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Resolvents of equilibrium problems on a complete
geodesic space with curvature bounded above

YASUNORI KIMURA

ABSTRACT. We consider equilibrium problems on a complete geodesic space with curvature bounded above
by one and propose the notion of resolvents for this problem. We prove its well-definedness as a single-valued
mapping whose domain is the whole space, and its geometric properties.

1. INTRODUCTION

Let K be a nonempty set and f : K × K → R be a bifunction on K. An equilibrium
problem for f is defined as to find z0 ∈ K such that

f(z0, y) ≥ 0

for every y ∈ K. Equilibrium problems were first studied intensively by Blum and Oet-
tli [3] in the setting of topological vector spaces and Banach spaces. They also proposed
the notion of resolvents of a bifunction for an equilibrium problem and showed that its
domain is the whole space.

Further study of this problem and properties of resolvents in the setting of Hilbert
spaces have been done by Combettes and Hirstoaga [5]; they considered a countable sys-
tem of equilibrium problems and obtained several important properties of the resolvents.
Due to some nice properties of resolvents, we may apply many kinds of results in fixed
point theory to this problem such as existence theorems and approximation theorems of
its solutions.

In 2018, Kimura and Kishi [9] proposed the notion of resolvents of a bifunction defined
on a Hadamard space. They assumed the convex hull finite property for the underlying
space and, by using a similar technique to that in [3], they obtained several properties of
resolvents. For the study of equilibrium problems on Hadamard spaces, another approach
can be found in [13].

In this paper, we consider an equilibrium problem defined on an admissible com-
plete CAT(1) space. The class of CAT(1) spaces includes that of Hadamard spaces, how-
ever, geometric properties of CAT(1) spaces are totally different from those of Hadamard
spaces. We propose the notion of resolvents of a bifunction for an equilibrium problem
by using the logarithmic cosine function. We show its well-definedness as a single-valued
mapping defined on the whole space, and its spherical nonspreadingness of sum type,
under the assumption called the convex hull finite property. We also show several related
results obtained from fixed point theory on geodesic spaces.

2. PRELIMINARIES

A CAT(1) space is defined as a uniquely π-geodesic metric space satisfying the CAT(1)
inequality with the two-dimensional unit sphere S2 as a model space. Namely, any two
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points x, y in a CAT(1) space X with d(x, y) < π can be connected with a unique geodesic
c : [0, d(x, y)] → X , and for any x, y, z ∈ X with d(x, y) + d(y, z) + d(z, x) < 2π, p, q ∈
4(x, y, z) ⊂ X and their comparison points p, q ⊂ 4(x, y, z) ⊂ S2 satisfy

d(p, q) ≤ dS2(p, q).

Since the geodesic c between x, y is uniquely defined if d(x, y) < π, for any z ∈ [x, y] =
c([0, d(x, y)]), we can find t ∈ [0, 1] such that d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y).
We denote it by z = tx⊕ (1− t)y and we call it a convex combination of x and y. In what
follows, we usually suppose that X is an admissible CAT(1) space, that is, d(x, y) < π/2
for every x, y ∈ X . In an admissible CAT(1) space, every two points have a unique
geodesic [4, Proposition II.1.4].

For a subset A of a metric space X , we denote its closure by clA and its diameter by
diamA. Suppose that X is an admissible CAT(1) space. The convex hull coA of A is
defined by

coA =

∞⋃
j=1

Fj ,

where F1 = A and Fj+1 = {tuj ⊕ (1− t)u′j ∈ X | uj , u′j ∈ Fj , t ∈ [0, 1]} for j ∈ N.
The following result is a fundamental property of CAT(1) spaces derived from the

spherical law of cosines; see, for example, [4, 11].

Theorem 2.1. Let X be a CAT(1) space and suppose x, y, z ∈ X satisfy d(x, y) + d(y, z) +
d(z, x) < 2π. Then,

cos d(tx⊕ (1− t)y, z) sin d(x, y) ≥ cos d(x, z) sin(td(x, y)) + cos d(y, z) sin((1− t)d(x, y))

for t ∈ [0, 1].
From this theorem, we can easily deduce the following inequalities.

Theorem 2.2 (Kimura–Kohsaka [10], Kimura–Satô [11]). Let X be a CAT(1) space and sup-
pose x, y, z ∈ X satisfy d(x, y) + d(y, z) + d(z, x) < 2π. Then,

cos d

(
1

2
x⊕ 1

2
y, z

)
cos

(
1

2
d(x, y)

)
≥ 1

2
cos d(x, z) +

1

2
cos d(y, z),

and
cos d(tx⊕ (1− t)y, z) ≥ t cos d(x, z) + (1− t) cos d(y, z)

for t ∈ [0, 1].

Let K be a nonempty closed convex subset of an admissible CAT(1) space X . For
x ∈ X , there exists a unique point ux ∈ K which is nearest to x, that is, d(x, ux) =
infz∈K d(x, z). We define a mapping PK : X → K by PKx = ux for each x ∈ X and call it
a metric projection onto K. In this case, we know that

cos d(x, PKx) cos d(PKx, z) ≥ cos d(x, z)

for every z ∈ K.
For more details of CAT(1) spaces and their properties, see [4] for instance.
Let X be an admissible CAT(1) space. A function g : X → R is said to be convex if

g(tx⊕ (1− t)y) ≤ tg(x) + (1− t)g(y)

for any x, y ∈ X and t ∈ ]0, 1[.
It is shown in [7] that a function − log cos d(·, z) is convex on an admissible CAT(1)

space X . Indeed, by Theorem 2.2, we have
cos d(tx⊕ (1− t)y, z) ≥ t cos d(x, z) + (1− t) cos d(y, z)
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and since s 7→ − log s is decreasing and convex on ]0,+∞[, we get
− log cos d(tx⊕ (1− t)y, z) ≤ − log(t cos d(x, y) + (1− t) cos d(x, z))

≤ −t log cos d(x, y)− (1− t) log cos d(y, z)

for x, y ∈ X and t ∈ ]0, 1[.
A function g : X → R is said to be lower semicontinuous if

g(x0) ≤ lim inf
n→∞

g(xn)

for every {xn} ⊂ X converging to x0 ∈ X . We say that g is upper hemicontinuous if

g(y) ≥ lim sup
t→0

g(tx⊕ (1− t)y)

for every x, y ∈ X .
Theorem 2.3 (Kimura–Kohsaka [10]). Every lower semicontinuous convex function of an ad-
missible complete CAT(1) space into R is bounded below.

Let X be an admissible complete CAT(1) space. A mapping T : X → X is said to be
spherically nonspreading of product type [10] if

(2.1) cos2 d(Tx, Ty) ≥ cos d(Tx, y) cos d(Ty, x)

for every x, y ∈ X . Notice that, in [10], they call it simply a spherically nonspreading map-
ping. Afterword, Kajimura and Kimura [7] proposed another type of nonspreadingness
as below and they distinguished them by putting product and sum types.

The other notion of spherical nonspreadingness they proposed is as follows: T is said
to be spherically nonspreading of sum type [7] if

(2.2) 2 cos d(Tx, Ty) ≥ cos d(Tx, y) + cos d(Ty, x)

for every x, y ∈ X . It is easy to see [7] that if T is spherically nonspreading of sum type,
then it is also that of product type; for T satisfying (2.2), we have

cos d(Tx, Ty) ≥ cos d(Tx, y) + cos d(Ty, x)

2
≥
√

cos d(Tx, y) cos d(Ty, x),

which implies (2.1).
For a mapping T : X → X , the set of all fixed points of T is denoted by FixT , that is,

FixT = {z ∈ X | z = Tz}.
T is said to be quasinonexpansive if FixT 6= ∅ and d(Tx, z) ≤ d(x, z) for every x ∈ X and
z ∈ FixT . It is known that FixT is closed and convex if T is quasinonexpansive. Since
every spherically nonspreading mapping of product type with a fixed point is quasinon-
expansive [10], so is that of sum type.

Let X be an admissible CAT(1) space and K a nonempty closed convex subset of X .
We consider an equilibrium problem for a bifunction f : K×K → R, that is, to find z0 ∈ K
such that

f(z0, y) ≥ 0

for every y ∈ K. The set of solutions to the equilibrium problem for f is denoted by
Equil f , that is

Equil f =

{
z ∈ K

∣∣∣∣ inf
y∈K

f(z, y) ≥ 0

}
.

Following [3, 5], we suppose the four conditions for f as follows.
(E1) f(y, y) = 0 for all y ∈ K;
(E2) f(y, z) + f(z, y) ≤ 0 for all y, z ∈ K;
(E3) f(y, ·) : K → R is lower semicontinuous and convex for every y ∈ K;
(E4) f(·, z) : K → R is upper hemicontinuous for every z ∈ K.
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3. THE KKM LEMMA ON CAT(1) SPACES

The Knaster–Kuratowski–Mazurkiewicz lemma, or the KKM lemma in short, is one of
the most important results in nonlinear analysis since it plays a crucial role in the proof of
the Brouwer fixed point theorem. This lemma has been considered also in the setting of
geodesic spaces; see [1, 8, 14] and references therein. We focus on the result of Niculescu
and Rovenţa [14], a generalized KKM lemma in the setting of complete CAT(0) spaces. To
obtain it, they assumed the convex hull finite property for the underlying space.

Using a similar technique to their proof, in this section, we prove three lemmas corre-
sponding to the KKM lemma in the setting of admissible complete CAT(1) spaces with
the convex hull finite property.

LetX be an admissible CAT(1) space. We sayX has the convex hull finite property [15]
if every continuous selfmapping on cl coE has a fixed point for every finite subsetE of X .

Lemma 3.1. Let E = {x1, x2, . . . , xl} be a finite subset of an admissible complete CAT(1) space
X and {M1,M2, . . . ,Ml} be a finite family of nonempty closed convex subsets of X such that⋂l
i=1Mi = ∅. For given u ∈ cl coE, define gu : cl coE → [0,+∞[ by

gu(y) = − 1

σ(u)

l∑
i=1

d(u,Mi) log cos d(y, xi)

for y ∈ X , where σ(u) =
∑l
i=1 d(u,Mi). Then, gu has a unique minimizer yu ∈ cl coE for

every u ∈ X , and the single-valued mapping T : cl coE → cl coE defined by Tu = yu for every
u ∈ cl coE is continuous.

Proof. Fix u ∈ X arbitrarily. Since
⋂l
i=1Mi = ∅, we have σ(u) =

∑l
i=1 d(u,Mi) > 0.

Let {yn} be a sequence in cl coE such that {gu(yn)} is nonincreasing and converges to
L = infy∈cl coE gu(y). Let m,n ∈ N with n ≤ m. By Theorem 2.2, we have

− log cos d

(
1

2
ym ⊕

1

2
yn, xi

)
− log cos

(
1

2
d(ym, yn)

)
≤ − log

(
1

2
cos d(ym, xi) +

1

2
cos d(yn, xi)

)
for i = 1, 2, . . . , l. Since t 7→ − log t is convex on ]0,+∞[, we have

L− log cos

(
1

2
d(ym, yn)

)
≤ gu

(
1

2
ym ⊕

1

2
yn

)
− log cos

(
1

2
d(ym, yn)

)
= − 1

σ(u)

l∑
i=1

d(u,Mi)

(
log cos d

(
1

2
ym ⊕

1

2
yn, xi

)
+ log cos

(
1

2
d(ym, yn)

))

≤ − 1

σ(u)

l∑
i=1

d(u,Mi) log

(
1

2
cos d(ym, xi) +

1

2
cos d(yn, xi)

)

≤ − 1

2σ(u)

l∑
i=1

d(u,Mi) log cos d(ym, xi)−
1

2σ(u)

l∑
i=1

d(u,Mi) log cos d(yn, xi)

=
1

2
gu(ym) +

1

2
gu(yn).
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Since gu(ym) ≤ gu(yn), we obtain

0 ≤ − log cos

(
1

2
d(ym, yn)

)
≤ 1

2
gu(ym) +

1

2
gu(yn)− L ≤ gu(yn)− L→ 0

as n→∞. This shows that {yn} is a Cauchy sequence and hence it has a limit y0 ∈ cl coE.
Since gu is a continuous function, we have

gu(y0) = gu

(
lim
n→∞

yn

)
= lim
n→∞

gu(yn) = L,

which shows that y0 is a minimizer of gu. For the uniqueness of the minimizer of gu,
suppose that both y0 and y′0 minimize gu. Then, by the same calculation above, we have

L− log cos

(
1

2
d(y0, y

′
0)

)
≤ 1

2
gu(y0) +

1

2
gu(y′0).

It follows that

0 ≤ − log cos

(
1

2
d(y0, y

′
0)

)
≤ 1

2
gu(y0) +

1

2
gu(y′0)− L =

1

2
L+

1

2
L− L = 0

and hence − log cos(d(y0, y
′
0)/2) = 0, which is equivalent to y0 = y′0. Therefore the mini-

mizer of gu is unique for every u ∈ cl coE.
To prove the continuity of T , we first show that the inequality

(3.3) cos d(Tu, Tv) ≥ 1

σ(u)

l∑
i=1

d(u,Mi)
cos d(Tu, xi)

cos d(Tv, xi)

holds for any u, v ∈ cl coE. If Tu = Tv, then (3.3) obviously holds with equality. Thus we
may assume Tu 6= Tv. From the definition of T , for t ∈ ]0, 1[, we have

0 ≤ gu((1− t)Tu⊕ tTv)− gu(Tu)

=
1

σ(u)

l∑
i=1

d(u,Mi)(− log cos d((1− t)Tu⊕ tTv, xi) + log cos d(Tu, xi))

≤ 1

σ(u)

l∑
i=1

d(u,Mi)Li(t),

where

Li(t) = − log(cos d(Tu, xi) sin((1− t)d(Tu, Tv)) + cos d(Tv, xi) sin(td(Tu, Tv)))

+ log sin d(Tu, Tv) + log cos d(Tu, xi),

which is obtained by Theorem 2.1. Since limt ↓ 0 Li(t) = 0 for i = 1, 2, . . . , l, by l’Hospital’s
rule, we have

0 ≤ lim
t ↓ 0

(1/σ(u))
∑l
i=1 d(u,Mi)Li(t)

t
= lim
t ↓ 0

d

dt

(
1

σ(u)

l∑
i=1

d(u,Mi)Li(t)

)

=
1

σ(u)

l∑
i=1

(
d(u,Mi) lim

t ↓ 0

dLi(t)

dt

)
.

Further, we have
dLi(t)

dt
= −d(Tu, Tv)

− cos d(Tu, xi) cos((1− t)d(Tu, Tv)) + cos d(Tv, xi) cos(td(Tu, Tv))

cos d(Tu, xi) sin((1− t)d(Tu, Tv)) + cos d(Tv, xi) sin(td(Tu, Tv))

→ d(Tu, Tv)(cos d(Tu, xi) cos d(Tu, Tv)− cos d(Tv, xi))

cos d(Tu, xi) sin d(Tu, Tv)
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as t ↓ 0. Hence we have

0 ≤ 1

σ(u)

l∑
i=1

(
d(u,Mi) lim

t→0

dLi(t)

dt

)

≤ 1

σ(u)

l∑
i=1

(
d(u,Mi)

d(Tu, Tv)(cos d(Tu, xi) cos d(Tu, Tv)− cos d(Tv, xi))

cos d(Tu, xi) sin d(Tu, Tv)

)

=
d(Tu, Tv)

σ(u) sin d(Tu, Tv)

l∑
i=1

d(u,Mi)

(
cos d(Tu, Tv)− cos d(Tv, xi)

cos d(Tu, xi)

)

=
d(Tu, Tv)

sin d(Tu, Tv)

(
cos d(Tu, Tv)− 1

σ(u)

l∑
i=1

d(u,Mi)
cos d(Tv, xi)

cos d(Tu, xi)

)
.

Since d(Tu, Tv)/ sin d(Tu, Tv) > 0, we obtain the desired inequality (3.3).
Now we prove the continuity of T . Let {un} be a sequence in cl coE and suppose that

un → u0 ∈ cl coE. Then, by (3.3) we have

cos d(Tun, Tu0) ≥ 1

σ(un)

l∑
i=1

d(un,Mi)
cos d(Tun, xi)

cos d(Tu0, xi)
=

l∑
i=1

d(un,Mi)

σ(un)

cos d(Tun, xi)

cos d(Tu0, xi)
.

We also have

cos d(Tu0, Tun) ≥ 1

σ(u0)

l∑
i=1

d(u0,Mi)
cos d(Tu0, xi)

cos d(Tun, xi)
=

l∑
i=1

d(u0,Mi)

σ(u0)

cos d(Tu0, xi)

cos d(Tun, xi)

=

l∑
i=1

(
d(un,Mi)

σ(un)
−∆i(un, u0)

)
cos d(Tu0, xi)

cos d(Tun, xi)
,

where

∆i(un, u0) =
d(un,Mi)

σ(un)
− d(u0,Mi)

σ(u0)
.

From these inequalities, we have

1 ≥ cos d(Tun, Tu0)

≥ 1

2

l∑
i=1

d(un,Mi)

σ(un)

(
cos d(Tun, xi)

cos d(Tu0, xi)
+

cos d(Tu0, xi)

cos d(Tun, xi)

)
− 1

2

l∑
i=1

∆i(un, u0)
cos d(Tu0, xi)

cos d(Tun, xi)

≥
l∑
i=1

d(un,Mi)

σ(un)

√
cos d(Tun, xi)

cos d(Tu0, xi)

cos d(Tu0, xi)

cos d(Tun, xi)
− 1

2

l∑
i=1

∆i(un, u0)
cos d(Tu0, xi)

cos d(Tun, xi)

= 1− 1

2

l∑
i=1

∆i(un, u0)
cos d(Tu0, xi)

cos d(Tun, xi)
.

Since ∆i(un, u0) → 0 as n → ∞ for any i = 1, 2, . . . , l, we get cos d(Tun, Tu0) → 1, which
is equivalent that Tun → Tu0. Therefore T is continuous and we complete the proof. �

Lemma 3.2. LetX be an admissible complete CAT(1) space having the convex hull finite property.
Let M : X → 2X be a mapping such that M(x) is a nonempty closed convex subset of X for every
x ∈ X and that

cl coE ⊂
⋃
x∈E

M(x)

for every finite subset E of X . Then, {M(x) ∈ 2X | x ∈ X} has the finite intersection property.
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Proof. We prove it by contradiction. Suppose that there exists a finite subset

E = {x1, x2, . . . , xl} ⊂ X

such that
⋂l
i=1M(xi) = ∅. Then, for u ∈ cl coE, we can define gu : cl coE → [0,+∞[ by

gu(y) = − 1

σ(u)

l∑
i=1

d(u,M(xi)) log cos d(y, xi)

for y ∈ X , where σ(u) =
∑l
i=1 d(u,M(xi)). By Lemma 3.1, gu has a unique minimizer

Tu ∈ cl coE for every u ∈ X , and the single-valued mapping T : cl coE → cl coE is
continuous. By the convex hull finite property of X , T has a fixed point u0 ∈ cl coE.
Since

⋂l
i=1M(xi) = ∅, we get d(u0,M(xi)) > 0 for some i = 1, 2, . . . , l. By permutation,

we may assume that d(u0,M(xi)) > 0 for i = 1, 2, . . . , l0 and d(u0,M(xi)) = 0 for i =
l0 + 1, l0 + 2, . . . , l. Let E0 = {x1, x2, . . . , xl0} ⊂ E and P : cl coE → cl coE0 be the metric
projection onto cl coE0. Then, from the property of P , we have

cos d(u0, v) ≤ cos d(u0, Pu0) cos d(Pu0, v) ≤ cos d(Pu0, v)

for all v ∈ cl coE0. In particular, cos d(u0, xi) ≤ cos d(Pu0, xi) for i = 1, 2, . . . , l0. It implies
that

gu0
(Pu0) = − 1

σ(u0)

l∑
i=1

d(u0,M(xi)) log cos d(Pu0, xi)

= − 1

σ(u0)

l0∑
i=1

d(u0,M(xi)) log cos d(Pu0, xi)

≤ − 1

σ(u0)

l0∑
i=1

d(u0,M(xi)) log cos d(u0, xi) = gu0
(u0)

and hence Pu0 minimizes gu0 on cl coE. From the uniqueness of the minimizer of gu0 , we
obtain u0 = Pu0, and by assumption we have

u0 = Pu0 ∈ cl coE0 ⊂
l0⋃
i=1

M(xi).

On the other hand, since d(u0,M(xi)) > 0 for i = 1, 2, . . . , l0, we have u0 /∈
⋃l0
i=1M(xi).

This is a contradiction and we finish the proof. �

Before proving the next result, we remark several facts about ∆-compactness of a subset
of admissible complete CAT(1) space X . Let {xα} be a net in X with a directed index set
D. Then, its asymptotic center A({xα}) is defined by

A({xα}) =

{
z ∈ X

∣∣∣∣ lim sup
α∈D

d(xα, z) = inf
y∈X

lim sup
α∈D

d(xα, y)

}
.

If every subnet of {xα} has an identical asymptotic center {x0}, then we say {xα} is ∆-
convergent to x0 ∈ X .

Kirk and Massa [12] showed the following.

Theorem 3.4 (Kirk–Massa [12]). Let {xα} be a universal net in a Banach space X . Then, every
subnet of {xα} has an identical asymptotic center, that is,

A({xα}) = A({xαβ})
for every subnet {xαβ} of {xα}.
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They proved this result in the setting of Banach spaces, however, the proof is valid
also in a general metric space. Further, if C is a subset of a complete CAT(1) space such
that infy∈C supx∈C d(x, y) < π/2, then the asymptotic center of a net in C is always a
singleton [6]. Since every net in C has a universal subnet, we conclude that {xα} in C has
a ∆-convergent subnet.

We also know that if a net {xα} of an admissible CAT(1) space X is ∆-convergent to
x0 ∈ X , then

x0 ∈
⋂
α∈D

cl co{xβ ∈ X | β ≥ α}.

It is implied by a similar method shown in [6, 10], which is the case of a sequence.

Lemma 3.3. Let X be an admissible complete CAT(1) space, C a closed convex subset of X such
that infy∈C supx∈C d(x, y) < π/2, and {Mi ∈ 2X | i ∈ I} be a family of closed convex subsets of
C having the finite intersection property. Then⋂

i∈I
Mi 6= ∅.

Proof. LetD be the family of all finite subsets of the index set I and define a binary relation
≤ on D by α ≤ β if and only if α ⊂ β for all α, β ∈ D. Then, (D,≤) is a directed set. Let
{Mi1 ,Mi2 , . . . ,Min} be a finite family of {Mi} for α = {i1, i2, . . . , in} ∈ D. Since {Mi} has
the finite intersection property, we can choose

xα ∈
⋂
i∈α

Mi =

n⋂
j=1

Mij .

Taking such xα for every α ∈ D, we get a net {xα} in C with the index set D. Then, by the
condition of C, {xα} has a ∆-convergent subnet {xαβ}with the index directed set D′. We
denote the ∆-limit of {xαβ} by x0 and we show x0 ∈

⋂
i∈IMi. Fix i ∈ I arbitrarily and let

α = {i} ∈ D. Then, from the definition of subnet, there exists β0 ∈ D′ such that α ≤ αβ
whenever β ∈ D′ satisfies β0 ≤ β. Then, we have

xαβ ∈
⋂
j∈αβ

Mj ⊂
⋂
j∈α

Mj = Mi

for all β ∈ D′ with β0 ≤ β. Since Mi is closed and convex, taking ∆-limit of the net {xαβ},
we obtain

x0 = ∆-lim
β∈D′

xαβ ∈Mi.

Since i ∈ I is arbitrary, we get x0 ∈
⋂
i∈IMi, which is the desired result. �

4. RESOLVENTS FOR AN EQUILIBRIUM PROBLEM

In this section, we define a resolvent operator of a bifunction for an equilibrium prob-
lem on an admissible complete CAT(1) space.

We begin with the following theorem, which is important for our main result in this
section. This result guarantees that the resolvent operator, which will be defined in Theo-
rem 4.6, has the whole space as its effective domain.

Theorem 4.5. Let X be an admissible complete CAT(1) space having the convex hull finite prop-
erty and K a nonempty closed convex subset of X . Suppose that f : K × K → R satisfies the
conditions (E1)–(E4) described above. Then, for any x ∈ X , there exists z0 ∈ K such that

f(z0, y)− log cos d(x, y) + log cos d(x, z0) ≥ 0

for every y ∈ K.
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To prove this result, we employ the technique used in the proofs of the corresponding
results in [3, 9].

Proof. For arbitrarily fixed x ∈ X , let

h(z, y) = f(z, y)− log cos d(x, y) + log cos d(x, z)

for z, y ∈ K. Notice that h also satisfies the conditions (E1)–(E4). We prove the existence
of z0 such that h(z0, y) ≥ 0 for all y ∈ K.

We will prove it in the following four steps.
Step 1. Determine a subset C of X satisfying the assumption in Lemma 3.3.

Let u = PKx ∈ K, where PK is the metric projection onto K. Then we have

cos d(u, z) ≥ cos d(x, u) cos d(u, z) ≥ cos d(x, z)

and thus
log cos d(u, z) ≥ log cos d(x, z)

for every z ∈ K. On the other hand, since f(u, ·) : K → R is a convex function, by
Theorem 2.3, it is bounded below. Thus L = infy∈K f(u, y) + log cos d(x, u) satisfies

−∞ < L ≤ f(u, u) + log cos d(x, u) = log cos d(x, u) ≤ 0.

We may assume L < 0; if L = 0, then z0 = u satisfies the conclusion. We also have

h(z, u) = f(z, u)− log cos d(x, u) + log cos d(x, z)

≤ −f(u, z)− log cos d(x, u) + log cos d(u, z) ≤ −L+ log cos d(u, z)

for all z ∈ K. Thus, if z ∈ K satisfies −L + log cos d(u, z) = 0, or equivalently, d(u, z) =
arccos eL, then h(z, u) ≤ 0. Let

C = {z ∈ K | −L+ log cos d(u, z) ≥ 0} = {z ∈ K | d(u, z) ≤ arccos eL}.

Then C is a closed convex subset of K satisfying

inf
v∈C

sup
z∈C

d(v, z) ≤ sup
z∈C

d(u, z) ≤ arccos eL <
π

2
.

Step 2. Define {M(y)} and show that their intersection is nonempty.
For y ∈ C, define a subset M(y) of C by

M(y) = {v ∈ C | h(y, v) ≤ 0}.

Then, since h(y, ·) : C → R is lower semicontinuous and convex, M(y) is closed and con-
vex. Further, it is nonempty since y ∈ M(y). To prove that {M(y) | y ∈ C} has the finite
intersection property, let E = {y1, y2, . . . , yn} ⊂ C be an arbitrary finite subset of C and
show that cl coE ⊂

⋃n
i=1M(yi). To obtain this inclusion, it is sufficient to show that

coE ⊂
n⋃
i=1

M(yi)

since
⋃n
i=1M(yi) is closed. We note that the convex hull ofE is defined as coE =

⋃∞
j=1 Fj ,

where F1 = E and Fj+1 = {tuj ⊕ (1 − t)u′j ∈ X | uj , u′j ∈ Fj , t ∈ [0, 1]} for j ∈ N. We
show the following statement by induction: For every j ∈ N, if v ∈ Fj , then there exists
{µ1, µ2, . . . , µn} ⊂ [0, 1] such that

h(yk, v) ≤
n∑
i=1

µih(yk, yi)

for any k = 1, 2, . . . , n, and
∑n
i=1 µi = 1.
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Suppose j = 1. Then, if v ∈ F1 = E, then v = yi0 for some i0 ∈ {1, 2, . . . , n}. Thus
letting

µi =

{
1 (i = i0),

0 (i 6= i0),

we have
h(yk, v) = h(yk, yi0) =

n∑
i=1

µih(yk, yi).

Next we assume that the statement above holds for fixed j ∈ N. If v ∈ Fj+1, then v =
tuj ⊕ (1 − t)u′j for some uj , u′j ∈ Fj and t ∈ [0, 1]. Then, from the assumption, there exist
{ν1, ν2, . . . , νn}, {ν′1, ν′2, . . . , ν′n} ⊂ [0, 1] such that

h(yk, uj) ≤
n∑
i=1

νih(yk, yi) and h(yk, u
′
j) ≤

n∑
i=1

ν′ih(yk, yi)

for any k = 1, 2, . . . , n, with
∑n
i=1 νi =

∑n
i=1 ν

′
i = 1. By the convexity of h(yk, ·), we have

h(yk, v) = h(yk, tuj ⊕ (1− t)u′j) ≤ th(yk, uj) + (1− t)h(yk, u
′
j)

≤ t
n∑
i=1

νih(yk, yi) + (1− t)
n∑
i=1

ν′ih(yk, yi) =

n∑
i=1

(tνi + (1− t)ν′i)h(yk, yi)

for any k = 1, 2, . . . , n. Therefore, letting µi = tνi + (1− t)ν′i for i = 1, 2, . . . , n, we obtain
the conclusion. Namely, for every v ∈ coE, there exists {µ1, µ2, . . . , µn} ⊂ [0, 1] such
that h(yk, v) ≤

∑n
i=1 µih(yk, yi) for k = 1, 2, . . . , n, and

∑n
i=1 µi = 1. Now we show that

coE ⊂
⋃n
i=1M(yi) by contradiction. Suppose there exists v ∈ coE such that h(yk, v) > 0

for every k = 1, 2, . . . , n. Then, for some {µ1, µ2, . . . , µn} ⊂ [0, 1] with
∑n
i=1 µi = 1, we

have
h(yk, v) ≤

n∑
i=1

µih(yk, yi)

for every k = 1, 2, . . . , n. It implies that

0 <

n∑
k=1

µkh(yk, v) ≤
n∑
k=1

n∑
i=1

µkµih(yk, yi) =
1

2

n∑
k=1

n∑
i=1

µkµi(h(yk, yi) + h(yi, yk)) ≤ 0.

This is a contradiction and thus we have h(yk, v) ≤ 0 for some k, that is, v ∈M(yk). Hence
we have

cl coE ⊂
⋃
y∈E

M(y)

for every finite subset E of C. It follows from Lemma 3.2 that {M(y)} has the finite
intersection property, and by Lemma 3.3, we obtain⋂

y∈C
M(y) 6= ∅.

Step 3. Prove h(z0, y) ≥ 0 for every y ∈ C.
Since

⋂
y∈CM(y) is nonempty, we can take z0 ∈

⋂
y∈CM(y). Then we obtain h(y, z0) ≤

0 for every y ∈ C. For arbitrarily fixed w ∈ C, let yt = tw ⊕ (1 − t)z0 ∈ C with t ∈ ]0, 1[.
Then, we have

0 = h(yt, yt) = h(yt, tw ⊕ (1− t)z0) ≤ th(yt, w) + (1− t)h(yt, z0) ≤ th(yt, w),

which implies h(yt, w) ≥ 0. Then, since h(·, w) is upper hemicontinuous, letting t→ 0, we
have

h(z0, w) ≥ lim sup
t→0

h(yt, w) ≥ 0.

Since w ∈ C is arbitrary, we obtain h(z0, y) ≥ 0 for every y ∈ C.
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Step 4. Prove h(z0, y) ≥ 0 for every y ∈ K.
Since u = PKx as described in Step 1, by the definition of C with the fact that z0 ∈ C,

we have d(u, z0) ≤ arccos eL. Let

u0 =

{
u (d(u, z0) = arccos eL),

z0 (d(u, z0) < arccos eL).

Then, since h(z, u) ≤ 0 whenever d(u, z) = arccos eL as in Step 1, and h(z0, z0) = 0, we
have

h(z0, u0) ≤ 0.

On the other hand, by the definition of u0, we also have d(u0, u) < arccos eL, or equiva-
lently, cos d(u0, u) > eL.

Fix y ∈ K \ C arbitrarily. Then, by taking t0 ∈ ]0, 1[ sufficiently small, we can obtain

cos d(t0y ⊕ (1− t0)u0, u) ≥ t0 cos d(y, u) + (1− t0) cos d(u0, u) > eL,

that is, d(t0y ⊕ (1− t0)u0, u) < arccos eL and hence t0y ⊕ (1− t0)u0 ∈ C. By the convexity
of h(z0, ·), it implies that

0 ≤ h(z0, t0y ⊕ (1− t0)u0) ≤ t0h(z0, y) + (1− t0)h(z0, u0)

and hence
h(z0, y) ≥ −1− t0

t0
h(z0, u0) ≥ 0.

Since y ∈ K \ C is arbitrary, we conclude that h(z0, y) ≥ 0 for every y ∈ K. �

We now define a resolvent operator Rf for a bifunction f : K × K → R satisfying
the conditions (E1)–(E4). As in the following theorem, it is defined as a single-valued
mapping and its domain is the whole space X .

Theorem 4.6. Let X be an admissible complete CAT(1) space having the convex hull finite prop-
erty, K a nonempty closed convex subset of X . Suppose that f : K ×K → R satisfies the condi-
tions (E1)–(E4). For each x ∈ X , define a subset Rfx of K by

Rfx =

{
z ∈ K

∣∣∣∣ inf
y∈K

(f(z, y)− log cos d(x, y) + log cos d(x, z)) ≥ 0

}
.

Then, the following hold:
(i) Rfx consists of one point for every x ∈ X , and therefore Rf : X → K is defined as a

single-valued mapping;
(ii) Rf satisfies the following inequality for any x1, x2 ∈ X :

cos d(x1, Rfx2)

cos d(x1, Rfx1)
+

cos d(x2, Rfx1)

cos d(x2, Rfx2)
≤ 2 cos d(Rfx1, Rfx2),

and thus Rf is spherically nonspreading of sum type.
(iii) FixRf = Equil f and it is closed and convex.

Proof. Let x ∈ X . Then, by Theorem 4.5, there exists z0 ∈ K such that
f(z0, y)− log cos d(x, y) + log cos d(x, z0) ≥ 0

for all y ∈ K and thus z0 ∈ Rfx. This implies that Rfx is nonempty.
Let z ∈ Rfx and fixw ∈ K arbitrarily. Ifw 6= z, then since tw⊕(1−t)z ∈ K for t ∈ ]0, 1[,

we have
0 ≤ f(z, tw ⊕ (1− t)z)− log cos d(x, tw ⊕ (1− t)z) + log cos d(x, z)

≤ tf(z, w) + (1− t)f(z, z)

− log(cos d(x,w) sin(td(w, z)) + cos d(x, z) sin((1− t)d(w, z)))
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+ log sin d(w, z) + log cos d(x, z)

= tf(z, w) + L(t),

where
L(t) = − log(cos d(x,w) sin(td(w, z)) + cos d(x, z) sin((1− t)d(w, z)))

+ log(cos d(x, z) sin d(w, z)).

Notice that L(t)→ 0 as t ↓ 0. By l’Hospital’s rule, we have

0 ≤ f(z, w) + lim
t ↓ 0

L(t)

t
= f(z, w) + lim

t ↓ 0

dL(t)

dt
.

Since
dL(t)

dt
=
d(w, z)(− cos d(x,w) cos(td(w, z)) + cos d(x, z) cos((1− t)d(w, z)))

cos d(x,w) sin(td(w, z)) + cos d(x, z) sin((1− t)d(w, z))

→ d(w, z)((− cos d(x,w) + cos d(x, z) cos d(w, z))

cos d(x, z) sin d(w, z)

=
d(w, z)

sin d(w, z)

(
cos d(w, z)− cos d(x,w)

cos d(x, z)

)
as t ↓ 0, we have

(4.4) 0 ≤ f(z, w) +
d(w, z)

sin d(w, z)

(
cos d(w, z)− cos d(x,w)

cos d(x, z)

)
for x ∈ X , z ∈ Rfx, and w ∈ K such that w 6= z.

To prove (i) and (ii), let x1, x2 ∈ X , z1 ∈ Rfx1, z2 ∈ Rfx2, We first suppose that z1 6= z2.
Then, since z1, z2 ∈ K, it follows from the previous inequality that

0 ≤ f(z1, z2) +
d(z2, z1)

sin d(z2, z1)

(
cos d(z2, z1)− cos d(x1, z2)

cos d(x1, z1)

)
,

0 ≤ f(z2, z1) +
d(z1, z2)

sin d(z1, z2)

(
cos d(z1, z2)− cos d(x2, z1)

cos d(x2, z2)

)
.

Adding their both sides, we have

0 ≤ f(z1, z2) + f(z2, z1) +
d(z1, z2)

sin d(z1, z2)

(
2 cos d(z1, z2)− cos d(x2, z1)

cos d(x2, z2)
− cos d(x1, z2)

cos d(x1, z1)

)
≤ d(z1, z2)

sin d(z1, z2)

(
2 cos d(z1, z2)− cos d(x2, z1)

cos d(x2, z2)
− cos d(x1, z2)

cos d(x1, z1)

)
.

Since d(z1, z2)/ sin d(z1, z2) > 0, we have

(4.5)
cos d(x2, z1)

cos d(x2, z2)
+

cos d(x1, z2)

cos d(x1, z1)
≤ 2 cos d(z1, z2).

Note that this inequality is obviously true if z1 = z2. Using this inequality, we may show
that Rfx is a singleton; if x = x1 = x2, then

2 cos d(z1, z2) ≥ cos d(x, z1)

cos d(x, z2)
+

cos d(x, z2)

cos d(x, z1)
≥ 2

√
cos d(x, z1)

cos d(x, z2)

cos d(x, z2)

cos d(x, z1)
= 2,

and thus cos d(z1, z2) = 1, which implies that z1 = z2. Hence Rfx is always a singleton
and (i) holds. From this fact, we can write z1 = Rfx1 and z2 = Rfx2 in (4.5). Thus we
obtain the inequality in (ii). In addition, we have

2 cos d(Rfx1, Rfx2) ≥ cos d(x1, Rfx2)

cos d(x1, Rfx1)
+

cos d(x2, Rfx1)

cos d(x2, Rfx2)

≥ cos d(x1, Rfx2) + cos d(x2, Rfx1),
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which shows that Rf is spherically nonspreading of sum type.
For (iii), suppose z ∈ FixRf , or equivalently, z = Rfz. Using the inequality (4.4), we

have
0 ≤ f(z, w) +

d(w, z)

sin d(w, z)

(
cos d(w, z)− cos d(z, w)

cos d(z, z)

)
= f(z, w)

for every w ∈ K with w 6= z. Since f(z, w) = 0 if z = w, we get f(z, w) ≥ 0 for all w ∈ K.
It implies that z ∈ Equil f . On the other hand, if z ∈ Equil f , then, since − log cos t ≥ 0 for
any t ∈ [0, π/2[, we have

inf
y∈K

(f(z, y)− log cos d(z, y) + log cos d(z, z)) = inf
y∈K

(f(z, y)− log cos d(z, y))

≥ inf
y∈K

f(z, y) ≥ 0.

This inequality shows that z = Rfz, that is z ∈ FixRf . Hence we have FixRf = Equil f .
Further, since a spherically nonspreading mapping Rf of sum type is quasinonexpansive
if it has a fixed point, we conclude that FixRf is closed and convex. �

5. EXISTENCE AND APPROXIMATING METHODS OF THE SOLUTIONS

As mentioned in the previous section, a resolvent operator of a bifunction f with the
conditions (E1)–(E4) is spherically nonspreading of sum type, and the set of solutions
to the equilibrium problem for f coincides with the set of fixed points of its resolvent.
Therefore, we may apply fixed point theorems and approximation theorems for spheri-
cally nonspreading mappings to the existence and the approximation of the solutions to
the equilibrium problem.

Notice that every spherically nonspreading mapping of sum type is also that of product
type; see Section 2.

In a similar way to ∆-convergence of a net, we say that a sequence {xn} of an admissi-
ble CAT(1) space X is ∆-convergent to x0 ∈ X if {x0} = A({xnk}), or equivalently,

lim sup
k→∞

d(xnk , x0) = inf
y∈X

lim sup
k→∞

d(xnk , y)

for every subsequence {xnk} of {xn}.
Theorem 5.7 (Kimura–Kohsaka [10]). LetX be an admissible complete CAT(1) space such that
diamX < π/2. Let T : X → X be a spherically nonspreading mapping of product type. Then
FixT 6= ∅ and a sequence {Tnx} is ∆-convergent to some x0 ∈ FixT for each x ∈ X .

From this result, we can deduce the existence and approximation theorem of the solu-
tions to an equilibrium problem as follows:

Theorem 5.8. Let X be an admissible complete CAT(1) space and suppose that it has the convex
hull finite property and diamX < π/2. Let K be a nonempty closed convex subset of X . Suppose
that f : K×K → R satisfies the conditions (E1)–(E4) described above. Then Equil f 6= ∅ and the
sequence {Rnfx} is ∆-convergent to some x0 ∈ Equil f for each x ∈ X .

Proof. The resolvent Rf of a bifunction f is a selfmapping on X . Since it is a spherically
nonspreading mapping of sum type, it is also that of product type. Thus, by Theorem 5.7,
it has a fixed point and {Rnfx} is ∆-convergent to some x0 ∈ FixRf . Consequently, by
Theorem 4.6 (iii), we have Equil f = FixRf 6= ∅ and thus we obtain the desired result. �

At the end of this section, we mention equilibrium problems on a subset of the unit
sphere SH of a real Hilbert space H . Let X be a nonempty closed convex subset of SH
such that d(x, y) < π/2 for every x, y ∈ X , where the metric d on X is the spherical metric
defined on SH . In this case, X is an admissible complete CAT(1) space as well as it has
the convex hull finite property. We can show this fact by the following.
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Theorem 5.9 (Ariza-Ruiz–Li–Acedo [2]). Let X be a CAT(1) space and K a nonempty closed
convex subset of X such that diamK < π/2. Suppose that a continuous mapping T : K → K
satisfies that clT (K) is compact. Then, T has a fixed point.

Let E be a finite subset of X and T : cl coE → cl coE a continuous mapping. Then,
cl coE is included in a finite-dimensional subspace M of H linearly spanned by E. It
follows that cl coE is compact in M since cl coE is bounded. Thus we have cl coE is also
compact with respect to the spherical metric on X . Consequently, T has a fixed point by
applying Theorem 5.9 with K = cl coE, and hence X has the convex hull finite property.
This fact implies that Theorem 5.8 is valid for such a space.
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