : K ×K → R is said to be
(a) monotone if

f(x, y) + f(y, x) ≤ 0, for all x, y ∈ K;

(b) pseudomonotone if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, for all x, y ∈ K;

(c) strongly pseudomonotone if there exists a constant λ > 0 such that

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −λd2(x, y), for all x, y ∈ K.

Clearly, monotonicity implies pseudomonotonicity and strongly pseudomonotonicity
implies pseudomonotonicity.

Definition 2.2. Let K be a nonempty geodesic convex subset of a Hadamard manifold
M . A bifunction f : K ×K → R is said to be geodesic upper sign continuous if for every
x, y ∈ K, we have

(2.9) f(wt, x) ≤ 0 =⇒ f(x, y) ≥ 0,

where wt = expx t exp−1
x y for all t ∈ (0, 1).

Definition 2.3. [1] LetK be a nonempty geodesic convex subset of a Hadamard manifold
M . A function g : K → R is said to be geodesic hemicontinuous if for any geodesic
γ : [0, 1] → M , the function t 7→ g(γ(t)) defined on [0, 1] is continuous, that is, g(γ(t)) →
g(γ(0)) as t→ 0.

Definition 2.4. [21] Let K be a nonempty geodesic convex subset of a Hadamard mani-
fold M . A vector field V on K is said to be geodesic hemicontinous if for every geodesic
γ : [0, 1]→ K and w ∈ Tγ(0)M , the function t 7→ 〈Pγ(0),γ(t)V (γ(t)), w〉 is continous.

Remark 2.1. Let V : K → TM be a vector field such that g(γ(t)) = 〈Pγ(0),γ(t)V (γ(t)), w〉
for any geodesic γ : [0, 1] → M and w ∈ Tγ(0)M . Then geodesic hemicontinuity of g
implies the geodesic hemicontinuity of V .

Remark 2.2. If the bifunction f : K × K → R is geodesic hemicontinuous in the first
argument and geodesic convex in the second argument, then it is geodesic upper sign
continuous.
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Indeed, assume that for every x, y ∈ K, we have

(2.10) f(wt, x) ≤ 0, for all t ∈ (0, 1).

Since f(x, x) ≥ 0 for all x ∈ K and f is geodesic convex in the second argument, we have

0 ≤ f(wt, wt) ≤ (1− t)f(wt, x) + tf(wt, y) ≤ tf(wt, y), for all t ∈ (0, 1).

As t > 0, we obtain f(wt, y) ≥ 0. Since the bifunction f is geodesic hemicontinuous in the
first argument, we have f(x, y) ≥ 0.

The following lemma provides the equivalence between EP (2.6) and DEP (2.7).

Lemma 2.4. Let K be a nonempty geodesic convex subset of a Hadamard manifold M and f :
K ×K → R be a pseudomonotone and geodesic upper sign continuous bifunction. Then x̄ ∈ K
is a solution of EP (2.6) if and only if it is a solution of DEP (2.7).

Proof. Clearly from pseudomonotonicity of f , every solution of EP (2.6) is a solution of
DEP (2.7). For the converse, assume that x̄ ∈ K is a solution of DEP (2.7). Then f(y, x̄) ≤ 0
for all y ∈ K. Since K is geodesic convex, we have wt = expx̄ t exp−1

x̄ y ∈ K for all
t ∈ (0, 1). Therefore, f(wt, x̄) ≤ 0. By geodesic upper sign continuity of f , we get f(x̄, y) ≥
0. �

3. EXISTENCE RESULTS FOR SOLUTIONS

We establish some existence results for solutions of EP (2.6) and DEP (2.7) under differ-
ent conditions on the underlying set K and the bifunction f .

Theorem 3.4. Let K be a nonempty closed and geodesic convex subset of a Hadamard manifold
M and f : K×K → R be a pseudomonotone and geodesic upper sign continuous bifunction such
that the following conditions hold:

(i) For all x ∈ K, f(x, x) ≥ 0;
(ii) For all x ∈ K, the set {y ∈ K : f(x, y) < 0} is geodesic convex;

(iii) For all y ∈ K, the function x 7→ f(y, x) is lower semicontinuous;
(iv) There exist a compact subset C of M and ỹ ∈ K ∩ C such that

(3.11) f(x, ỹ) < 0, for all x ∈ K \ C.
Then there exists a solution x̄ ∈ K of EP (2.6).

Proof. For all y ∈ K, define P,Q : K ⇒ K by

(3.12) P (y) = {x ∈ K : f(x, y) ≥ 0}
and

(3.13) Q(y) = {x ∈ K : f(y, x) ≤ 0}.
As in [6], P is a KKM mapping. We include it for the sake of completeness.

Suppose contrary that there exist a finite subset {y1, y2, . . . , ym} of K and a point x̂ ∈
co({y1, y2, . . . , ym}) such that x̂ /∈

⋃m
i=1 P (yi), that is,

(3.14) f(x̂, yi) < 0, for all i = 1, 2, . . . ,m.

Then yi ∈ {y ∈ K : f(x̂, y) < 0} for each i = 1, 2, . . . ,m. By (ii), the set {y ∈ K : f(x̂, y) <
0} is geodesic convex, and therefore by Theorem 2.3, we have x̂ ∈ co({y1, y2, . . . , ym}) ⊆
{y ∈ K : f(x̂, y) < 0}, that is, f(x̂, x̂) < 0 which contradicts (i). Hence, P is a KKM
mapping.

For each y ∈ K, Q(y) is closed. Indeed, let {xn} ⊆ Q(y) be a sequence such that
xn → x ∈ K as n→∞. We show that x ∈ Q(y). Since xn ∈ Q(y) for each n ∈ N, we have
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f(y, xn) ≤ 0. By condition (iii), we have f(y, x) ≤ lim inf
n→∞

f(y, xn) ≤ 0. Thus, f(y, x) ≤ 0,

and hence, x ∈ Q(y). Therefore, Q(y) is closed for each y ∈ K.
Let ỹ ∈ K and C be same as in condition (iv). We want to show that P (ỹ) is compact.

If P (ỹ) * C, then there exists x ∈ P (ỹ) such that x ∈ K \C, and hence, f(x, ỹ) ≥ 0, which
contradicts (3.11). Therefore, P (ỹ) ⊆ C. Thus the closure of P (ỹ), cl(P (ỹ)) is a closed
subset of the compact set C, hence compact. Therefore, by Lemma 2.3, we have⋂

y∈K
clP (y) 6= ∅.

By pseudomonotonicity of f , we haveP (y) ⊆ Q(y), therefore, cl(P (y)) ⊆ cl(Q(y)) = Q(y).
Thus,

∅ 6=
⋂
y∈K

cl(P (y)) ⊆
⋂
y∈K

Q(y).

Hence, there exists x̄ ∈ K such that

f(y, x̄) ≤ 0, for all y ∈ K.

By Lemma 2.4, x̄ ∈ K is a solution of EP (2.6). �

Remark 3.3. Colao et al. [6] proved the existence of solution of EP (2.6) by considering (i),
(ii), (iv) and the following condition:

(iii′) For all y ∈ K, x 7→ f(x, y) is upper semicontinuous.

If we consider f(x, y) = 〈V (x), exp−1
x y〉, then the condition (iii

′
) is very strong. How-

ever, in this case, condition (iii) of Theorem 3.4 automatically holds, that is,
x 7→ 〈V (y), exp−1

y x〉 is lower semicontinuous.

Remark 3.4. The coercivity condition (iv) in Theorem 3.4 can be replaced by the following
condition.

(iv′) There exist a compact subset D of M and ỹ ∈ K ∩D such that

(3.15) f(ỹ, x) > 0, for all x ∈ K \D.

Proof. Let P and Q be the same as defined in the proof of Theorem 3.4. Since P is a
KKM mapping and P (x) ⊆ Q(x) by pseudomonotonicity, we have that Q is also a KKM
mapping. We have already proved in the proof of Theorem 3.4 that for each y ∈ K, Q(y)
is closed.

Now we shall show that Q(ỹ) ⊆ K ∩ D. If Q(ỹ) * D, then there exists x ∈ Q(ỹ)
such that x ∈ K \ D, and hence, f(ỹ, x) ≤ 0 which contradicts (3.15). Thus Q(ỹ) ⊆ D,
and therefore, Q(ỹ) ⊆ K ∩ D. Since K is closed and D is compact, K ∩ D is compact.
Therefore, Q(ỹ) is a closed subset of a compact set K ∩D, and hence Q(ỹ) is compact. By
Lemma 2.3, we have

⋂
y∈K Q(y) 6= ∅. Therefore, there exists x̄ ∈ K such that x̄ ∈ Q(y) for

all y ∈ K, that is,
f(y, x̄) ≤ 0, for all y ∈ K.

By Lemma 2.4, x̄ ∈ K is a solution of EP (2.6). �

Remark 3.5. Let V : K → TM be monotone, that is,

〈V (x), exp−1
x y〉 ≤ 〈V (y),− exp−1

y x〉, for all x, y ∈ K,

and a geodesic hemicontinuous vector field. Let J : M → R be a locally Lipschitz func-
tion. For all x, y ∈ K, let

f(x, y) = 〈V (x), exp−1
x y〉+ J◦(x; exp−1

x y)
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and
f(y, x) = 〈V (y), exp−1

y x〉 − J◦(x; exp−1
x y).

We show that f is pseudomonotone and geodesic upper sign continuous. For this, we
first show that f is monotone. Since V is a monotone vector field, we have

f(x, y) =〈V (x), exp−1
x y〉+ J◦(x; exp−1

x y)

≤− 〈V (y),− exp−1
y x〉+ J◦(x; exp−1

x y)

=− {〈V (y), exp−1
y x〉 − J◦(x; exp−1

x y)} = −f(y, x),

which shows that f is monotone, and hence pseudomonotone.
Now we show that f is geodesic upper sign continuous, that is, f satisfies inequality

(2.9). For any x, y ∈ K and any geodesic γ : [0, 1] → M joining x to y, that is, γ(t) =
expx t exp−1

x y for t ∈ (0, 1), assume that f(γ(t), x) ≤ 0 for all t ∈ (0, 1). Then

0 ≥f(expx t exp−1
x y, x)

=〈V (expx t exp−1
x y), exp−1

expx t exp−1
x y

x〉 − J◦(x; exp−1
x (expx t exp−1

x y))

=〈V (expx t exp−1
x y), exp−1

expx t exp−1
x y

x〉 − J◦(x; t exp−1
x y)).

Since the parallel transport along a curve is an isometry and the tangent vector of the
geodesic is parallel along the geodesic and J◦ is positively homogeneous in the second
argument, we obtain

0 ≥ t〈Pγ(0),γ(t)V (expx t exp−1
x y),− exp−1

x y〉 − tJ◦(x; exp−1
x y).

Since t > 0, and V is geodesic hemicontinuous vector field, we have

〈V (x), exp−1
x y〉+ J◦(x; exp−1

x y) ≥ 0,

that is, f(x, y) ≥ 0. Hence f is geodesic upper sign continuous.
Therefore, by using Theorem 3.4, we can obtain an existence result for a solution of

hemivariational inequality problem (2.8). Also, Theorem 3.4 generalizes Theorem 3.3 in
[25].

Definition 3.5. Let K be a nonempty subset of a Hadamard manifold M . A bifunction
f : K × K → R is said to be properly quasimonotone if for any x1, x2, . . . , xm ∈ K and
any y ∈ co({x1, x2, . . . , xm}), there exists i ∈ {1, 2, . . . ,m} such that f(xi, y) ≤ 0.

Now we prove the existence of solution of DEP (2.7) under properly quasimonotonicity.

Theorem 3.5. Let K be a nonempty closed and geodesic convex subset of a Hadamard manifold
M and f : K×K → R be properly quasimonotone and for each y ∈ K, the function x 7→ f(y, x)
is lower semicontinuous. Assume that there exist a compact subset D of M and ỹ ∈ K ∩D such
that

(3.16) f(ỹ, x) > 0, for all x ∈ K \D.
Then DEP (2.7) has a solution.

Proof. For each y ∈ K, define the set-valued mapping P : K ⇒ K by

P (y) = {x ∈ K : f(y, x) ≤ 0}.
For any y1, y2, . . . , ym ∈ K, let ȳ ∈ co({y1, y2, . . . , ym}). Since f is properly quasimono-
tone, we have ȳ ∈

⋃m
i=1 P (yi), that is, P is a KKM mapping. By lower semicontinuity of

the map x 7→ f(y, x), P (y) is a closed subset of K. Now we shall show that P (ỹ) ⊆ K ∩D.
If P (ỹ) * D, then there exists x ∈ P (ỹ) such that x ∈ K \D, and hence, f(ỹ, x) ≤ 0 which
contradicts (3.16). Thus P (ỹ) ⊆ D, and therefore, P (ỹ) ⊆ K ∩D. Since K is closed and D
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is compact, K ∩D is compact. Therefore, P (ỹ) is a closed subset of a compact set K ∩D,
and hence P (ỹ) is compact. By Lemma 2.3, we have

⋂
y∈K P (y) 6= ∅. Therefore, there

exists x̄ ∈ K such that x̄ ∈ P (y) for all y ∈ K, that is, f(y, x̄) ≤ 0 for all y ∈ K. Hence,
x̄ ∈ K is a solution of DEP (2.7). �

Remark 3.6. Under the assumptions of Lemma 2.4 and Theorem 3.5, we can obtain the
existence result for a solution of EP (2.6) without assuming condition (ii) of Theorem 3.4,
that is, without assuming that the set {y ∈ K : f(x, y) < 0} is geodesic convex for all
x ∈ K.

4. TWO STEP PROXIMAL POINT ALGORITHM AND CONVERGENCE RESULTS

Let K be a nonempty closed geodesic convex subset of a Hadamard manifold M , h :
K → R be a proper, geodesic convex and lower semicontinuous function and λ > 0. The
proximal mapping of the function h : K → R is defined as follows:

(4.17) proxλh(x) = argmin

{
λh(y) +

1

2
d2(x, y) : y ∈ K

}
, for all x ∈M.

To propose the two step proximal point algorithm for finding the solutions of EP, we
establish the following result which can be seen as an extension of Proposition 12.26 in [3]
from Hilbert space to Hadamard manifold settings.

Lemma 4.5. Let h : M → (−∞,+∞] be proper, lower semicontinuous and geodesic convex
function on M and x, p ∈M . Then for λ > 0,

p = proxλh(x) ⇔ 〈exp−1
p y, exp−1

p x〉+ λh(p) ≤ λh(y), for all y ∈M.

Proof. Let y ∈ M and p = proxλh(x). Set zα = expp α exp−1
p y for all α ∈ (0, 1). Then by

geodesic convexity of h and (4.17), we get

(4.18) λh(p) ≤ λh(zα) +
1

2
d2(x, zα)− 1

2
d2(x, p), for all α ∈ (0, 1).

Consider the geodesic triangle 4(p, y, x) and its comparison triangle 4(p′, y′, x′). Then
by Lemma 2.1, we get

d(p, y) = ‖p′ − y′‖, d(y, x) = ‖y′ − x′‖ and d(x, p) = ‖x′ − p′‖.

Since zα = expp α exp−1
p y, the comparison point of zα is z′α = αy′ + (1 − α)p′. Let β and

β′ denotes the angle at p and p′ respectively. Then by Lemma 2.2 (a), we have β ≤ β′, and
hence cosβ′ ≤ cosβ. By part (b) of Lemma 2.2, we get

d2(x, zα) ≤ ‖x′ − z′α‖2 = ‖(x′ − p′) + α(p′ − y′)‖2

= ‖x′ − p′‖2 + α2‖p′ − y′‖2 + 2α〈x′ − p′, p′ − y′〉R2

= ‖x′ − p′‖2 + α2‖p′ − y′‖2 + 2α‖x′ − p′‖‖p′ − y′‖ cosβ′

≤ d2(x, p) + α2d2(p, y) + 2αd(x, p)d(p, y) cosβ

= d2(x, p) + α2d2(p, y) + 2α‖ exp−1
p x‖‖ exp−1

y p‖ cosβ

= d2(x, p) + α2d2(p, y) + 2α‖ exp−1
p x‖‖Pp,y exp−1

y p‖ cosβ

= d2(x, p) + α2d2(p, y) + 2α〈exp−1
p x, Pp,y exp−1

y p〉
= d2(x, p) + α2d2(p, y)− 2α〈exp−1

p x, exp−1
p y〉.(4.19)
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From (4.18), we have

λh(p) ≤ λh(zα) +
1

2
{d2(x, p) + α2d2(y, p)− 2α〈exp−1

p x, exp−1
p y〉} − 1

2
d2(x, p)

= λh(zα)− α〈exp−1
p x, exp−1

p y〉+
α2

2
d2(y, p)

≤ λαh(y) + λ(1− α)h(p)− α〈exp−1
p x, exp−1

p y〉+
α2

2
d2(y, p).(4.20)

After simplification, we obtain

〈exp−1
p x, exp−1

p y〉+ λh(p) ≤ λh(y)− α

2
d2(y, p).

Letting α→ 0, we get 〈exp−1
p x, exp−1

p y〉+ λh(p) ≤ λh(y).
Conversely, suppose that 〈exp−1

p x, exp−1
p y〉+ λh(p) ≤ λh(y). Then

λh(p) +
1

2
d2(x, p) ≤ λh(y) +

1

2
d2(x, p)− 〈exp−1

p x, exp−1
p y〉+

1

2
d2(p, y)

= λh(y) +
1

2
d2(x, y). (by(2.3))(4.21)

Therefore, p = proxλhx. �

By using the above lemma, we get the following result.

Lemma 4.6. For all x ∈M , y ∈ K and λ > 0, the following inequality holds:

〈exp−1
proxλh(x) x, exp−1

proxλh(x) y〉 ≤ λ{h(y)− h(proxλh(x))}.

Now, we are ready to propose two-step proximal point algorithm for solving equilib-
rium problem in the setting of Hadamard manifolds.

Let {αn} ⊂ (0,+∞) be a non-increasing sequence such that

(A1) : lim
n→∞

αn = 0 and (A2) :

∞∑
n=0

αn = +∞.

Algorithm 4.6. Choose arbitrary x0, y0 ∈ K and a non-increasing sequence {αn} ⊂ (0,+∞)
such that the conditions (A1) and (A2) hold. Assume that xn, yn ∈ K are known, calculate xn+1

and yn+1 as follows:
Step 1. Compute

(4.22) xn+1 = proxαnf(yn,·)(xn).

If xn+1 = yn = xn, then stop and xn is the solution of problem EP (2.6). Otherwise,
Step 2. Compute

(4.23) yn+1 = proxαn+1f(yn,·)(xn+1).

Set n =: n+ 1 and go back Step 1.

Definition 4.6. A bifunction f : K ×K → R is said to satisfies Lipschitz-type condition
on K if there exist λ1, λ2 > 0 such that

f(x, y) + f(y, z) ≥ f(x, z)− λ1d
2(x, y)− λ2d

2(y, z), for all x, y, z ∈ K.

This kind of the condition was first used in [20] to study auxiliary principle for EP in
the setting of reflexive Banach spaces, and later it was used by Hieu [11].

Now we study the convergence of the sequences generated by Algorithm 4.6.

Theorem 4.7. Assume that the bifunction f : K ×K → R satisfies the following conditions.
(i) f(x, x) = 0 for all x ∈ K;
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(ii) f is strongly pseudomonotone on K;
(iii) f satisfies the Lipschitz-type condition on K;
(iv) f(x, ·) is geodesic convex and lower semicontinuous and f(·, y) is geodesic hemicontinu-

ous on K.
If conditions (A1) and (A2) hold, then the sequences xn and yn generated by Algorithm 4.6 con-
verges to a unique solution x̄ of EP (2.6).

Proof. Consider the points xn, xn+1 and x̄, and using (2.3), we obtain

(4.24) d2(xn, xn+1) + d2(xn+1, x̄)− 2〈exp−1
xn+1

xn, exp−1
xn+1

x̄〉 ≤ d2(xn, x̄).

Again by considering the points xn, yn and xn+1, and using (2.3), we get

(4.25) d2(xn, yn) + d2(yn, xn+1)− 2〈exp−1
yn xn, exp−1

yn xn+1〉 ≤ d2(xn, xn+1).

By combining (4.24) and (4.25), we have

d2(xn+1, x̄) ≤ d2(xn, x̄)− d2(xn, xn+1) + 2〈exp−1
xn+1

xn, exp−1
xn+1

x̄〉
≤ d2(xn, x̄)− {d2(xn, yn) + d2(yn, xn+1)− 2〈exp−1

yn xn, exp−1
yn xn+1〉}

+ 2〈exp−1
xn+1

xn, exp−1
xn+1

x̄〉
≤ d2(xn, x̄)− d2(xn, yn)− d2(yn, xn+1) + 2〈exp−1

yn xn, exp−1
yn xn+1〉

+ 2〈exp−1
xn+1

xn, exp−1
xn+1

x̄〉.(4.26)

From (4.22) and Lemma 4.6, we obtain

αn{f(yn, y)− f(yn, xn+1)} ≥ 〈exp−1
xn+1

xn, exp−1
xn+1

y〉, for all y ∈ K.

Setting y = x̄ ∈ K, we get

(4.27) αn{f(yn, x̄)− f(yn, xn+1)} ≥ 〈exp−1
xn+1

xn, exp−1
xn+1

x̄〉.

Now, from (4.23) and Lemma 4.6, we have

αn{f(yn−1, y)− f(yn−1, yn)} ≥ 〈exp−1
yn xn, exp−1

yn y〉, for all y ∈ K.
Setting y = xn+1 ∈ K, we get

(4.28) αn{f(yn−1, xn+1)− f(yn−1, yn)} ≥ 〈exp−1
yn xn, exp−1

yn xn+1〉.
On employing (4.27) and (4.28), inequality (4.26) yields

d2(xn+1, x̄) ≤ d2(xn, x̄)− d2(xn, yn)− d2(yn, xn+1)

+ 2αn{f(yn, x̄)− f(yn, xn+1)}+ 2αn{f(yn−1, xn+1)− f(yn−1, yn)}
≤ d2(xn, x̄)− d2(xn, yn)− d2(yn, xn+1)

+ 2αn{f(yn, x̄)− f(yn, xn+1) + f(yn−1, xn+1)− f(yn−1, yn)}.(4.29)

Since f satisfies Lipschitz-type condition, there exist c1 > 0 and c2 > 0 such that

f(yn−1, yn) + f(yn, xn+1) ≥ f(yn−1, xn+1)− c1d2(yn−1, yn)− c2d2(yn, xn+1).

By using this inequality and (4.29), we obtain

(4.30) d2(xn+1, x̄) ≤ d2(xn, x̄)− d2(xn, yn)− d2(yn, xn+1) + 2αnf(yn, x̄)

+ 2αnc1d
2(yn−1, yn) + 2αnc2d

2(yn, xn+1).

Since x̄ is a solution of problem EP (2.6), so f(x̄, yn) ≥ 0. By using the strong pseudomono-
tonicity properties of f , we have

(4.31) f(yn, x̄) ≤ −λd2(yn, x̄), for some λ > 0.
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Note that

(4.32) d2(yn−1, yn) ≤ 2d2(yn−1, xn) + 2d2(xn, yn).

By combining (4.30), (4.31) and (4.32), we obtain

d2(xn+1, x̄) ≤ d2(xn, x̄)− d2(xn, yn)− d2(yn, xn+1)− 2αnλd
2(yn, x̄) + 4αnc1d

2(yn−1, xn)

+ 4αnc1d
2(yn, xn) + 2αnc2d

2(yn, xn+1)

= d2(xn, x̄)− (1− 4αnc1)d2(xn, yn)− (1− 2αnc2)d2(yn, xn+1)− 2αnλd
2(yn, x̄)

+ 4αnc1d
2(yn−1, xn).(4.33)

Adding the term 4αn+1c1d
2(yn, xn+1) to both sides of (4.33), we get

d2(xn+1, x̄) + 4αn+1c1d
2(yn, xn+1)

≤ d2(xn, x̄) + 4αn+1c1d
2(yn, xn+1)− (1− 4αnc1)d2(xn, yn)

− (1− 2αnc2)d2(yn, xn+1)− 2αnλd
2(yn, x̄) + 4αnc1d

2(yn−1, xn)

= d2(xn, x̄) + 4αnc1d
2(yn−1, xn)− (1− 4αnc1)d2(xn, yn)

− (1− 2αnc2 − 4αn+1c1)d2(yn, xn+1)− 2αnλd
2(yn, x̄),(4.34)

which yields that

(4.35) an+1 ≤ an − bn − αncn,
where an = d2(xn, x̄) + 4αnc1d

2(yn−1, xn), bn = (1 − 4αnc1)d2(xn, yn) + (1 − 2αnc2 −
4αn+1c1)d2(yn, xn+1) and cn = 2λd2(yn, x̄). Therefore, an ≥ 0 and cn ≥ 0 for all n ≥ 0.

Now we claim that bn ≥ 0 for all n ≥ 0. Let δ ∈ (0, 1) be a fixed number. Since αn → 0,
there exists n0 ≥ 0 such that for all n ≥ n0, we have

(4.36) 0 < δ ≤ 1− 4αnc1 < 1 and 0 < δ ≤ 1− 2αnc2 − 4αn+1c1 < 1.

Therefore, bn ≥ 0 for all n ≥ n0. Thus from (4.35), we get 0 ≤ an+1 ≤ an for all n ≥
n0, which implies that lim

n→∞
an exists in R. It follows from the definition of an that the

sequence {d2(xn, x̄)} is bounded, and hence {xn} is also bounded. The relation (4.35) can
be rewritten as

(4.37) bn + αncn ≤ an − an+1, for all n ≥ n0.

Let N ≥ n0 be fixed. Taking n = n0, . . . , N in inequality (4.37) and summing up the
resultant inequalities, we get

N∑
n=n0

bn +

N∑
n=n0

αncn ≤ an0
− aN+1 ≤ an0

.

Now, letting N →∞, we obtain
∞∑

n=n0

bn +

∞∑
n=n0

αncn < +∞,

which implies that

(H1) :

∞∑
n=n0

bn < +∞ and (H2) :

∞∑
n=n0

αncn < +∞.

Thus from the definition of bn, relation (4.36) and (H1), we obtain

(4.38) lim
n→∞

d2(xn, yn) = lim
n→∞

d2(yn, xn+1) = 0.
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Since {xn} is bounded, the inequality (4.38) implies that {yn} is bounded. As αn → 0 and
lim
n→∞

an ∈ R, from the definition of an, we get

(4.39) lim
n→∞

d2(xn, x̄) ∈ R.

Using (H2) and
∑∞
n=n0

αn = +∞, we get lim inf
n→∞

cn = 0. Therefore from the definition

of cn and λ > 0, we have lim inf
n→∞

d2(yn, x̄) = 0. This together with relation (4.38) gives

lim inf
n→∞

d2(xn, x̄) = 0. Hence from (4.39), we have lim
n→∞

d2(xn, x̄) = 0, that is, xn → x̄ as

n→∞. By using relation (4.38), we obtain that the sequence {yn} is also convergent. �

Remark 4.7. (a) Algorithm 4.6 is the extension of Algorithm 3.1 in [11] from Hilbert spaces
to Hadamard manifolds.
(b) Algorithm 4.6 generalizes Algorithm 1 in [7] in the following ways:

(i) In the convergence result of Algorithm 1 in [7], the sequence of step-size is bounded
and depends on the modulus of the Lipschitz-type constant function, which can
make restrictions in applications because Lipschitz-type constants are often un-
known or difficult to approximate, whereas in our convergence result the sequence
of step-size is independent of the modulus of the Lipschitz-type constants as well
as the modulus of the strong pseudomontonicity constant of the equilibrium bi-
function, that is, the construction of solution approximations and the proof of its
convergence can be done without the prior knowledge of the modulus of Lipschitz-
type constants and strong pseudomonotonicity constant of the equilibrium bifunc-
tion.

(ii) A little difference in comparison with Algorithm 1 in [7] is that in Algorithm 4.6
we used two distinct step-sizes while only one value of equilibrium bifunction at
current approximation needs to proceed per each iteration.
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