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On the properties of lexicographic tolerable robust solution
sets for uncertain multi-objective optimization problems

PORNPIMON BORIWAN1, DAISHI KUROIWA2 and NARIN PETROT1,3∗

ABSTRACT. This study provides the important properties of the lexicographic tolerable robust solution for
uncertain multi-objective optimization problems which was introduced by Boriwan et al. [Boriwan, P.; Ehrgott,
M.; Kuroiwa, D.; Petrot, N. The lexicographic tolerable robustness concept for uncertain multi-objective opti-
mization problems: a study on water resources management. Sustainability. 12 (2020), no. 18, article number
7582.]. Also, the relationship between the lexicographic tolerable solution concept and the well-known robust so-
lution, as the set-based robust efficiency [Ehrgott, M.; Ide, J.; Schöbel, A. Minmax robustness for multi-objective
optimization problems. Eur. J. Oper. Res. 239 (2014), no. 1, 17–31.], are provided.

1. INTRODUCTION

Many real-world problems are often faced with several objectives which need to be con-
curently optimized, but not all relevant input data are known exactly in advance. These
two issues have been studied in the areas of multi-objective optimization and robust opti-
mization, respectively. Evidently, since the combination of both robust optimization and
multi-objective optimization is versatile and adaptable, recent years have seen numerous
applications on the problem of management science for which problems are structured in
mathematical form of robust multi-objective optimization to generate managerially rele-
vant insights. For example, water resources management planning, as in [12], time table
information systems, see [6, 8], and flight route planning, see in [3, 13], are some of the
concrete applications of robust multi-objective optimization.

Due to the usefulness of robust multi-objective optimization, various approaches have
been presented throughout the literatures for which practitioners can choose from those
concepts to fit in the respective robust multi-objective application at their hand. However,
as a lack of total order in comparing the vector-valued functions and unclear definition
in the worst case for robust multi-objective optimization problems, many researchers are
trying to find reliable approaches which are suitable for various practical problems. Ac-
cording to the worst case in minmax robustness which was firstly presented by Soyster
[14] and extensively studied by Ben-Tal and Nemirovski [1] in robust single objective op-
timization problems, the classical concept of robust solution was introduced by Kuroiwa
and Lee [10] for uncertain multi-objective optimization problems, so-called the point-
based minmax robust efficiency concept. Another interpretation of minmax robustness
concept for uncertain multi-objective optimization problems is the set-based minmax ro-
bust efficiency concept which was proposed by Ehrgott et al. [4]. The idea underlying this
solution concept of minmax robustness is to find solutions that minimizes the objective
function in the worst case of the considered uncertain multi-objective optimization prob-
lems. According to this robustness concept, the decision makers should obtain the robust
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solution which performs remarkably well with a good trade-off for all objective functions.
Notice that the point-based minmax robust efficiency concept and the set-based minmax
robust efficiency concept are identical in the case of considering the objective-wise uncer-
tain multi-objective optimization problem. Recently, another direction of robustness con-
cepts for uncertain multi-objective optimization problems was proposed by Boriwan et al.
[2], which is called the lexicographic tolerable robust solution. This approach provides a
solution which is appropriate for the practical problems in which the objective function
is composed of different level priorities and the worst performance vector of the solution
obtained by the proposed concept is close to the reference point of the problem, within an
acceptable tolerance threshold. The main conclusion in this paper will be focused on this
solution concept.

The contribution of the current paper is composed of two major sections. Firstly, we
analyse and present the important properties of the lexicographic tolerable robust solu-
tion which was proposed by Boriwan et al. [2]. Secondly, we analyze the relation of the
lexicographic tolerable robust solution to the existing set-based minmax robust efficiency
concept on uncertain multi-objective optimization problems.

2. PRELIMINARIES

2.1. Notations and Basic concepts. In this section, we introduce the main notations and
basic concepts which will be used throughout this work. For each p ∈ N, we use an abbre-
viation Ip for the index set {1, 2, . . . , p}. For vectors x, y ∈ Rp with x = (x1, x2, . . . , xp), y =
(y1, y2, . . . , yp), we define notations w,4,≺, and ≤lex as follows:

x w y ⇔ xi 6 yi for all i ∈ Ip,
x 4 y ⇔ xi 6 yi for all i ∈ Ip and x 6= y,
x ≺ y ⇔ xi < yi for all i ∈ Ip,
x ≤lex y ⇔ xm < ym where m := min{k|xk 6= yk}.

We may note that the notations w,4, ≺, and ≤lex are used to stand for the relations on
Rp and 6, < are used to stand for the relations on R, respectively.

By using the analogously reversed inequalities, includingv,<,�, and≥lex, we denote
the orthants of Rp as follows:

Rpv := {x ∈ Rp|x v 0},
Rp< := {x ∈ Rp|x < 0},
Rp� := {x ∈ Rp|x � 0},
Rp≥lex

:= {x ∈ Rp|x ≥lex 0}.
For a subsetA of Rp, by using the binary relation≤lex, Boriwan et al. [2] considered the

infimum of set Awith respect to the lexicographic order≤lex, and denoted such vector by
inf

with lex
A. That is,

inf
with lex

A ≤lex x, for all x ∈ A.(2.1)

Notice that by means of inf
with lex

A in (2.1), Boriwan et al. [2], determined the concept of

the reference point as the infimum of set of the worst performance vectors for the lexico-
graphic tolerable robust solution concept. It is worth pointing out that the corresponding
reference point is satisfied the priority levels of each component of the vectors in the con-
sidered set with respect to the concept (2.1). After introducing such lexicographic tolerable
robustness approach, they also provided the method to compute an acceptable tolerance
threshold which can be guaranteed the existence of lexicographic tolerable robust solu-
tions. For more details on nonemptiness and the method of computing an acceptable
tolerance threshold, we refer the reader to see in [2].
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In order to review the concept of lexicographic tolerable robust solution in [2], we need
to recall the following important notation of ordering the values nonincreasingly which
will be used throughout this paper. The sort function, sort(·) : Rp → Rp, is a function that
reordering the component of each vector on Rp in a nonincreasing way. That is, for each
y ∈ Rp,

sort(y) := (yσ(1), yσ(2), . . . , yσ(p)),(2.2)

where σ is a permutation on Ip such that yσ(1) > yσ(2) > · · · > yσ(p). In this case, we will
write sort(y) := (sort1(y), sort2(y), . . . , sortp(y)).

Next section, we provide a short introduction of the lexicographic tolerable robust so-
lution concept [2] and also the relevant notations.

2.2. Lexicographic robust solutions with respect to the tolerance threshold for uncer-
tain multi-objective optimization problems. For an objective function f : Rn×U → Rp, a
feasible setX ⊆ Rn, and an uncertainty set U = {s1, . . . , sq}, the uncertain multi-objective
optimization problemMP(U) is given as a family of {MP(sj)|sj ∈ U} of deterministic
multi-objective optimization problems

(MP(sj)) min f(x, sj)(2.3)
subject to x ∈ X.

For each i ∈ Ip and x ∈ Rp, the vector which is composed of the value of the ith

component from each scenario of the objective function f at the alternative solution x is
denoted by c(i)(x) in Boriwan et al. [2]. That is, for each x ∈ Rn,

c(i)(x) := (fi(x, s1), fi(x, s2), . . . , fi(x, sq)) for each i ∈ Ip.(2.4)

By using this notation c(i)(x), the authors introduced the notation ĉ(i)(x) to refer to the
reordered vector of the vector c(i)(x) in nonincreasing way, that is,

ĉ(i)(x) :=
(
ĉ
(i)
1 (x), ĉ

(i)
2 (x), . . . , ĉ(i)q (x)

)
,(2.5)

where ĉ(i)j (x) = sortj(c
(i)(x)), for all j ∈ Iq. Consequently, for each x ∈ Rn and j ∈ Iq ,

they introduced the worst performance vector, worstj(f(x,U)), by

worstj(f(x,U)) :=
(
ĉ
(1)
j (x), ĉ

(2)
j (x), . . . , ĉ

(p)
j (x)

)
.(2.6)

Subsequently, the vector
(
ĉ∗1, ĉ

∗
2, . . . , ĉ

∗
q

)
=: ĉ∗ ∈ Rp×q will be called the reference point of

the problemMP(U) if

ĉ∗j = inf
with lex

{
worstj(f(x,U))|x ∈ X

}
,

for each j ∈ Iq .
Here, the lexicographic tolerable robust solution concept which was introduced by

Boriwan et al. [2] is presented.

Definition 2.1. Let MP(U) be an uncertain multi-objective optimization problem to-
gether with the reference point

(
ĉ∗1, ĉ

∗
2, . . . , ĉ

∗
q

)
=: ĉ∗ ∈ Rp×q . For eachα := (α1, α2, . . . , αq) ∈

[0,∞)p×q , the set of lexicographic tolerable robust solutions with respect to the tolerance
threshold α, which will be denoted by LRS(α), is

LRS(α) :=

q⋂
j=1

A
αj

j ,

where Aαj

j :=
{
x ∈ X|worstj(f(x,U)) ∈

(
ĉ∗j + αj

)
− Rpv

}
.
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Remark 2.1. (i) When p = 1, that is we are concerned with an uncertain single objec-
tive optimization problem, the concept of lexicographic tolerable robust solution
in Definition 2.1 is identical to the lexicographic α−robust solution which was
introduced by Kalaı̈ et al. [9].

(ii) When |U| = 1, this means that we are dealing with deterministic multi-objective
optimization problems. If α is the zero vector, then the solution concept in Def-
inition 2.1 is nothing but the classical lexicographic solution concept, see [5] for
instance. Notice that there is a concept so-called TOPSIS that also involved the
concept of the reference point (which is called the ideal point in [7]). However, the
TOPSIS method and the lexicographic tolerable robust solution method do have
significant differences in computation of the reference point. Indeed, according
to the lexicographic tolerable robust solution concept, the reference point is de-
rived by using the lexicographic order relation in comparing the vector in the
image space. While, the TOPSIS method, the reference point will be computed
by considering each respective component of the objective function separately by
regardless the priority levels in the objective function.

3. PROPERTIES OF LRS(α)

Now the important properties of the set LRS(α) will be studied and interpreted. We
begin this section by recalling a result in Kalaı̈ et al. [9], which will be used to prove the
important proposition on a relationship between each component of objective function
under all scenarios of an alternative solution and the worst performance vector.

Lemma 3.1. [9] Given an uncertain single objective optimization problem and alternative solu-
tions x, y ∈ X . If f(x, sj) 6 f(y, sj), for each sj ∈ U , then

ĉj(x) 6 ĉj(y), for all j ∈ Iq,
where f : Rn × U → R and the function ĉ is defined as in (2.5).

The following fact immediately follows from the Lemma 3.1.

Proposition 3.1. GivenMP(U) be an uncertain multi-objective optimization problem with the
uncertainty set U = {s1, s2, . . . , sq}. If x and y are alternative solutions in X and satisfy the
relation

c(i)(x) w c(i)(y), for all i ∈ Ip,(3.7)

then
worstj(f(x,U)) w worstj(f(y,U)), for all j ∈ Iq.

Proof. From the relation (3.7), by applying Lemma 3.1 to each value objective function fi,
we have

ĉ(i)(x) w ĉ(i)(y),

for all i ∈ Ip. This immediately implies that

worstj(f(x,U)) w worstj(f(y,U)), for all j ∈ Iq.
�

Property 3.1. [Dominance] Let x ∈ LRS(α). If y ∈ X satisfies

c(i)(y) w c(i)(x), for all i ∈ Ip,(3.8)

then y ∈ LRS(α).

Proof. The proof is directly followed from Proposition 3.1 and Definition 2.1. �
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Interpretation 3.1. The Property 3.1 stipulates that, if there is another alternative solution in
a feasible set X which dominates a robust solution under all scenarios, then it must be a robust
solution.

The following fact leads us to some important results.

Lemma 3.2. Let X ⊆ Rn and x ∈ X . If x w inf
with lex

X , then x = inf
with lex

X.

Proof. For sake of simplicity, we write y∗ := inf
with lex

X . Notice that from y∗ is the infimum

with respect to lexicographic order relation and x ∈ X, it imply that y∗ ≤lex x. Suppose
that x 6= y∗. Then, there exists at least one k ∈ In such that xk 6= y∗k. Defining m :=
min{k|xk 6= y∗k}. From x w y∗, it would follow that

xi = y∗i , for all i = 1, 2, . . . ,m− 1 and xm < y∗m.

This implies that x <lex y∗. This leads to a contradiction with the assumption that y∗

being the infimum. Hence, we can conclude that x = y∗. �

Next, we will consider the non preference property for the set LRS(α). To do so, we
will consider the following binary relation with respect to a vector α under cone Rp<. Let
z and z′ be vectors in Rp, and α ∈ Rp<, the relation 5αRp

<
on Rp< is defined as follows:

z 5αRp
<
z′ ⇔ z′ − α ∈ z + Rp<.

Proposition 3.2. [Non Preference] Let α := (α1, α2, . . . , αq) ∈ [0,∞)p×q . If x ∈ LRS(α)
and z /∈ LRS(α), then for each j ∈ Iq , we have

worstj(f(z,U)) �αj

Rp
<

worstj(f(x,U)).(3.9)

Proof. Let j ∈ Iq . Clearly, if worstj(f(z,U)) and worstj(f(x,U)) are not comparable, then
the conclusion is obtained.

Now, we consider the case that worstj(f(z,U)) and worstj(f(x,U)) are comparable.
Supposing on the contrary that

worstj(f(z,U)) 5αj

Rp
<
worstj(f(x,U)).

Thus, by the definition of 5αj

Rp
<
, we would get

worstj(f(z,U)) 4 worstj(f(x,U))− αj and worstj(f(z,U)) 6= worstj(f(x,U)− αj .
Subsequently, since x ∈ LRS(α), we see that

worstj(f(z,U)) 4 worstj(f(x,U))− αj w (ĉ∗j + αj)− αj = ĉ∗j .(3.10)

Then, from the equation (3.10) together with the definition of the reference point ĉ∗j and
Lemma 3.2, we could get

worstj(f(z,U)) = ĉ∗j .(3.11)

In view of (3.10) and (3.11), we obtain that

worstj(f(z,U)) = worstj(f(x,U))− αj ,
which leads to a contradiction with the assumption that

worstj(f(z,U)) 6= worstj(f(x,U)− αj .
Therefore,

worstj(f(z,U)) �αj

Rp
<
worstj(f(x,U)) for all j ∈ Iq,

this completes the proof. �
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Interpretation 3.2. Here, the non preference property means that there is no preferable solution
being outside the set LRS(α) with respect to the operator worstj(f(·,U)), for each j ∈ Iq and
tolerance threshold α ∈ Rp<.

The following proposition will be concerned with the stability of the solution setLRS(α).

Proposition 3.3. [Stability] For any x, x′ ∈ LRS(α) whereα := (α1, α2, . . . , αq) ∈ [0,∞)p×q ,
we have

worstj(f(x′,U)) �αj

Rp
<
worstj(f(x,U))

and
worstj(f(x,U)) �αj

Rp
<
worstj(f(x′,U))

for all j ∈ Iq.

Proof. Let j ∈ Iq be fixed. Suppose on the contrary that

worstj(f(x′,U)) 5αj

Rp
<
worstj(f(x,U))

or
worstj(f(x,U)) 5αj

Rp
<
worstj(f(x′,U)).

We may assume that worstj(f(x′,U)) 5αj

Rp
<
worstj(f(x,U)). From the definition of

notation 5αj

Rp
<
, we see that

worstj(f(x′,U)) 4 worstj(f(x,U))− αj .
Consequently, since x ∈ LRS(α), we get that

worstj(f(x′,U)) 4 worstj(f(x,U))− αj w (ĉ∗j + αj)− αj = ĉ∗j .(3.12)

But (3.12) means that worstj(f(x′,U)) is less than or equal to ĉ∗j in every component and
there is at least one component of worstj(f(x′,U)) which is strictly less than ĉ∗j . This is
a contradiction to the definition of ĉ∗j being the infimum of set {worstj(f(x,U))|x ∈ X}.
Therefore, we have

worstj(f(x′,U)) �αj

Rp
<
worstj(f(x,U)).

We can obtain the conclusion for the case worstj(f(x,U)) 5αj

Rp
<
worstj(f(x′,U)) by

following anologeously the proof of case worstj(f(x′,U)) 5αj

Rp
<
worstj(f(x,U)). �

Interpretation 3.3. Proposition 3.3 shows that there is no preferable solution among elements in
the set LRS(α) via considering the preference defined by the order relation 5αRp

<
on Rp<.

4. FURTHER DISCUSSION

In this section, we consider the links between the lexicographic tolerable robust solu-
tion and the set-based minmax robust efficiency, which was introduced by Ehrgott et al.
[4]. To do this, we will denote the set of all possible objective vectors under all scenarios
of each alternative solution x ∈ X with the following notation:

fU (x) := {f(x, s) : s ∈ U} ⊆ Rp

We now recall the formal definition of set-based robust efficiency [4].

Definition 4.2. [4] Given an uncertain multi-objective optimization problemMP(U). An
alternative solution x̂ ∈ X is called a set-based minmax robust efficient solution if there is
no x ∈ X\{x̂} such that

fU (x) ⊆ fU (x̂)− Rp<.
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Notice that by replacing the cone Rp< with Rpv or Rp� in Definition 4.2, the alternative
solution x̂ is called a set-based minmax robust strictly efficient solution or a set-based minmax
robust weakly efficient solution, respectively.

Remark 4.2. We point out that the underlying ideas of the lexicographic tolerable robust
solution concept and the set-based minmax robust efficiency are not identical. According
to their own solution concepts, the corresponding solutions with respect to each solution
concept do have the particularity structure on applying to the different practical problems.
Indeed, the solution is of which corresponding to the lexicographic tolerable robust solu-
tion concept will provide the priority levels on the objective function, while the set-based
minmax robust efficiency concept will provide a good trade-off for all objective function.
For example, the lexicographic tolerable robust solution concept have successfully been
applied to the problem of water resources management planning as the priories on each
objective was provided by the decision makers [2], while the set-based robust efficiency
concept was employed in the design of sustainable energy system to identify the designs
of the problem with a good trade-off between economic and ecological criteria, for more
information see [11].

To present the results on relationships between the lexicographic tolerable robust solu-
tion and the set-based minmax robust efficiency, we recall the following supplementary
result.

Lemma 4.3. [4] Given an uncertain multi-objective optimization problem MP(U). Then, the
following statements hold.

(a) For all x′, x̄ ∈ X,

fU (x′) ⊆ fU (x̄)− Rp
[v/</�] ⇐⇒ fU (x′)− Rpv ⊆ fU (x̄)− Rp

[v/</�].

(b) For all x′, x̄ ∈ X,

fU (x′)− Rpv ⊆ fU (x̄)− Rp
[v/</�] ⇐⇒ ∀s ∈ U∃s

′ ∈ U : f(x′, s)[w / - / ≺]f(x̄, s′).

(c) For all x′, x̄ ∈ X,

fU (x′)− Rpv ⊆ fU (x̄)− Rpv ⇒ sup
s∈U

fi(x
′, s) 6 sup

s′∈U
fi(x̄, s

′),

for all i ∈ Ip.
(d) If max

s∈U
fi(x, s) exists, for all x ∈ X and i ∈ Ip, then for all x′, x̄ ∈ X,

fU (x′)− Rpv ⊆ fU (x̄)− Rp� ⇒ max
s∈U

fi(x
′, s) < max

s′∈U
fi(x̄, s

′),

for all i ∈ Ip.

The following result presents the technique for finding the set-based robust efficiency
via the lexicographic tolerable robust solution idea.

Theorem 4.1. LetMP(U) be an uncertain multi-objective optimization problem with the refer-
ence point

(
ĉ∗1, ĉ

∗
2, . . . , ĉ

∗
q

)
=: ĉ∗ ∈ Rp×q and 0 the zero vector in Rp. If x̂ ∈ A0

1 and A0
1 is defined

as in Definition 2.1, then x̂ is a set-based robust weakly efficient solution for the problemMP(U).

Proof. Since x̂ ∈ A0
1, we have that

worst1(f(x̂,U)) w ĉ∗1.(4.13)

By the definition of reference point ĉ∗1 together with Lemma 3.2, it follows that

worst1(f(x̂,U)) = ĉ∗1.(4.14)
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Suppose that x̂ is not a set-based weakly robust efficient solution. Then, there exists
x ∈ X \ {x̂} such that

fU (x) ⊆ fU (x̂)− Rp�.(4.15)

By applying the items (a) and (d) of Lemma 4.3, we have that

max
s∈U

fi(x, s) < max
s∈U

fi(x̂, s), for all i ∈ Ip.(4.16)

By the definition of ĉ(i)1 (·) and definition of worst1(f(·,U)), it imply that

worst1(f(x,U)) 4 worst1(f(x̂,U)) = ĉ∗1.(4.17)

This leads to a contradiction with ĉ∗1 being the infimum of set {worst1(f(x,U))|x ∈ X}.
Therefore x̂ is a set-based robust weakly efficient solution for the problemMP(U). �

The following result provides a sufficient condition on a technique for finding the set-
based robust strictly efficient solution for the problemMP(U).

Theorem 4.2. LetMP(U) be an uncertain multi-objective optimization problem together with
reference point

(
ĉ∗1, ĉ

∗
2, . . . , ĉ

∗
q

)
=: ĉ∗ ∈ Rp×q . Let α1 = (α, α, . . . , α) ∈ Rpv. If Aα1

1 = {x̂} and
Aα1

1 is defined as in Definition 2.1, then x̂ is a set-based minmax robust strictly efficient solution
for the problemMP(U).

Proof. From x̂ ∈ Aα1
1 , it follows that

worst1(f(x̂,U)) ∈ (ĉ∗1 + α1)− Rpv.

This means that,

worst1(f(x̂,U)) w ĉ∗1 + α1.(4.18)

For each j ∈ Iq , we write ĉ∗j =
(
ĉ
∗(1)
j , ĉ

∗(2)
j , . . . , ĉ

∗(p)
j

)
. It follows that,

ĉ
(i)
1 (x̂) 6 ĉ∗(i)1 + α, for all i ∈ Ip.

Suppose on the contrary, that x̂ is not set-based minmax robust strictly efficient for the
problemMP(U). By the Definition 4.2, there is x ∈ X \ {x̂} such that

fU (x) ⊆ fU (x̂)− Rpv.

By the items (a), (b) and (c) of Lamma 4.3, we obtain that

max
s∈U

fi(x, s) 6 max
s∈U

fi(x̂, s), for all i ∈ Ip.(4.19)

We note that for each i ∈ Ip, by the definition of ĉ(i)1 (·), we have that

ĉ
(i)
1 (x) = max

s∈U
fi(x, s), for all x ∈ X.(4.20)

From the equations (4.19) and (4.20), it follow that

worst1(f(x,U)) w worst1(f(x̂,U)).(4.21)

Thus, from the equations (4.18) and (4.21), we must have that x is an another element in
Aα1

1 . This leads to a contradiction with the assumption that x̂ being the unique element in
Aα1

1 . Therefore, x̂ is a set-based minmax robust strictly efficient solution for the problem
MP(U). �
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Remark 4.3. To find a threshold α1 that the set Aα1
1 is a singleton, is not so difficult.

This is because, if we start with tolerance threshold α1, then one can be refined to obtain
the desirable singleton set Aα

new
1

1 , where the updating tolerance threshold αnew1 can be
computed via the method presented by Boriwan et al. in [2]. Nevertheless, there is only
one situation that even we refine the tolerance threshold α1, the corresponding set Aα

new
1

1

still not singleton, that is there are several alternative solutions providing the same worst
performance vector worst1(f(·,U)).

The following example shows a situation that Aα1
1 is not a singleton set for any choice

of α1.

Example 4.1. Let X = {x1, x2, x3, x4} be the considered feasible set. The information
about vector-valued function f for each alternative solution xi estimated under two pos-
sible scenarios s1 and s2 are shown in Table 1. Consequently, the sort function ĉ(i)(·) of
each component function fi and also the jth worst performance vector of each alterna-
tive solution xi are provided in Table 2. Thus, it follows that Aα1

1 = {x2, x3, x4}, for all
α1 := (α, α) ∈ R2

v.

Moreover, according to the Definition 4.2, we can check that the set-based minmax
robust efficiency solution set is {x1, x4}. This means, for any choice of α1, the set Aα1

1 is
not a subset of set-based minmax robust efficiency solution set. Furthermore, by applying
the method of computing the smallest tolerance threshold which can be guaranteed the
nonemptyness of the lexicographic tolerable robust solution concept in [2], we found that
the such solution set is LRS(α∗) = {x3} with α∗ := ((1, 1), (1, 1)). This shows that the
solution sets of those related to lexicographic tolerable robust solution concept and set-
based minmax robust efficiency solution concept can be (extremely) different.

Objective Function
Alternatives f1(·, s1) f1(·, s2) f2(·, s1) f2(·, s2)

x1 4 11 14 4
x2 10 10 11 7
x3 10 5 11 4
x4 10 6 7 11

TABLE 1. The objective function f = (f1, f2) for each alternative solution
xk under all scenarios sj .

Alternatives ĉ(1)(·) ĉ(2)(·) worst1(f(·,U)) worst2(f(·,U))
x1 (11, 4) (14, 4) (11, 14) (4, 4)
x2 (10, 10) (11, 7) (10, 11) (10, 7)
x3 (10, 5) (11, 4) (10, 11) (5, 4)
x4 (10, 6) (11, 7) (10, 11) (6, 7)
ĉ∗j ĉ∗1 = (10, 11) ĉ∗2 = (4, 4)

TABLE 2. The function ĉ(i)(·) and worstj(f(·,U)).
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5. CONCLUSION

In this paper, we presented the important properties of the lexicographic tolerable ro-
bust solution which was introduced by Boriwan et al. [2]. Furthermore, we considered
the links between the lexicographic tolerable robust solution concept [2] and the set-
based minmax robust efficient solution concept [4]. Moreover, we provide a technique
for computing an element of set-based minmax robust efficient solution by using the lex-
icographic tolerable robust solution idea.
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