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Instability of second-order nonhomogeneous linear
difference equations with real-valued coefficients

MASAKAZU ONITSUKA

ABSTRACT. In J. Comput. Anal. Appl. (2020), pp. 152–165, the author dealt with Hyers–Ulam stability
of the second-order linear difference equation ∆2

hx(t) + α∆hx(t) + βx(t) = f(t) on hZ, where ∆hx(t) =

(x(t+h)−x(t))/h and hZ = {hk| k ∈ Z} for the step size h > 0; α and β are real numbers; f(t) is a real-valued
function on hZ. The purpose of this paper is to clarify that the second-order linear difference equation has no
Hyers–Ulam stability when the step size h > 0 and the coefficients α and β satisfy suitable conditions. Finally,
a necessary and sufficient condition for Hyers–Ulam stability is obtained.

1. INTRODUCTION

In 1940, Ulam [22] posed one of the stability in functional equations. This stability will
later be called Ulam stability or Hyers–Ulam stability. The study of Hyers–Ulam stability
has evolved in the field of functional equations, and its concept has been extended to
the field of differential equations, recurrence and dynamic equations on time scales (see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23]).

Recently, the author [16] studied Hyers–Ulam stability of the second-order nonhomo-
geneous linear difference equation

(1.1) ∆2
hx(t) + α∆hx(t) + βx(t) = f(t)

on hZ, where

∆hx(t) =
x(t+ h)− x(t)

h
and hZ = {hk| k ∈ Z}

for the constant step size h > 0; α and β are real numbers; f(t) is a real-valued function on
hZ. We say that (1.1) has “Hyers–Ulam stability” on hZ if there exists a constantK > 0 with
the following property: Let ε > 0 be a given arbitrary constant. If a function φ : hZ → R
satisfies

∣∣∆2
hφ(t) + α∆hφ(t) + βφ(t)− f(t)

∣∣ ≤ ε for all t ∈ hZ, then there exists a solution
x : hZ → R of (1.1) such that |φ(t) − x(t)| ≤ Kε for all t ∈ hZ. We call such K a “HUS
constant” for (1.1) on hZ. In addition, we call the minimum of HUS constants for (1.1) on
hZ the “best HUS constant”. In [16], the author presented the following result.

Theorem 1.1 (See [16, Theorem 2.1]). Suppose that the quadratic equation

(1.2) λ2 + αλ+ β = 0

has real roots λ1 and λ2 with λi 6= −2/h, −1/h and 0 for i ∈ {1, 2}. Then (1.1) has Hyers–Ulam
stability with an HUS constant K(λ1, h)K(λ2, h) on hZ, where K(λ, h) is defined by

(1.3) K(λ, h) =
h

|1− |λh+ 1||
.
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Define the set S by

S :=

{
(α, β) ∈ R2

∣∣∣ β > α2

4
, β 6= α

h

}
.

Recently, the following result was obtained by Anderson and Onitsuka [4].

Theorem 1.2 (See [4, Theorem 3.3]). If (α, β) ∈ S, then (1.1) has Hyers–Ulam stability with
an HUS constant

K

(
−α+

√
α2 − 4β

2
, h

)
K

(
−α−

√
α2 − 4β

2
, h

)
=

1(
1
h −

√
β − α

h + 1
h2

)2
on hZ, where K(λ, h) is the constant given by (1.3) for λ ∈ C.

Remark 1.1. It is known that K(λ, h) is the best HUS constant for the first-order linear
difference equation ∆hx(t)− λx(t) = 0 on hZ (see, [4, 14, 15]).

Remark 1.2. Under the assumption that 1− αh+ βh2 6= 0, we see that (1.2) is the charac-
teristic equation for the second-order homogeneous linear difference equation

∆2
hx(t) + α∆hx(t) + βx(t) = 0

on hZ, since (λh + 1)t/h is a solution of this equation on hZ if and only if (1.2) holds. If
1 − αh + βh2 = 0 then we no longer have a second-order difference equation, and we
have λ = −1/h. Conversely, λ = −1/h implies 1 − αh + βh2 = 0. For this reason, the
assumption λi 6= −1/h for i ∈ {1, 2} in Theorem 1.1 is naturally assumed. Moreover,
(α, β) ∈ S implies λi 6= −1/h for i ∈ {1, 2} in Theorem 1.2.

The following result naturally established from the Theorems 1.1 and 1.2.

Theorem 1.3. Let λ1 and λ2 be the complex roots of (1.2) with λi 6= −1/h for i ∈ {1, 2}. If
λi 6= 0 and λi 6= −2/h for i ∈ {1, 2}, then (1.1) has Hyers–Ulam stability with an HUS constant
K(λ1, h)K(λ2, h) on hZ, where K(λ, h) is the constant given by (1.3) for λ ∈ C.

An important question now arises. If there exists j ∈ {1, 2} such that λj = 0 or λj =
−2/h, does (1.1) have Hyers–Ulam stability? The main purpose of this study is to answer
this question.

In the next section, we will give two lemmas that describes some calculations used for
the proof of the main theorem. In section 3, we will present the main theorem and its
proof. In section 4, we will derive two theorems that can be judged by the real-valued
coefficients α and β. Finally, in section 5, we give conclusions.

2. LEMMAS

In this section, we will give some simple lemmas. Let Φ(t) be an antidifference of φ(t)
on hZ, that is, ∆hΦ(t) = φ(t) holds on hZ. For any real constant C, we denote Φ(t) +C by
∆−1h φ(t). The first lemma was given in [16].

Lemma 2.1 (See [16, Lemma 2.1]). Suppose that (1.2) has real roots λ1 and λ2 with λi 6= −1/h
for i ∈ {1, 2}. Define

F (t) = ∆−1h f(t)(λ2h+ 1)−
t+h
h

and

(2.4) Y (t;λ1, λ2) =
{

∆−1h F (t)(λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
(λ1h+ 1)

t
h

for t ∈ hZ. Then Y (t;λ1, λ2) is a solution of (1.1).
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Lemma 2.2. The following equalities hold:

∆h(−1)
t
h = − 2

h
(−1)

t
h ;

∆ht(−1)
t
h = − 2

h
t(−1)

t
h − (−1)

t
h ;

∆ht
2(−1)

t
h = − 2

h
t2(−1)

t
h − 2t(−1)

t
h − h(−1)

t
h .

Proof. From the definition of ∆h, we have

∆h(−1)
t
h =

1

h

{
(−1)

t+h
h − (−1)

t
h

}
= − 2

h
(−1)

t
h ,

∆ht(−1)
t
h =

1

h

{
(t+ h)(−1)

t+h
h − t(−1)

t
h

}
=

1

h
(2t+ h)(−1)

t+h
h = − 2

h
t(−1)

t
h − (−1)

t
h

and

∆ht
2(−1)

t
h =

1

h

{
(t+ h)2(−1)

t+h
h − t2(−1)

t
h

}
=

1

h

(
2t2 + 2ht+ h2

)
(−1)

t+h
h

= − 2

h
t2(−1)

t
h − 2t(−1)

t
h − h(−1)

t
h

for all t ∈ hZ. �

3. INSTABILITY

The answer to the question given in the first section is as follows.

Theorem 3.1. Let λ1 and λ2 be the complex roots of (1.2) with λi 6= −1/h for i ∈ {1, 2}. If there
exists j ∈ {1, 2} such that λj = 0 or λj = −2/h, then (1.1) does not have Hyers–Ulam stability
on hZ.

Proof. Let ε > 0. To prove instability, we have only to show that for a given y(t) such that∣∣∆2
hy(t) + α∆hy(t) + βy(t)− f(t)

∣∣ ≤ ε
holds on hZ, any solution x(t) of (1.1) satisfies |y(t) − x(t)| → ∞ as t → ∞. The proof of
Theorem 3.1 is divided into four cases: (a) λ1 = λ2 = 0; (b) λ1 6= λ2 = 0; (c) λ1 6= λ2 =
−2/h; (d) λ1 = λ2 = −2/h.

First, we prove the case (a) λ1 = λ2 = 0. In this case, we can assume that α = β = 0.
Let

y1(t) =
εt2

2
+ ∆−2h f(t)

for all t ∈ hZ. Since

∆hy1(t) =
ε

2h

{
(t+ h)2 − t2

}
+ ∆−1h f(t) = εt+

h

2
+ ∆−1h f(t)

holds, we see that y1(t) is a solution of the equation

∆2
hy1(t)− f(t) = ε

on hZ. Hence,
∣∣∆2

hy1(t)− f(t)
∣∣ = ε is satisfied on hZ. It is clear that

x1(t) = c1t+ c2 + ∆−2h f(t)

is any solution of (1.1) with α = β = 0, where c1 and c2 are arbitrary constants. Thus, we
get limt→∞ |y1(t)− x1(t)| =∞ for any c1 and c2.

Next, we consider the case (b) λ1 6= λ2 = 0. That is, α = −λ1 and β = 0. Let

y2(t) = − εt
λ1

+ Y (t;λ1, 0)
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for all t ∈ hZ, where Y is the function given by (2.4). From Lemma 2.1, Y (t;λ1, 0) is a
solution of (1.1) with α = −λ1 and β = 0. Using this fact and

∆h
εt

λ1
=

ε

λ1
and ∆2

h

εt

λ1
= 0,

it follows that

∆2
hy2(t)− λ1∆hy2(t)− f(t) = ∆2

h

(
− εt
λ1

+ Y (t;λ1, 0)

)
− λ1∆h

(
− εt
λ1

+ Y (t;λ1, 0)

)
− f(t)

= ∆2
hY (t;λ1, 0)− λ1∆hY (t;λ1, 0)− f(t) + ε = ε

for all t ∈ hZ. That is, y2(t) is a solution of the equation

∆hy
2
2(t)− λ1∆hy2(t)− f(t) = ε

on hZ. This implies that
∣∣∆hy

2
2(t)− λ1∆hy2(t)− f(t)

∣∣ = ε is satisfied on hZ. It is clear
that

x2(t) = c1(λ1h+ 1)
t
h + c2 + Y (t;λ1, 0)

is any solution of (1.1) with α = −λ1 and β = 0, where c1 and c2 are arbitrary constants.
Hence, we get limt→∞ |y2(t)− x2(t)| =∞ for any c1 and c2.

We now consider the case (c) λ1 6= λ2 = −2/h. That is, α = −λ1 + 2/h and β = −2λ1/h.
Let

y3(t) =
εt(−1)

t
h

λ1 + 2/h
+ Y (t;λ1,−2/h)

for all t ∈ hZ, where Y is the function given by (2.4). From Lemma 2.1, Y (t;λ1,−2/h) is a
solution of (1.1) with α = −λ1 + 2/h and β = −2λ1/h. By Lemma 2.2, we have

∆h(y3(t)− Y (t;λ1,−2/h)) =
ε

λ1 + 2/h

{
− 2

h
t(−1)

t
h − (−1)

t
h

}
= − 2

h
(y3(t)− Y (t;λ1,−2/h))− ε(−1)

t
h

λ1 + 2/h

for all t ∈ hZ. That is,

∆hy3(t) +
2

h
y3(t) = ∆hY (t;λ1,−2/h) +

2

h
Y (t;λ1,−2/h)− ε(−1)

t
h

λ1 + 2/h

holds for all t ∈ hZ. Using this equality and Lemma 2.2, we have

∆2
hy3(t) +

(
−λ1 +

2

h

)
∆hy3(t)− 2λ1

h
y3(t)− f(t)

= ∆h

(
∆hy3(t) +

2

h
y3(t)

)
− λ1

(
∆hy3(t) +

2

h
y3(t)

)
− f(t)

= ∆h

(
− ε(−1)

t
h

λ1 + 2/h

)
− λ1

(
− ε(−1)

t
h

λ1 + 2/h

)

=
2ε(−1)

t
h

h(λ1 + 2/h)
+
λ1ε(−1)

t
h

λ1 + 2/h
= ε(−1)

t
h

for all t ∈ hZ. This implies that∣∣∣∣∆2
hy3(t) +

(
−λ1 +

2

h

)
∆hy3(t)− 2λ1

h
y3(t)− f(t)

∣∣∣∣ = ε

holds on hZ. It is easy to check that

x3(t) = c1(λ1h+ 1)
t
h + c2(−1)

t
h + Y (t;λ1,−2/h)
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is any solution of (1.1) with α = −λ1 + 2/h and β = −2λ1/h, where c1 and c2 are arbitrary
constants. Hence, we obtain limt→∞ |y3(t)− x3(t)| =∞ for any c1 and c2.

Finally we prove the case (d) λ1 = λ2 = −2/h. Namely, α = 4/h and β = 4/h2. Let

y4(t) =
εt2(−1)

t
h

2
+ Y (t;−2/h,−2/h)

for all t ∈ hZ, where Y is the function given by (2.4). From Lemma 2.1, Y (t;−2/h,−2/h)
is a solution of (1.1) with α = 4/h and β = 4/h2. By Lemma 2.2, we have

∆h(y4(t)− Y (t;−2/h,−2/h)) =
ε

2

{
− 2

h
t2(−1)

t
h − 2t(−1)

t
h − h(−1)

t
h

}
= − 2

h
(y4(t)− Y (t;−2/h,−2/h))− εt(−1)

t
h − hε

2
(−1)

t
h

for all t ∈ hZ. That is,

∆hy4(t) +
2

h
y4(t) = ∆hY (t;−2/h,−2/h) +

2

h
Y (t;−2/h,−2/h)− εt(−1)

t
h − hε

2
(−1)

t
h

holds for all t ∈ hZ. Using this equality and Lemma 2.2, we have

∆2
hy4(t) +

4

h
∆hy4(t) +

4

h2
y4(t)− f(t)

= ∆h

(
∆hy4(t) +

2

h
y4(t)

)
+

2

h

(
∆hy4(t) +

2

h
y4(t)

)
− f(t)

= ∆h

(
−εt(−1)

t
h − hε

2
(−1)

t
h

)
+

2

h

(
−εt(−1)

t
h − hε

2
(−1)

t
h

)
= −ε

{
− 2

h
t(−1)

t
h − (−1)

t
h

}
− hε

2

−2(−1)
t
h

h
+

2

h

(
−εt(−1)

t
h − hε(−1)

t
h

2

)
= ε(−1)

t
h

for all t ∈ hZ. This implies that∣∣∣∣∆2
hy4(t) +

4

h
∆hy4(t) +

4

h2
y4(t)− f(t)

∣∣∣∣ = ε

holds on hZ. It is easy to check that

x4(t) = c1(−1)
t
h + c2t(−1)

t
h + Y (t;−2/h,−2/h)

is any solution of (1.1) with α = 4/h and β = 4/h2, where c1 and c2 are arbitrary constants.
Hence, we obtain limt→∞ |y4(t) − x4(t)| = ∞ for any c1 and c2. This completes the proof
of Theorem 3.1. �

Theorems 1.3 and 3.1 imply the following result immediately.

Theorem 3.2. Let λ1 and λ2 be the complex roots of (1.2) with λi 6= −1/h for i ∈ {1, 2}. Then
(1.1) has Hyers–Ulam stability on hZ if and only if λi 6= 0 and −2/h for i ∈ {1, 2}.

4. CRITERION BY COEFFICIENTS

In this section, we now focus on the Theorem 3.1 from another angle. Especially, we
will establish an instability theorem that can be judged by coefficients. First, we give a
lemma.

Lemma 4.1. Let λ1 and λ2 satisfy (λ − λ1)(λ − λ2) = λ2 + αλ + β = 0 with λi 6= −1/h for
i ∈ {1, 2}. Then there exists j ∈ {1, 2} such that λj = 0 or λj = −2/h if and only if β = 0 or
β = 2α/h− 4/h2.
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Proof. From the assumption, we see that

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2 = 0,

and so that α = −(λ1 + λ2) and β = λ1λ2. This says that there exists j ∈ {1, 2} such
that λj = 0 if and only if β = 0. Next we will prove that there exists j ∈ {1, 2} such that
λj = −2/h if and only if β = 2α/h − 4/h2 holds. If λ1 = −2/h then α = −λ2 + 2/h and
β = −2λ2/h. Thus, we have

β =
−2(−α+ 2/h)

h
=

2α

h
− 4

h2
.

Conversely, this equation implies

α =
hβ

2
+

2

h
,

and therefore, we have

λ2 +

(
hβ

2
+

2

h

)
λ+ β =

(
λ+

2

h

)
λ+

hβ

2

(
λ+

2

h

)
=

(
λ+

hβ

2

)(
λ+

2

h

)
.

This says that (1.2) has the root λ = −2/h. This completes the proof. �

Using Theorem 3.1 and Lemma 4.1, we get the following result.

Theorem 4.1. Suppose that 1 − αh + βh2 6= 0. If β(β − 2α/h + 4/h2) = 0, then the equation
(1.1) does not have Hyers–Ulam stability on hZ.

Theorems 1.3 and 4.1 imply the following result immediately.

Theorem 4.2. Suppose that 1−αh+βh2 6= 0. Then the equation (1.1) has Hyers–Ulam stability
on hZ if and only if β(β − 2α/h+ 4/h2) 6= 0.

5. CONCLUSIONS

This paper focused on the instability of the second-order nonhomogeneous linear dif-
ference equations. It has been shown that Hyers–Ulam stability is broken in the special
case where the two coefficients of the equation satisfy β(β− 2α/h+ 4/h2) = 0. In the end,
we have obtained a necessary and sufficient condition for Hyers–Ulam stability.
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