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A fast viscosity forward-backward algorithm for convex
minimization problems with an application in image
recovery

PACHARA JAILOKA, SUTHEP SUANTAI and ADISAK HANJING

ABSTRACT. The purpose of this paper is to invent an accelerated algorithm for the convex minimization
problem which can be applied to the image restoration problem. Theoretically, we first introduce an algorithm
based on viscosity approximation method with the inertial technique for finding a common fixed point of a
countable family of nonexpansive operators. Under some suitable assumptions, a strong convergence theorem
of the proposed algorithm is established. Subsequently, we utilize our proposed algorithm to solving a con-
vex minimization problem of the sum of two convex functions. As an application, we apply and analyze our
algorithm to image restoration problems. Moreover, we compare convergence behavior and efficiency of our
algorithm with other well-known methods such as the forward-backward splitting algorithm and the fast iter-
ative shrinkage-thresholding algorithm. By using image quality metrics, numerical experiments show that our
algorithm has a higher efficiency than the mentioned algorithms.

1. INTRODUCTION

Over the past decades, many optimization algorithms have been efficiently developed
for solving inverse problems in signal and image processing, see [4, 7, 8, 9, 10, 11, 12], for
instance. Many problems in image processing, especially the image restoration problem, can
be formulated as the following model:

(1.1) y = Bx+ ε,

where x ∈ RN is an original image, y ∈ RM is the observed image, ε is an additive noise
and B ∈ RM×N is the blurring operation. To approximate the original image in (1.1), we
need to minimize the value of ε by using the LASSO technique [22]:

(1.2) min
x∈RN

{
1

2
‖y −Bx‖22 + λ‖x‖1

}
,

where λ is a positive parameter, ‖ · ‖1 is the l1-norm and ‖ · ‖2 is the Euclidean norm.
In general case, (1.2) can be formally considered as the following unconstrained convex
minimization problems.

Problem 1.1. Let f1 : RN → R be a convex and differentiable function with a L-Lipschitz
continuous gradient ∇f1 and let f2 : RN → R ∪ {∞} be a proper lower semi-continuous
and convex function. The problem is modeled as follows:

(1.3) min
x∈RN

{f1(x) + f2(x)}.
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It can be shown [7] that if f1(x) + f2(x)→∞ as ‖x‖ → ∞, then Problem 1.1 has at least
one solution. In addition, a solution x∗ of Problem 1.1 is characterized by the fixed point
equation:

(1.4) x∗ = proxcf2(I − c∇f1)(x∗),

where c > 0, proxf2 is the proximity operator of f2 and I stands for the identity operator
on RN . To solve Problem 1.1, the above equation leads to the following iteration:

(1.5) xn+1 = proxcnf2︸ ︷︷ ︸
backward step

(I − cn∇f1)(xn)︸ ︷︷ ︸
forward step

, n ≥ 1,

where x1 ∈ RN and 0 < cn < 2/L. This method is known as the forward-backward splitting
algorithm (FBSA) [13]. In literature, the FBSA is also called an iterative denoising method
[10], a Landweber iteration [9] or a fixed point continuation algorithm [12].

Beck and Teboulle [4] introduced the fast iterative shrinkage-thresholding algorithm (FISTA)
for solving Problem 1.1 by using an inertial technique as follows:

(1.6)


yn = prox 1

L f2
(I − 1

L∇f1)(xn),

tn+1 =
1+
√

1+4t2n
2 , θn = tn−1

tn+1
,

xn+1 = yn + θn(yn − yn−1), n ≥ 1,

where x1 = y0 ∈ RN , t1 = 1. They proved the rate of convergence of the FISTA and
applied the FISTA to image restoration problems. After that, Liang and Schonlieb [14]
modified the FISTA by replacing tn+1 = (p +

√
q + rt2n)/2 where p, q > 0 and 0 < r ≤ 4,

and proved a weak convergence result.
It is worth noting from the above review that the convex minimization problem is

related to the fixed point problem. Also, we know that a forward-backward operator
T := proxcf2(I − c∇f1) is nonexpansive if 0 < c < 2/L. So the study on fixed point
problems for the class of nonexpansive operators plays an important role in creating op-
timization methods. In the setting of a Hilbert spaceH, let T : H → H be a nonexpansive
operator. The Mann iterative method is a well-known procedure, in order to approximate
fixed points of T ; however, Mann iteration guarantees only weak convergence for the
class of nonexpansive operators. To get strong convergence, many authors often used the
so-called viscosity approximation method [16, 26] as follows:

(1.7) xn+1 = γng(xn) + (1− γn)Txn, n ≥ 1,

where x1 ∈ H and g : H → H is a contraction and {γn} is a suitable sequence in (0, 1).
In particular, if T := proxcf2(I − c∇f1), then we call (1.7) the viscosity forward-backward
algorithm (VFBA).

In this paper, inspired and motivated by these researches, we aim to invent a new
accelerated algorithm for the convex minimization problem which can be applied to the
image recovery problem. The paper is organized as follows. In Section 2, basic definitions,
notations, and some useful tools for proving our main results are given. In Section 3, we
introduce a viscosity-type algorithm with the inertial technical term for finding a common
fixed point of a countable family of nonexpansive operators in a Hilbert space. Further-
more, we prove a strong convergence result of the proposed algorithm under the condi-
tion (Z) and some control conditions. Subsequently, we apply our proposed algorithm
to solving an unconstrained minimization problem of the sum of two convex functions.
Finally, in Section 4, we analyze and illustrate the performance of our algorithm (FVFBA)
for image restoration problems, and also compare its efficiency with the FBSA, the VFBA
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and the FISTA. Numerical experiments show that our algorithm has a higher efficiency
than above-mentioned algorithms by using PSNR and SSIM image quality metrics.

2. PRELIMINARIES

Throughout this paper, we denote by R and N the set of real numbers and the set of
positive integers, respectively. I stands for the identity operator on a Hilbert space. We
assume that H is a real Hilbert space with an inner product 〈·, ·〉 and the induced norm
‖ · ‖. Denote weak and strong convergence of a sequence {xn} ⊂ H to x ∈ H by xn ⇀ x
and xn → x, respectively. If f : H → R is a differentiable function, then we denote the
gradient of f by∇f .

The following classes of nonlinear operators are needed in this work.

Definition 2.1. An operator T : H → H is said to be
(i) Lipschitz continuous if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H,

(ii) a contraction if T is L-Lipschitz continuous where L < 1,
(iii) nonexpansive if T is 1-Lipschitz continuous.

Let T : H → H be an operator. A fixed point of T is a point in H which is mapped to
itself by T , and the set of all fixed points of T is denoted by

Fix(T ) := {x ∈ H : x = Tx}.

The operator I−T is called demiclosed at zero if for any sequence {xn} inHwhich converges
weakly to x, and if the sequence {xn − Txn} converges strongly to 0, then x ∈ Fix(T ). It
is known [19] that if T is a nonexpansive operator, then I − T is demiclosed at zero. Let
{Tn : H → H} be such that ∅ 6= Fix(T ) ⊂

⋂∞
n=1 Fix(Tn). Then, {Tn} is said to satisfy the

NST-condition (I) with T [18] if for each bounded sequence {xn} ⊂ H,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0.

Now, we give an important condition for proving our main result.

Definition 2.2. [1, 2] A sequence {Tn : H → H}with a nonempty common fixed point set
is said to satisfy the condition (Z) if whenever {xn} is a bounded sequence inH such that

lim
n→∞

‖xn − Tnxn‖ = 0

it follows that every weak cluster point of {xn} belongs to
⋂∞
n=1 Fix(Tn).

LetK be a nonempty closed convex subset ofH. The metric projection PK fromH onto
K, is defined for each x ∈ H, PKx is the unique element in K such that

‖x− PKx‖ = inf{‖x− y‖ : y ∈ K}.

It is known that u = PKx if and only if 〈x− u, y − u〉 ≤ 0 for all y ∈ K.
Let us recall the definition of the proximity operator and its properties.

Definition 2.3 ([15, 3]). Let f : H → R ∪ {∞} be a proper lower semi-continuous and
convex function. The proximity operator of f , denoted by proxf is defined for each x ∈ H,
proxf x is the unique optimal solution of the minimization problem

minimize
y∈H

f(y) +
1

2
‖x− y‖2.
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The proximity operator can be formulated in the equivalent form:

proxf = (I + ∂f)−1,

where ∂f is the subdifferential of f defined by

∂f(x) := {u ∈ H : f(x) + 〈u, y − x〉 ≤ f(y), ∀y ∈ H},
for all x ∈ H. Let c > 0. We also know that proxcf is (firmly) nonexpansive and

Fix(proxcf ) = Argmin f := {x ∈ H : f(x) ≤ f(y), ∀y ∈ H}.
Let K ⊂ H be a nonempty closed convex set. In particular, if f := iK is an indicator
function on K (defined by iK(x) = 0 if x ∈ K; otherwise iK(x) =∞), then proxcf = PK .

We end this section by providing useful lemmas for proving our convergence results.

Lemma 2.1 ([5]). Let f1 : H → R be a convex and differentiable function with a L-Lipschitz
continuous gradient∇f1 and let f2 : H → R∪{∞} be a proper lower semi-continuous and convex
function. Let Tn := proxcnf2(I − cn∇f1) and T := proxcf2(I − c∇f1), where cn, c ∈ (0, 2/L)
with cn → c as n→∞. Then {Tn} satisfies the NST-condition (I) with T .

Lemma 2.2 ([23]). Let x, y ∈ H and t ∈ [0, 1]. Then the following properties hold onH:
(i) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2;

(ii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2;
(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3 ([21]). Let {an} be a sequence of nonnegative real numbers and {bn} a sequence of
real numbers. Let {tn} be a sequence of real numbers in (0, 1) such that

∑∞
n=1 tn = ∞. Assume

that
an+1 ≤ (1− tn)an + tnbn, n ∈ N.

If lim supi→∞ bni ≤ 0 for every subsequence {ani} of {an} satisfying

lim inf
i→∞

(ani+1 − ani
) ≥ 0,

then limn→∞ an = 0.

3. METHODS AND CONVERGENCE RESULTS

In this section, based on the viscosity approximation method we introduce a new accel-
erated algorithm using the inertial technique for finding a common fixed point of a count-
able family of nonexpansive operators satisfying the condition (Z) in a Hilbert space. A
strong convergence theorem is proved under some suitable control conditions. After that,
we apply the proposed algorithm to solving a convex minimization problem of the sum
of two convex functions.

We begin by setting the following hypotheses:
• H is a real Hilbert space;
• {Tn : H → H} is a family of nonexpansive operators;
• Γ :=

⋂∞
n=1 Fix(Tn) 6= ∅;

• {Tn} satisfies the condition (Z);
• g : H → H is a k-contraction, where 0 < k < 1.

In optimization theory, to speed up the convergence of iterative methods, many mathe-
maticians often use the inertial-type extrapolation [20, 17] by supplementing the technical
term θn(xn−xn−1). The control parameter θn is called an inertial parameter, which controls
the momentum xn − xn−1. Now, we are ready to introduce a modified inertial viscosity
approximation method as follows:
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Algorithm 1: Modified Inertial Viscosity Approximation Method

Initialization: Let {βn}, {γn}, {τn} be sequences of positive real numbers and let
{µn} be a bounded sequence of nonnegative real numbers. Take x0, x1 ∈ H
arbitrarily.

Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute an inertial parameter

(3.8) θn =

 min

{
µn,

τn
‖xn − xn−1‖

}
if xn 6= xn−1,

µn otherwise.

Step 2. Compute

(3.9)

 wn = xn + θn(xn − xn−1),
zn = (1− γn)Tnwn + γng(wn),
xn+1 = (1− βn)Tnwn + βnTnzn.

Set n := n+ 1 and return to Step 1.

A strong convergence result is established by the following theorem.

Theorem 3.1. Any sequence {xn} generated by Algorithm 1 converges strongly to an element
x∗ ∈ Γ, where x∗ = PΓg(x∗), provided that the sequences {βn}, {γn} and {τn} satisfy the
following conditions:

(C1) 0 < ε1 ≤ βn ≤ ε2 < 1;
(C2) 0 < γn < 1, limn→∞ βnγn = 0 and

∑∞
n=1 βnγn =∞;

(C3) limn→∞
τn
βnγn

= 0.

Proof. One can see that the operator PΓg is a contraction. By the Banach contraction prin-
ciple, there is a unique point x∗ ∈ Γ such that x∗ = PΓg(x∗). Thus, x∗ = Tnx

∗ for all n.
Firstly, we show that {xn} is bounded. From (3.9), we have

‖zn − x∗‖ ≤ γn‖g(wn)− x∗‖+ (1− γn)‖Tnwn − x∗‖
≤ γn‖g(wn)− g(x∗)‖+ γn‖g(x∗)− x∗‖+ (1− γn)‖Tnwn − x∗‖
≤ γnk‖wn − x∗‖+ γn‖g(x∗)− x∗‖+ (1− γn)‖wn − x∗‖
= (1− γn(1− k))‖wn − x∗‖+ γn‖g(x∗)− x∗‖,

which implies that

‖xn+1 − x∗‖ ≤ (1− βn)‖Tnwn − x∗‖+ βn‖Tnzn − x∗‖
≤ (1− βn)‖wn − x∗‖+ βn‖zn − x∗‖
≤ (1− βnγn(1− k))‖wn − x∗‖+ βnγn‖g(x∗)− x∗‖
≤ (1− βnγn(1− k)) (‖xn − x∗‖+ θn‖xn − xn−1‖) + βnγn‖g(x∗)− x∗‖

≤ (1− βnγn(1− k))‖xn − x∗‖+ βnγn

(
θn
βnγn

‖xn − xn−1‖+ ‖g(x∗)− x∗‖
)
.
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By (3.8) and (C3), we have θn
βnγn
‖xn − xn−1‖ → 0 as n → ∞ and so there exists M > 0

such that θn
βnγn
‖xn − xn−1‖ ≤M for all n ≥ 1. Thus,

‖xn+1 − x∗‖ ≤ (1− βnγn(1− k))‖xn − x∗‖+ βnγn(1− k)
M + ‖g(x∗)− x∗‖

1− k

≤ max

{
‖xn − x∗‖,

M + ‖g(x∗)− x∗‖
1− k

}
.

By mathematical induction, we deduce that

‖xn − x∗‖ ≤ max

{
‖x1 − x∗‖,

M + ‖g(x∗)− x∗‖
1− k

}
, ∀n ≥ 1.

This means that {xn} is bounded and hence {g(wn)}, {Tnwn} and {zn} are also bounded.
By Lemma 2.2, we have

‖zn − x∗‖2 = ‖(1− γn)(Tnwn − x∗) + γn(g(wn)− g(x∗)) + γn(g(x∗)− x∗)‖2

≤ ‖(1− γn)(Tnwn − x∗) + γn(g(wn)− g(x∗))‖2 + 2γn〈g(x∗)− x∗, zn − x∗〉
≤ (1− γn)‖Tnwn − x∗‖2 + γn‖g(wn)− g(x∗)‖2 + 2γn〈g(x∗)− x∗, zn − x∗〉(3.10)

≤ (1− γn(1− k))‖wn − x∗‖2 + 2γn〈g(x∗)− x∗, zn − x∗〉

and

‖wn − x∗‖2 = ‖xn − x∗‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − x∗, xn − xn−1〉

≤ ‖xn − x∗‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖.(3.11)

By Lemma 2.2(i) together with (3.10) and (3.11), we have

‖xn+1 − x∗‖2 = (1− βn)‖Tnwn − x∗‖2 + βn‖Tnzn − x∗‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

≤ (1− βn)‖wn − x∗‖2 + βn‖zn − x∗‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

≤ (1− βnγn(1− k))‖wn − x∗‖2 + 2βnγn〈g(x∗)− x∗, zn − x∗〉
− βn(1− βn)‖Tnwn − Tnzn‖2

≤ (1− βnγn(1− k))‖xn − x∗‖2 + θ2
n‖xn − xn−1‖2(3.12)

+ 2θn‖xn − x∗‖‖xn − xn−1‖+ 2βnγn〈g(x∗)− x∗, zn − x∗〉
− βn(1− βn)‖Tnwn − Tnzn‖2

= (1− βnγn(1− k))‖xn − x∗‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

+ βnγn(1− k)bn,

where

bn =
1

1− k

{
2〈g(x∗)− x∗, zn − x∗〉+

(
θn
βnγn

‖xn − xn−1‖
)
θn‖xn − xn−1‖

+ 2‖xn − x∗‖
(

θn
βnγn

‖xn − xn−1‖
)}

.

It follows that

βn(1− βn)‖Tnwn − Tnzn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βnγn(1− k)M ′,(3.13)

where M ′ = sup{bn : n ∈ N}.
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Let us show that {xn} converges strongly to x∗. To apply Lemma 2.3, we let an :=
‖xn − x∗‖2 and tn := βnγn(1− k). From (3.12), we have the following inequality:

an+1 ≤ (1− tn)an + tnbn.

Suppose that {ani
} is a subsequence of {an} such that lim infi→∞ (ani+1 − ani

) ≥ 0. Then,
by (3.13) and (C2) we have

lim sup
i→∞

βni
(1− βni

) ‖Tni
wni
− Tni

zni
‖2 ≤ lim sup

i→∞
(ani

− ani+1 + βni
γni

(1− k)M ′)

≤ lim sup
i→∞

(ani
− ani+1) + (1− k)M ′ lim

i→∞
βni

γni

= − lim inf
i→∞

(ani+1 − ani
)

≤ 0.

By (C1), above inequality leads to

(3.14) lim
i→∞

‖Tni
wni
− Tni

zni
‖ = 0.

Since

βni
‖zni

− Tni
wni
‖ = βni

γni
‖g(wni

)− Tni
wni
‖ ,

by (C1) and (C2) we get

(3.15) lim
i→∞

‖zni
− Tni

wni
‖ = 0.

From (3.14) and (3.15), we obtain

(3.16) ‖zni
− Tni

zni
‖ ≤ ‖zni

− Tni
wni
‖+ ‖Tni

wni
− Tni

zni
‖ → 0

as i→∞. We next show that lim supi→∞ bni
≤ 0. Obviously, it suffices to show that

lim sup
i→∞

〈g(x∗)− x∗, zni
− x∗〉 ≤ 0.

Let
{
znij

}
be a subsequence of {zni} such that

lim
j→∞

〈
g(x∗)− x∗, znij

− x∗
〉

= lim sup
i→∞

〈g(x∗)− x∗, zni
− x∗〉 .

Since
{
znij

}
is bounded, there exists a subsequence

{
znijp

}
of
{
znij

}
and y ∈ H such

that znijp
⇀ y. By (3.16), it follows from the condition (Z) of {Tn} that y ∈ Γ. Here, the

equation x∗ = PΓg(x∗) yields

lim sup
i→∞

〈g(x∗)− x∗, zni − x∗〉 = lim
p→∞

〈
g(x∗)− x∗, znijp

− x∗
〉

= 〈g(x∗)− x∗, y − x∗〉 ≤ 0.

By Lemma 2.3, we can conclude that xn → x∗ as n→∞. The proof is complete. �

Remark 3.1. In Theorem 3.1, if Tn = T for all n ≥ 1, then, by the demiclosedness principle
of T , {Tn} satisfies the condition (Z).

By above remark, we obtain a strong convergence result for finding a fixed point of a
nonexpansive operator T .

Corollary 3.1. Let T : H → H be a nonexpansive operator having a fixed point. Let g : H → H
be a contraction. Suppose that {xn} is a sequence generated iteratively by x0, x1 ∈ H and

(3.17)

 wn = xn + θn(xn − xn−1),
zn = (1− γn)Twn + γng(wn),
xn+1 = (1− βn)Twn + βnTzn, n ≥ 1,
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where an inertial parameter θn is defined by (3.8) and the real sequences {βn}, {γn} and {τn}
satisfy the (C1)–(C3) in Theorem 3.1. Then {xn} converges strongly to x∗ ∈ Fix(T ), where
x∗ = PFix(T )g(x∗).

Next, we consider the minimization problem in the form of the sum of two convex
functions, Problem 1.1. In this situation, we put the following assumptions:

• f1 : RN → R is a convex and differentiable function with a L-Lipschitz continuous
gradient∇f1, where L > 0;

• f2 : RN → R ∪ {∞} is a proper lower semi-continuous and convex function;
• Ω := Argmin(f1 + f2) 6= ∅;
• g : RN → RN is a contraction, where 0 < k < 1

By utilizing Algorithm 1, we obtain the following algorithm for solving Problem 1.1.

Algorithm 2: A Fast Viscosity Forward-Backward Algorithm (FVFBA)

Initialization: Let {βn}, {γn}, {τn}, {cn} be sequences of positive real numbers and
let {µn} be a bounded sequence of nonnegative real numbers. Take x0, x1 ∈ RN
arbitrarily.

Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute an inertial parameter

θn =

 min

{
µn,

τn
‖xn − xn−1‖

}
if xn 6= xn−1,

µn otherwise.

Step 2. Compute

(3.18)


wn = xn + θn(xn − xn−1),
zn = (1− γn) proxcnf2(I − cn∇f1)wn + γng(wn),
xn+1 = (1− βn) proxcnf2(I − cn∇f1)wn + βn proxcnf2(I − cn∇f1)zn.

Update n := n+ 1 and go to Step 1.

A convergence result below is definitely a consequence of Theorem 3.1.
Theorem 3.2. A sequence {xn} generated by Algorithm 2 (FVFBA) converges to a point x∗ ∈ Ω,
where x∗ = PΩg(x∗), provided that the sequences {βn}, {γn}, {τn} and {cn} satisfy the following
conditions:

(C1) 0 < ε1 ≤ βn ≤ ε2 < 1;
(C2) 0 < γn < 1 such that limn→∞ βnγn = 0 and

∑∞
n=1 βnγn =∞;

(C3) limn→∞
τn
βnγn

= 0;

(C4) 0 < cn, c < 2/L such that limn→∞ cn = c.

Proof. Let Tn := proxcnf2(I − cn∇f1) for all n ≥ 1 and T := proxcf2(I − c∇f1). Then,
Tn and T are nonexpansive operators with

⋂∞
n=1 Fix(Tn) = Fix(T ) = Argmin(f1 + f2).

Let {un} be a bounded sequence in RN such that ‖un − Tnun‖ → 0 as n → ∞. If u is a
weak cluster point of {un}, then there is a subsequence {uni

} of {un} such that uni
→ u

as i → ∞. By Lemma 2.1, we know that {Tn} satisfies the NST-condition (I) with T . This
yields

lim
i→∞

‖uni − Tuni‖ = lim
n→∞

‖un − Tun‖ = 0.

By the demiclosedness of I − T at zero, we get u ∈ Fix(T ) =
⋂∞
n=1 Fix(Tn). This im-

plies that {Tn} satisfies the condition (Z). Therefore, the result is obtained directly from
Theorem 3.1. �
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4. NUMERICAL EXPERIMENTS IN IMAGE RECOVERY

In this section, we apply the convex minimization problem, Problem 1.1, to the image
restoration problem (1.1) via the LASSO model (1.2) by setting

f1(x) =
1

2
‖y −Bx‖22 and f2(x) = λ‖x‖1.

We analyze and illustrate the performance of the FVFBA (Algorithm 2) for the image
restoration problem and also compare its efficiency with the FBSA (1.5), the VFBA (1.7)
and the FISTA (1.6) by means of Peak Signal-to-Noise Ratio (PSNR) in decibel (dB) [24]
and Structural Similarity Index Metric (SSIM) [25]. All experiments and visualizations are
done with MATLAB. The maximum iteration number for all methods is fixed at 100.

Firstly, we test the convergence behavior of the FVFBA by taking the color image
(home) with size of 256 × 256. Consider Gaussian blur of filter size 9 × 9 with standard
deviation σ = 4 and noise 10−4. The values of PSNR (dB) and SSIM for the ”home” image
corrupted by Gaussian blur are PSNR = 20.532 dB and SSIM = 0.6803.

Set the regularization parameter λ = 10−4. The parameters of the FVFBA are chosen
as follows: βn = 0.99n

n+1 , γn = 1
50n , cn = n

n+1 , and τn = 1015

n2 . Let g(x) = 0.95x. Now, the
expertiments for recovering the ”home” image of the FVFBA with different accelerating
parameters µn are shown in Table 1 and Figures 1 and 2. We also observe from Table 1
and Figure 2 that the parameter µn = n

n+1 gives the higher values of PSNR and SSIM than
the other experiments.

TABLE 1. The values of PSNR and SSIM of restored ”home” images by
the FVFBA with different accelerating parameters µn.

Experiments Accelerating parameters PSNR SSIM
1 µn = 0 26.014 0.8829

2 µn = tn−1
tn+1

, t1 = 1, tn+1 =
1+
√

1+4t2n
2 30.693 0.9489

3 µn = 0.9 29.906 0.9412
4 µn = n

n+2 31.132 0.9528
5 µn = n

n+1 31.473 0.9546
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FIGURE 1. Restoration for the ”home” image. (a) Original image; (b) Blurry image con-
taminated by Gaussian blur; (c)-(g) Restored images by the FVFBA with different accelerating parameters.

FIGURE 2. Plot of PSNR and SSIM of restored “home” images by the
FVFBA.

Next, we compare the performance of the FVFBA (Algorithm 2) with the FBSA (1.5),
the VFBA (1.7) and the FISTA (1.6) by means of PSNR and SSIM. We take two color images
(bird and butterfly with size of 288× 288 and 256× 256, respectively) from the dataset set
5 [6] and consider two blurring processes with noise 10−4, i.e., Gaussian blur of filter size
9× 9 with standard deviation σ = 10 and a motion blur specifying with motion length 21
pixels (len=21) and motion orientation 11o(θ = 11).

Let λ, βn, γn, τn, cn and g be the same as the first test and µn = n
n+1 . Let us see the

numerical experiments for recovering the images (bird and butterfly) of the FVFBA (Al-
gorithm 2), the FBSA (1.5), the VFBA (1.7) and the FISTA (1.6) as shown in Figures 3–4.
It can be seen that the FVFBA gives the higher values of PSNR and SSIM than the other
tested methods. Therefore, the FVFBA has the highest image recovery efficiency compar-
ing with other methods.
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FIGURE 3. Restoration for the ”bird” image. (a) Original image; (b) Blurry image contam-
inated by Gaussian blur; (c)-(f) Restored images of the image contaminated by Gaussian blur; (g) Blurry image contami-
nated by Motion blur; (h)-(k) Restored images of the image contaminated by Motion blur.

FIGURE 4. Restoration for the ”butterfly” image. (a) Original image; (b) Blurry image
contaminated by Gaussian blur; (c)-(f) Restored images of the image contaminated by Gaussian blur; (g) Blurry image
contaminated by Motion blur; (h)-(k) Restored images of the image contaminated by Motion blur.

5. CONCLUSION

In this work, we discuss the convex minimization problem which can be applied in
image processing. A relationship between the minimization problem and the fixed point
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problem attracts us to study fixed point methods. We first propose a modified inertial
viscosity approximation method for finding a common fixed point of a family of nonex-
pansive operators in a Hilbert space, and then obtain a strong convergence result under
some conditions. After that, we apply the proposed algorithm to solving a convex min-
imization problem in the form of the sum of two convex functions. As an application,
we utilize and analyze our proposed algorithm to the image restoration problem. The
numerical experiments show that our algorithm has a higher image recovery efficiency
than the forward-backward splitting algorithm, the fast iterative shrinkage-thresholding
algorithm and the classical viscosity forward-backward algorithm.
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