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Measures of noncompactness and infinite systems of
integral equations of Urysohn type in L>°(®)

SHAHRAM BANAE!I!, VAHID PARVANEH? and MOHAMMAD MURSALEEN®*

ABSTRACT. In this article, applying the concept of measure of noncompactness, some fixed point theorems
in the Fréchet space L°°(®) (where & C R%) have been proved. We handle our obtained consequences to
inquiry the existence of solutions for infinite systems of Urysohn type integral equations. Our results extend
some famous related results in the literature. Finally, to indicate the effectiveness of our results we present a
genuine example.

1. INTRODUCTION AND PRELIMINARIES

Measure of noncompactness (MNC) approaches ([8], [17]) have an substantial role
in nonlinear functional analysis and fixed point theory. Heretofore, applying MNC ap-
proaches many articles have been extracted on the existence and behavior of solutions for
nonlinear differential and integral equations. Some of these papers are [2, 3, 6,7, 11, 14].

In this paper, we extract some fixed point theorems in Fréchet spaces with the assis-
tance of MNC approaches and the Tychonoff fixed point theorem (TFPT), which are ex-
tensions of the results presented in [18, 19, 20, 21].

The conformation of this paper is as follows. In part 1, some preliminaries and concepts
are summoned. Part 2 is allocated to stating some fixed point theorems of Darbo-type in
the space L>°(®). Finally, in part 3, we apply our results to contemplate the existence of
solutions for the following infinite system of nonlinear integral equations:

(1.1) on(l) :pn(b,al(b)...,an(b),...7/®7,n(L,n, (aj(ﬁ));gl)dn)

where & C R* in which R denotes the countable cartesian product of R with itself. Note
that some classes of infinite system of nonlinear integral equations have been investigated
in [10, 12, 15].

All over this paper, B is assumed to be an infinite dimensional Banach space or a
Fréchet space. As well as, B(z,r) marks the closed ball centered at = with radius r. The
symbol B, stands for the ball B(0,r). If Q be a subset of B, then the closure and closed
convex hull of Q, are announced by Q and ConvQ, respectively. Furthermore, the family
of all nonempty bounded subsets and the collection of all relatively compact subsets of B
are indicated by Mty and Ny, respectively.

A vector space Q over the field R which is endowed with a topology such that the
maps (t,k) — ¢+ « and (v,t) — v are continuous from Q x Q and R x Q to Q is
called a topological vector space (TVS). A TVS is called locally convex if the origin has a
neighborhood basis (i.e. a local base) consisting of convex sets [16]. Fréchet spaces are
locally convex and complete with respect to a translation invariant metric.
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Example 1.1. [4] If 9B; is a Banach space (i € N)and d : [[;cyB: X [[;cnB: — R be
1

characterized by d(, k) = sup {? min{1,d(;,k;)} + i € N}, 0 = (11,12,...) and k =
(K1, K2,...), then H B, is a Fréchet space.

=
Definition 1.1. [5] Let M be a collection of subsets of a Fréchet space 8. If Q € M implies
that Conv(Q), Q € M, then we say that M is an admissible set.

Definition 1.2. [5] Let M be an admissible subset of a Fréchet space 5 and 9t : M —
R, . We say that 9 is a measure of noncompactness on ‘B if

1° The family ker{M} = {Q € M : M(Q) = 0} is nonempty and ker{M} C Ny.

2° QC A= M(Q) <M(A).

32 M(Q) = M(Q).

4° M(ConvQ) = M(Q).

57 M(nX + (1 —n)A) < nIN(X) + (1 —n)M(A) forall 5 € [0,1].
6° If ( ) be a sequence of closed sets from M such that Q1 C Qj for all k =

1,2, and if kh_>moo M(Qx) =0, then Que = N2, Qp # 0.

Theorem 1.1. (TFPT [1]) Let B be a Hausdorff locally convex TVS, G be a convex subset of B
and H : G — B be a continuous mapping such that

H(G CACG

where A is compact. Then, H possesses at least one fixed point.

2. SOME FIXED POINT THEOREMS IN A FRECHET SPACE

In this section, some Darbo-type fixed point theorems [9] in a Fréchet space have been
investigated.

Theorem 2.2. Let G be a nonempty, closed and convex subset of a Fréchet space B, It be a
measure of noncompactness on B and H : G — G be a continuous mapping such that

22) M(H(Q)) = ((M(Q),

where Q € M and ¢ : R — Ry is a nondecreasing function such that lim ¢"(t) = 0 for all
n—oQ

t > 0. Then H admits at least a fixed point in G.

Note that ¢(t) = kt for some k € (0,1) and ((t) = In(1 + ¢/2) are some examples of
function (.

Proof. Construct (P,,) such that Py = G and P,, = ConvH(P,_1) for all n > 1, inductively.
According to the suppositions of the mapping 91, we have

M(Pr) = M(ConvH (Pr,—1)) = M(H(Pr-1)) < ((M(Pr-1))-

Therefore,
M(Py) < ¢ (M(Po)).

Abandoning n — oo in the above relation, we understand that lim,,_, ., 9M(P,) = 0.
If Poo = N5, Py, then Definition 1.2 warrantees that P, is nonempty. Obviously, Pu.
is a convex compact subset of L>°(®) . Now, TFPT insinuates that H possesses a fixed
point. O
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Corollary 2.1. Let G be a nonempty, closed and convex subset of a Fréchet space B, I be a
measure of noncompactness on B and H : G — G be a continuous mapping such that

(2.3) M(H(Q)) < kM(Q),
where Q € M and k € [0,1). Then H admits at least a fixed point in G.

Theorem 2.3. Suppose that M; be a measure of noncompactness on Banach space B; for all i € N.
Let

M={Gc]]s:: sup{I;(wi(G))} < oo},

i=1

where w,;(G) announces the natural projection of H B, into B; and M : M —s R be defined

i=1
by
(2.4) M(G) = sup{Mi(w:(9))},
then O is a measure of noncompactness on Q = H B;.
=1

Proof. The proof of (2°) is obvious and the properties (3°)-(5°) are immediate conse-
quences of

wi(ald + (1 — @)V) = aw;(U) + (1 — @)w;(V),

w;(ConvG) = Convw;(G),

w;(G) C w;(G) C w;(G).

If %(Q) = 0 for some G € M, then M;(w;(G)) = 0 for each 1 < ¢ < n. Hence,
according to (1°) of Definition 1.2 for the measure of noncompactness 91; we deduce that
w;(G) is relatively compact for all i € N. Now, exploiting the Tychonoff’s theorem[13],
we see that G is relatively compact. Eventually, it sufficient to show (6°). Let (G,,) be a

sequence of closed sets from M such that G,; C G, for all n € N and h_I}n M(G,) =0
for all n € N. So, we conclude that lim 9 (w;(G,)) =0 (or, lim 9M;(w;(G,)) = 0) and
n—oo n—oo

QX = ﬂ w;(Gn) # 0 for all i € N. Therefore, H Q% = G # 0. This ends the proof. O
n=1 =1

Remark 2.1. The Proof of Theorems 2.2 and 2.3 are parallel to the Proof of Theorems 3.2
and 3.1 of reference [5], respectively.

Corollary 2.2. Let B; (i € N) be a nonempty, closed, convex and bounded subset of Banach space
B, and IM; be an arbitrary (MNC) on B;. Let H; : [[;2, B; — B; (i € N) be a continuous
operator such that

(2.5) Mm; (Hl(H Qi)) < (sup ;) (M(Q4)),

i>1

where Q; C B; (i € N) and {; : Ry — Ry is a bounded mapping which satisfies the conditions
of Theorem 2.2 for all i € N. Then there exists (:;)52, € [[;=, Bj such that

(2.6) mgmﬁgzg
forall i e N,
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Proof. Let H : ]2, B; — [1;2, Bi be characterized by

27) H((4)7%1) = (Hi((4)720)s H2((45)720)s -+ Hi(45)720)5 - )

for all (1;)32, € [];2, Bi- We will investigate that all conditions of Theorem 2.2 hold. Let
Q C [I;2, Bi. Let w;(Q) signifies the natural projection of [[;-, Q; into Q;. For each
n € N, we have

M(H(Q) <M(H (] =u(9)).
k=1

i>1

(2.8) :sup{mi(Hz’(ﬁ Wk(Q))>}
k=1

<(sup ¢;)(M(Q)).

i>1
Taking Z = sup, > (i, all conditions of Theorem 2.2 are satisfied. Therefore, H possesses
a fixed point and (2.6) holds. O

3. APPLICATION

In this section, we study the existence of a solution for integral equation system (1.1) in
the space L>°(®), where & C R¥ to indicate the applicability of presented results.

Let L>°(&) be the space of all real valued Lebesgue measurable functions on an open
subset & of R“ which are essentially bounded on R, endowed with the norm

lpllco = inf{M > 0: |p| < M a.e. on &}.
~ Let Q be a bounded subset of the space L>°(&). Let Z be a positive real number and
Bz be the closed ball with center 0 and radius Z. For all p € @ and for all ¢ > 0, let:

w?(p,e) = sup{flonp — pll L~ (5. * [IBll < e},

w?(Q.¢) = sup{w?(p.e) : p € Q)

z _ 1 z
Wo (Q) - 51£>n0w (Q75)7
wo(Q) = lim wi(Q),
Z—00

and

dz(Q) = sup{ess Sup, lp(e) —e(W)] = p, 0 € QF,
L[>

d(Q)= lim dz(Q)
Z—00
M(Q) = wo(Q) + d(Q).
The function 91 is a measure of noncompactness in the space L (&) [3].

Definition 3.3. A function p : & x R¥ — R is said to have the Carathéodory property if

(a) The function © — p(¢, o) is measurable on & for all o € R¥.
(b) The function 0 — p(¢, o) is continuous on R¥ for almost all © € R¥.

Let:

(P1) pn: 8xRY xR — R (n € Nand & is an unbounded subset of R“ ) satisfies
the Carathéodory conditions with p,,(.,0,...) € L>(&). Moreover, for a bounded
nondecreasing, concave and upper semicontinuous mapping x with x(t) < ¢,

pn(Ls01, 00y 0) = Pty S1se Sy @) S x(sgglai —l)+1le—dl,
(-

fora.e. . € &.
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(P2) nn + & x & x R — R (n € N) satisfies the Carathéodory conditions, 7, €
loc(@ x & x R¥) and for a positive constant D

(3.9) ess fgg ‘/@nn(L,/s, (O’j(li))?il)dﬁ‘} <D.
Moreover,
G10) lim ess s | / (nn(w, (05()22.1) = (5 (55 ()32 ))dn\ 0

uniformly with respect to ¢;,¢; € L>°(®) and for all » > 0 with
max{||oloc, l[5jlloc} < 7;

(Ps)
lim ess sup/ 1 (¢5 5, (05(K))521) |dr = 0.
®\Bz

Z—00 LE®

(P4) Foreachn e N

x(sup Ai) + E,, + D < Ay,
i>1

for some ng such that A, < A\,41 where E,, := esssup,cg |pn(2,0,0,...)].

Note that we say that a function f : G — R belongs to L{S,(R¥) if fxK € L>(RY) for
every compact set K contained in G, where G is an open subset of R¥.

Theorem 3.4. Having suppositions (P1) — (Pa), the infinite system (1.1) admits at least one
solution (o; = 0;(1))2, € (L™(B))“.

Proof. First, consider arbitrary n € N. Let H,, : (L*>°( &))¥ — L*°(®) be defined by

(3.11) H,((0,)320)() = pn(b,al(b),...,an(L),...,/@nn(L,n, (aj(n));';l)d/i).

According to the Carathéodory conditions, we conclude that H,,((c;)$2,) is measurable
for any (0;)32, € (L>(®))~.
Now, we prove that H,,((0;)52,) € L>(8). Handling suppositions (P1) -(Ps4) we have

| Hn((05)521) ()]
< |pn(L,al(L),...,an(L),...,/ﬁnn(L,ﬁ, (03 ()220 )dR) — put,0, )] + (2 0,....)]

Sx(sup\ai(L)DJrl/@nn(b,m (0 (£))521)dA] + [pn (2,0,

i>1
< x(sup||oil|leo) + D + Ep.
i>1

for a.e. . € &. Therefore, we conclude that
(3.12) HHn((UJ) )Hoo <X(SUPH01”00)+D+E
Thus, H,,((0;)52,) € L>(&) for any (Uj(b))izl € (L>(8))~.

Propounding relation (3.12) and exploiting (Ps4) , the function H,, maps H By, into B Ang
i=1
Now, we prove that H, is a continuous operator. Let 0 < ¢ for which 0 < € <
take arbitrary ((0;)2;) and ((;)32;) € (L>(8))“ such that

A((77)520), ()320)) = 5w { o min{1, s — silloc} 14 € N} <.

and

271

Then,
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(05200 = B0 0] € [pn (0010000 [ (e (0301 32)1)
(10500 [ e (5 ()52
< X(sup [o3(0) = i) +1 [ oo (o)1~ / (0 5532
Exerting supposition () we can choose Z; > 0 such that

(313) esssup| [ [0, (05 (0))520) = a0, (5 (0)) 32 | <
lell>2

Exerting suppositions (P;) we can choose Z, > 0 such that

(3.14) esssup [ o, (0, (6))52 )l <.
L€EG JB\Bz

Now, let Z = max{Z;, Z»}.
From (3.13), we conclude that

(315) ess supl i (03)32.0)(0) = Ha()320) ()| < x(6)

For almost all . € Bz N &, we have

[ Ha(0)32.)(0) = Ha(($)320) ()] < x(sup los(s) — i)

i>1

+| : [0 (s 55 (0 (R))FZ1) = n (1, 5, (5(#)) 521 d|

o ek, (05(8)721) — (e, K, (55(K))721)1dk|
®\Bz

< X(E) + | _ [nn(L7 K, (Uj (K/))joil) = (L K, (%’(H))(f:ﬂ]d’ﬂ

Bz

+2ess sup/ 17 (¢, K, (Uj(fi))?i1)|d’€
LESB L’5\Bz

(3.16) < X(€) + Dn(e) + 2ess sup / s (03 ()220l
€6 Jo\Bz

where
Un(e) = mf{G > 0= [nn (e, 5, (05(#))521) = (e 5, (G (K))720)[ < G
for ae.i,k € Bz C®, and (5;(k)52,) € B((0;(r)52,),€)}.

Exerting the Carathéodory reservations for n,, on Bz x Bz x B((0;(k)$2,),¢), one has
9n(e) = 0as e — 0. Therefore, from (3.14 ), (3.15) and (3.16) we conclude that H,, is
continuous on (L™ (&))v.

Now, we demonstrate that H,, has all the reservations of Corollary 2.2. Let A,, be a
nonempty subset of By, foralln € Nwith A, C A,;1. Assume that Z > 0 and £ > 0 be
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given. For almost all « € &, all h with ||| < ¢ and all o,, € A,, we have
[Hon((0)721) (1) = Hn((07)721) (e + 1)
< a0 010 00 ), Sy M (0 ()32 ) )
—pn(t+h,o1(0), . on(t), . [ (e K, (Jj(/i));‘;l)dn)’
+pn (L + h,01(e), - Un( S (e 6, (05 (R))52, ) dr)
_pn(L+h,01(L—|—h> (L h), o [ (e + Ry K, (05(k ))j‘;l)dff)‘
HZ, (pnr) 4 x(50pis1 [o:(0) — 030+ W)
| S e (05 (00)520) = e+ o, (05 ()32, )|
| oy (06 (05 R))32) = 04 B (o))

< H{,\ 1 (Pns€) + x(sup>, w?(04,¢))
+wi, (1, €) + 2685 5UDce Jo 5, [Mn (s 5, (05(1))520)ds,

where
w(z)\n)(pn,s) =inf{G > 0:|pn(t,01,...,0n,...,0) —p(t + h,01,...,00,...,0)] <G
fora.e.. € Bz, ||h| <e,|oi < \i, Jv| < D}

and

W) (s €) = mf{C > 02 0 (1, 5, (05 (8))520) = M (e + Dy 5, (05(8))52)] < ©
forae.i,k € BzN®&,|h| <elo;| <\

Since o, was an arbitrary element of A,, for all n € N in the above inequality, we subsume
that
w? (Hn(H A;), 5) < w(ZAn)(pm £) 4 x(supw?(04,¢))

i>1

+ w(Z)\n)(nn,s) + 2ess sup/ (e K, (04(8))524) k.
LEBG JB\Bz

Having Carathéodory provisions for p,, and 7,, on Bz x H By, x[-D,D]and Bz x Bz x

i=1

H B,, respectively, one has w )(pn,e) — 0 and w(z/\n)(nms) — 0ase — 0. Thus, we

i=1
procure that

( HA ) < x(supwé (A)) + Qesssup/ (K, (0(K))720)|dE.
i>1 €6 Je\Bz

If Z — oo, handling supposition ( P3) we attain that

(3.17) ( HA ) < x(supwo(A;)).

i>1

On the other hand, for all o;,¢; € A;, we have

esssup| Hy ((07)521)(¢) = Ha(($;)521)(¢)

< esssu sup;>q |oi(t) — si(e
Jll>= < esssup (x(supizy |o:(0) = (1))

llell>2
+6”sii1;p\ Jo (M (2, 5, (0 (£))521) = M (1, 5, (5(K)) 524 ) )ds].
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Accordingly, we attain that
dz(Hy(]1 Ai)) < x(supdz(Ai))
(3.18) i=1 i1 N N
+e‘fi§12pl Jo ey 85, (05 (K))321) = (e, 55, (5 (K)) 521 ) )]
L

If Z — oo in (3.18), exploiting (Ps;) we have

i>1

(3.19) d(Hn(ﬁ AZ—)) < X(sup d(Ai))‘
=1

Subsequently, constituting (3.17) and (3.19) we acquire that
3.20 Al Hy(| | Ai)) + Ho(Hn(| | Ad)) < Ho(A)) + x| supd(4,) ).
G20)  d( 11 )) + Ho(H H )) = XCoup Ho(89) + x(supd(a)

Since x is a concave function, from (3.20) we acquire that

%(wo (Hn(ilj Az)) + diam( H,( lo_o[ A; ))) 3 [X(bup wo(A;)) + x(sup diam(Ai))]

i=1 i>1 i>1

1 1
< X(g(SUPWO(Ai)) + 3 lim sup diam(Ai))»

i>1 i

and we get
Lon, (Hn(lj A)) < X(%zmnmi)).
Taking M, = %zmn we find that )
o, (#([20) < x(om(40):

Now, from Corollary 2.2 and taking (; = x for all i € N, for a (0; = 0;(¢))52; €
(L*°(&))% one has

on(t) = pn (L, o1(t) ... on0(0),. .., /@ (L, Ky (Uj(li));.;l)dﬁ).

O
Example Let:
(3.21)
on(t) = M + tanh |0, (¢)]
SRR e )
b antan [ o) eol(oa(O)) - of (o) s(on(@i) o)
elltlloo & 3

where i,n € N. Eq. (3.21) is a special case of Eq. (1.1) with

|
pn(b,al,...,an,...,z)—2+‘|L||go+tanh|an( )|+ HH arctan z,
sin(||&][2,)- cos((0,,(¢))22 1) + cos3(||t]|oo)- sin((on, (2))5
01,03 = SUAES) cos(oa(0)2) + o ). sin(ne)i)

and & C R¥ is bounded.
Evidently (1) holds and x(t) = arctan(¢) is nondecreasing, concave and upper semi-
continuous such that x(¢) < t fora.e. t > 0. Lett € Rand o; > ¢;. Thus
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|pn(bao-1a"'a0-n7"'?g) _pn(t’agla"'ag’ru"'aq”
< |tanh|o,(¢)] — tanh |, (¢)]|

_'_7
e||b||oc 1

<tanh|o,(t) — <u ()| + grrsle — 4

< tanhsup,,>q [0, (t) — u (1) + ]2 —

= X(supy,>1 [on(t) —n(W)]) + o —ql-

| arctan o — arctan ¢

As well as,

} < 0.36

E, :=esssup|p,(¢,0,0,...)| : n € N} =esssu
Dla(1.0.0...)| 1 n € N} = esssup{ ;£

Le®

Also, p satisfies the Carathéodory supposition and p,(.,0,0) € L>°(R*). Thus, condition
(ii) holds. Moreover, 1,, satisfies the Carathéodory conditions and since

€ss sup ‘ / (L, K, (O'j(li));?il)dl-ﬁ
LESB R

1 / sin(k?). cos(o, (1)) + cos?(¢). sin(> o2, W)
= esssup|— ( dk
er e\ JR (2+sin(C2 o )\2{1)
2
S )
e

2
so, we take D = —. Moreover,
e

lim ess Sup’ (/ sl coslonle)  cos (sl m)
(2 +sin(3272, W)
sin(k?). cos(s,,) + cos®(v). sin(> 2, W
- T : d/i‘ =0
(2 + SIH(ZZ 1 |§1|2+1)

uniformly with respect to 0;,¢; € L>(R) and for all A > 0 with max{||o; /s, [|Sj[loc} < A.
Also,

200 >z

hm €sssup

1 sin(k?). cos(o, (1)) + cos?(¢). sin(>o2 m)
‘/ : dlﬁ‘ =0.
eR | JR\B; €

(2 =+ SIII(Z:z 1 m)

It is easy to check that the sequence (\,,) = (3,4, 5, . . .) satisfies the inequality in condition
(7)4), i.e.,

2

x(sup \,) + E, + D = 0.99505475368 + 1 + - < Ap,
n>1

for all n. Therefore, all the conditions of Theorem 3.4 hold. Hence, the integral equation

(3.21) possesses at least a solution.

4. CONCLUSION

The existence of a solution for the integral equation system (1.1) in the space L>(G),
where G C R*, was investigated in this study. Arab et al. [5] investigated the problem
of finding solutions for an infinite system of two-variable integral equations in the space
(BC(R4+ x R4))“. The benefit of our approach is that any function in the space L*>°(G)
need not to be continuous.
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