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Iterative methods for optimization problems and image
restoration

ANANTACHAI PADCHAROEN and DUANGKAMON KITKUAN

ABSTRACT. In this paper, we introduce a new accelerated iterative method for finding a common fixed point
of a countable family of nonexpansive mappings in the Hilbert spaces framework. Using our main result, we
obtain a new accelerated image restoration iterative method for solving a minimization problem in the form of
the sum of two proper lower semi-continuous and convex functions. As applications, we apply our algorithm
to solving image restoration problems.

1. INTRODUCTION

Optimization theory is widely used as it can be used to solve many practical problems
such as engineering, economics, computer science, and applied science. The study of op-
timization theory is based on functional analysis, nonlinear analysis, and convex analysis.
From an operational perspective, numerical analysis was considered to solve the optimi-
zation problem and to show the convergence of the sequence. It is studied or solved using
numerical iterative methods, most of which are used in everyday life.

At present, there is various photography. Be it from a camera or a scan, perhaps a
blurry image, such as a blurry, blurred, or dark spot. That makes the picture distort the
truth as in the Figure 1.

(A) Kitkuan (B) Butterfly (C) HeadCT (D) Brain

FIGURE 1. Test images

From the above problem can be written in mathematical models as shown in the Figure
2.
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FIGURE 2. Degradation model

We can be written as an equation as follows:

(1.1) h = Ax+ b,

where x ∈ Rn is original image, A is blur operator, b is noise, and h is degraded image. In
order to solve the problem (1.1), Tibshirani in [19], introduced the least absolute shrinkage
and selection operator (LASSO) for solving the following minimization problem:

(1.2) min
x

1

2
‖Ax− h‖22 + µ‖x‖1,

where µ > 0 is a regularization parameter, ‖x‖1 =
∑n

i=1 |xi| and ‖x‖2 =
√∑n

i=1 |xi|2. In
the theory of optimal optimization, concrete problems can be solved in many ways:

(1.3)
minimize f(x) + g(x)

subject tox ∈ Rn,

where f : Rn → R is a convex smooth function and g : Rn → R ∪ {∞} is a proper convex
lower semi-continuous and nonsmooth function. The solution of (1.3) can be characteri-
zed by Theorem 16.3 of Bauschke and Combettes [1] as follows:

w is a minimizer of (f + g) if and only if 0 ∈ ∂g(w) +∇f(w),

where ∂g is subdifferential of g and ∇f is the gradient of f. The subdifferential of g at w,
denoted by ∂g(w), is defined by

∂g(w) := {z : g(x) ≥ 〈z, x− w〉+ g(w) for all x}.
It is well-known that the subdifferential operator ∂g is maximal monotone, see [3] for
more details. For solving (1.3) is characterized by the following fixed point problem:

w is a minimizer of (f + g) if and only if w = prox
rg

(w − r∇f(w)),

for any r > 0 and proxrg is the proximity operator of g defined by

proxg(x) = arg min
z

{
g(z) +

‖x− z‖2

2

}
.

Moudafi and Oliny [14] introduced a method called Inertial method, which is another
name for the heavy ball method, as follows:

(1.4)

{
zn = xn + θn(xn − xn−1),

xn+1 = proxrg(zn − rn∇f(xn)), ∀n ≥ 1
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and proved that this algorithm converts to the minimum of f + g which rn <
1

L
, where L

is the lipchitz constant of∇f.
Beck and Teboulle [2] introduced a so-called FISTA (fast iterative shrinkage-thresholding

algorithm) as follows:

(1.5)



x1 = z0, t0 = 1,

zn = proxrng(xn − rn∇f(xn)),

tn+1 =
1 +

√
4t2n + 1

2
,

θn =
tn − 1

tn+1
,

xn+1 = zn + θn(zn − zn−1), ∀n ≥ 1.

Recently, Verma and Shukla [22] introduced a new accelerated proximal gradient algo-
rithm (NAGA) as follow:

(1.6)
{
zn = xn + θn(xn − xn−1),
xn+1 = Tn((1− δn)zn + δnTnzn), ∀ n ≥ 1,

where x0, x1 ∈ Rn, Tn is the forward-backward operator of f and g with respect to
rn ∈ (0, 2/L). They proved the convergence of the NAGA and applied to solving the
convex minimization problem with sparsity-inducing regularizes for multitask learning
framework.

Motivated by those works mentioned above, in this paper, a new accelerated fixed
point algorithms for solving (1.3) by Ishikawa type with the inertial step for a countable
family of nonexpansive mappings.

2. PRELIMINARIES

The fundamentals of the Hilbert space are studied, as well as definitions and theorems.
It is used to prove it as follows:

Definition 2.1. [19] The two real-value functions 〈·, ·〉 : X ×X → R are called the inner
product (inner product) on the X vector space for members x, y, z ∈ X and the constants
α, β ∈ R satisfy the following conditions

(i) 〈x, x〉 ≥ 0 for all x ∈ X;
(ii) 〈x, x〉 = 0 if and only if x = 0;
(iii) 〈x, y〉 = 〈y, x〉;
(iv) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

The vector space X and the internal product 〈·, ·〉 can be written together (X, 〈·, ·〉),
which is called the inner product space.

In addition, various features of the convergence sequence in the Hilbert space H are
investigated, beginning with the naming and proof of the following theorem.

Lemma 2.1. [19] Let H be a Hilbert space. The following statement holds in H :

‖αx+ ρz‖2 = α(α+ ρ)‖x‖2 + ρ(α+ ρ)‖z‖2 − ρα‖x− z‖2, ∀x, z ∈ H,∀α, ρ ∈ R.

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and C be a no-
nempty closed convex subset of H.

A nonlinear operator T : C → C is called
(i) L-Lipschitz operator, if there exists L > 0 such that

‖Tx− Tz‖ ≤ L‖x− z‖, for all x, z ∈ C;
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(ii) nonexpansive, if

‖Tx− Tz‖ ≤ ‖x− z‖, for all x, z ∈ C.
Next, we denote by Fix(T ) the set of all fixed points of T , Fix(T ) := {w ∈ C : Tw =
w}, ωw(xn) denote the set of all weak-cluster points of a bounded sequence {xn} in
C, {Tn} and Ψ be families of nonexpansive operators of C into itself such that Ω :=⋂∞

k=1 Fix(Tn) ⊃ Fix(Ψ) 6= ∅, where Fix(Ψ) is the set of all common fixed points of
Ψ.

Nakajo et al. [15] introduced the NST-condition (I) with Ψ. A sequence {Tn} is said to
satisfy the NST if for every bounded sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0, ∀ T ∈ Ψ.

Nakajo et al. [16] introduced the NST∗-condition which is more general than that of NST-
condition. A sequence {Tn} is said to satisfy the NST∗-condition if for every bounded
sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = lim
n→∞

‖xn − xn+1‖ = 0 implies ωw(xn) ⊂ Ω.

Lemma 2.2. [14] Let H be a Hilbert space and {xn} be a sequence in H such that there exists a
nonempty set Ω ⊂ H satisfying

(i) for every x ∈ Ω, limn→∞ ‖xn − x‖ exists;
(ii) each weak-cluster point of the sequence {xn} is in Ω.

Then there exists w ∈ Ω such that {xn} weakly converges to w.

Lemma 2.3. [4] For a real Hilbert space H, let g : H → R ∪ {∞} be a proper convex and
lower semi-continuous function, and f : H → R be convex differentiable with gradient ∇f being
L-Lipschitz constant for some L > 0. If {Tn} is the forward-backward operator of f and g with
respect to rn ∈ (0, 2/L) such that rn converges to r, then {Tn} satisfies NST-condition (I) with
T, where T is the forward-backward operator of f and g with respect to r ∈ (0, 2/L).

Lemma 2.4. [11] Let {υn}, {δn} and {θn} are sequence in [0,∞) such that

υn+1 ≤ υn + θn(υn − υn−1) + δn, ∀n ≥ 1,

∞∑
n=1

δn <∞

and there exists θ which 0 ≤ θn ≤ θ < 1 for all n ∈ N.
So the following statement hold:

(i)
∑∞

n=1[υn − υn−1]+ <∞, where [t]+ := max{t, 0};
(ii) there exists υ∗ ∈ [0,∞), where limn→∞ υn = υ∗.

3. MAIN RESULTS

Study of the convergence theory of repeat methodology. To the answer to the problem
of optimal optimization in the Hilbert space H and from the theorem constructions and
improvements. Obtain important new knowledge with key content as follows:

Theorem 3.1. Let {Tn : H → H} be a family of nonexpansive operators. Suppose {Tn} satisfies
NST∗-condition and Ω :=

⋂∞
n=1 Fix(Tn) 6= ∅. Let the sequence {xn} in H be generated by

choosing x0, x1 ∈ H and using the recursion

(3.7)


wn = xn + θn(xn − xn−1),

zn = (1− τn)xn + τn ((1− γn)wn + γnTnwn) ,

xn+1 = (1− δn)xn + δn ((1− λn)zn + λnTnzn) ,

where {τn}, {γn}, {δn}, {λn} and {θn} are sequences such that
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(i) 0 ≤ θn ≤ θn+1 ≤ 1;

(ii) 0 < τ ≤ τn ≤ τn+1 ≤
1

2 + α
:= ε, α > 0;

(iii) 0 < γ ≤ γn ≤ ρ < 1;

(iv) 0 < δ ≤ δn ≤ δn+1 ≤
1

2 + β
:= ε, β > 0;

(v) 0 < λ ≤ λn ≤ ι < 1.
Then the sequence {xn} generated by (3.7) converges weakly to a point w ∈ Ω.

Proof. Let w ∈ Ω, ζn = (1 − γn)wn + γnTnwn and ϑn = (1 − λn)zn + λnTnzn. Using
Lemma 2.1, we obtain

(3.8)

‖ζn − w‖2 = ‖(1− γn)wn + γnTnwn − w‖2

= ‖(1− γn)(wn − w) + γn(Tnwn − w)‖2

= (1− γn)‖wn − w‖2 + γn‖Tnwn − w‖2

− γn(1− γn)‖Tnwn − wn‖2

≤ ‖wn − w‖2 − γn(1− γn)‖Tnwn − wn‖2.

Hence,

(3.9) ‖ζn − w‖ ≤ ‖wn − w‖

and

(3.10)

‖ϑn − w‖2 = ‖(1− λn)zn + λnTnzn − w‖2

= ‖(1− λn)(zn − w) + λn(Tnzn − w)‖2

= (1− λn)‖zn − w‖2 + λn‖Tnzn − w‖2

− λn(1− λn)‖Tnzn − zn‖2

≤ ‖zn − w‖2 − λn(1− λn)‖Tnzn − zn‖2.

So,

(3.11) ‖ϑn − w‖ ≤ ‖zn − w‖.

From (3.9), we get

(3.12)

‖xn+1 − w‖2 = ‖(1− δn)xn + δnϑn − w‖2

= ‖(1− δn)(xn − w) + δn(ϑn − w)‖2

= (1− δn)‖xn − w‖2 + δn‖ϑn − w‖2

− δn(1− δn)‖xn − ϑn‖2.

From zn = (1− τn)xn + τnζn and xn+1 = (1− δn)xn + δnϑn, we obtain

(3.13) ζn − xn =
1

τn
(zn − xn)

and

(3.14) ϑn − xn =
1

δn
(xn+1 − xn).
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Using (3.12), (3.13), and (3.14), we obtain

(3.15)

‖xn+1 − w‖2 ≤ (1− δn)‖xn − w‖2 + δn‖ϑn − w‖2

− δn(1− δn)‖xn − ϑn‖2

= (1− δn)‖xn − w‖2 + δn‖zn − w‖2

− (1− δn)

δn
‖xn+1 − xn‖2.

From (3.14), we get

(3.16)

‖zn − w‖2 = ‖(1− τn)xn + τnζn − w‖2

= ‖(1− τn)(xn − w) + τn(ζn − w)‖2

= (1− τn)‖xn − w‖2 + τn‖ζn − w‖2

− τn(1− τn)‖xn − ζn‖2

= (1− τn)‖xn − w‖2 + τn‖ζn − w‖2

− (1− τn)

τn
‖zn − xn‖2.

From (3.9), we get

(3.17)
‖zn − w‖2 ≤ (1− τn)‖xn − w‖2 + τn‖wn − w‖2

− (1− τn)

τn
‖zn − xn‖2.

Using (3.15), (3.16), and (3.17), we obtain

(3.18)

‖xn+1 − w‖2 ≤ (1− δn)‖xn − w‖2 + δn(1− τn)‖xn − w‖2 + δnτn‖wn − w‖2

− δn(1− τn)

τn
‖zn − xn‖2

− (1− δn)

δn
‖xn+1 − xn‖2

= (1− δnτn)‖xn − w‖2 + δnτn‖wn − w‖2

− δn(1− τn)

τn
‖zn − xn‖2

− (1− δn)

δn
‖xn+1 − xn‖2

and

(3.19)

‖wn − w‖2 = ‖xn + θn(xn − xn−1)− w‖2

= ‖(1 + θn)(xn − w)− θn(xn−1 − w)‖2

= (1 + θn)‖xn − w‖2 − θn‖xn−1 − w‖2

+ θn(1 + θn)‖xn − xn−1‖2.
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Using (3.18) and (3.19), we obtain

(3.20)

‖xn+1 − w‖2 ≤ (1− δnτn)‖xn − w‖2 + δnτn(1 + θn)‖xn − w‖2

− δnτnθn‖xn−1 − w‖2 + δnτnθn(1 + θn)‖xn − xn−1‖2

− δn(1− τn)

τn
‖zn − xn‖2

− (1− δn)

δn
‖xn+1 − xn‖2

= (1 + δnτnθn)‖xn − w‖2

− δnτnθn‖xn−1 − w‖2 + δnτnθn(1 + θn)‖xn − xn−1‖2

− δn(1− τn)

τn
‖zn − xn‖2

− (1− δn)

δn
‖xn+1 − xn‖2.

Let Υn = ‖xn − w‖2 − δnτnθn‖xn−1 − w‖2 + δnτnθn(1 + θn)‖xn − xn−1‖2.
Since δn ≤ δn+1, τn ≤ τn+1 and θn ≤ θn+1 then δnτnθn ≤ δn+1τn+1θn+1. Hence,

(3.21)

Υn+1 −Υn ≤ ‖xn+1 − w‖2 − (1 + δn+1τn+1θn+1)‖xn − w‖2

+ δnτnθn‖xn−1 − w‖2 + δn+1τn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

− δnτnθn(1 + θn)‖xn − xn−1‖2

≤ ‖xn+1 − w‖2 − (1 + δnτnθn)‖xn − w‖2

+ δnτnθn‖xn−1 − w‖2 + δn+1τn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

− δnτnθn(1 + θn)‖xn − xn−1‖2.

Using (3.20) and (3.21), we obtain

(3.22)
Υn+1 −Υn ≤ −

(1− δn)

δn
‖xn+1 − xn‖2 + δn+1τn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

= −
(

1− δn
δn

− δn+1τn+1θn+1(1 + θn+1)

)
‖xn+1 − xn‖2.

Using conditions (i), (ii), and (iv), we obtain

(3.23)

1− δn
δn

− δn+1τn+1θn+1(1 + θn+1) =
1

δn
− 1− δn+1τn+1θn+1(1 + θn+1)

≥ 2 + β − 1− 2

(2 + β)(2 + α)

≥ β.

Using (3.22) and (3.23), we obtain

(3.24) Υn+1 −Υn ≤ −β‖xn+1 − xn‖2.

Hence, the sequence {Υn} is non-increasing. Similarly,

(3.25)
Υn = ‖xn − w‖2 − δnτnθn‖xn−1 − w‖2 + δnτnθn(1 + θn)‖xn − xn−1‖2

≥ |xn − w‖2 − δnτnθn‖xn−1 − w‖2,

where

δnτnθn ≤
1

(2 + β)(2 + α)
= εε < 1.
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From (3.24), we get

(3.26)

‖xn − w‖2 ≤ δnτnθn‖xn−1 − w‖2 + Υn

≤ εε‖xn−1 − w‖2 + Υn

≤ εε‖xn−1 − w‖2 + Υ1

...

≤ (εε)n‖x0 − w‖2 + (1 + · · ·+ (εε)n−1)Υ1

≤ (εε)n‖x0 − w‖2 +
Υ1

1− εε
and

(3.27)

Υn+1 = ‖xn+1 − w‖2 − δn+1τn+1θn+1‖xn − w‖2

+ δn+1τn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

≥ |xn − w‖2 − δnτnθn‖xn−1 − w‖2.
From (3.27) and (3.26), we get

(3.28)

−Υn+1 ≤ δn+1τn+1θn+1‖xn − w‖2

≤ εε‖xn − w‖2

...

≤ (εε)n+1‖x0 − w‖2 +
εεΥ1

1− εε
.

Using (3.24) and (3.28), we obtain

(3.29)
β

k∑
n=1

‖xn+1 − xn‖2 ≤ Υ1 −Υk+1

≤ (εε)k+1‖x0 − w‖2 +
Υ1

1− εε
.

This implies

(3.30)
∞∑

n=1

‖xn+1 − xn‖2 ≤
Υ1

β(1− εε)
<∞.

Hence, limn→∞ ‖xn+1 − xn‖2 = 0, we get

(3.31)
‖wn − xn‖2 = θn‖xn − xn−1‖2

≤ ‖xn − xn−1‖2 → 0 as n→∞.
From (3.20), we get

(3.32) ‖xn+1 − w‖2 ≤ (1 + δnτnθn)‖xn − w‖2 − δnτnθn‖xn−1 − w‖2 + 2‖xn − xn−1‖2.
Using Lemma 2.4, we obtain

(3.33) lim
n→∞

‖xn − w‖2 = q <∞.

Using condition (i), we get limn→∞ θn exists. Suppose limn→∞ θn = θ ∈ [0, 1] then
limn→∞ θn‖xn −w‖2 = θq. Similarly, limn→∞ θn‖xn−1 −w‖2 = θq and from (3.19), we get

(3.34)
lim
n→∞

‖wn − w‖2 = lim
n→∞

[
(1 + θn)‖xn − w‖2 − θn‖xn−1 − w‖2

+ θn(1 + θn)‖xn − xn−1‖2
]

= q.
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Hence, limn→∞[(1+θn)‖xn−w‖2−θn‖xn−1−w‖2 +θn(1+θn)‖xn−xn−1‖2] exists. Using
(3.8) and (3.18), we obtain

(3.35)
‖xn+1 − w‖2 ≤ (1− δnτn)‖xn − w‖2 + δnτn‖wn − w‖2

− δnτnγn‖Tnwn − wn‖2.
So, we get

(3.36)

δτγ‖Tnwn − wn‖2 ≤ δnτnγn‖Tnwn − wn‖2

≤ ‖xn − w‖2 − ‖xn+1 − w‖2 − δnτn‖xn − w‖2

+ δnτn‖wn − w‖2.
By condition (ii) and (iv), we get limn→∞ δn and limn→∞ τn exists. From

lim
n→∞

δnτn‖xn − w‖2 = lim
n→∞

δnτn‖wn − w‖2

and (3.36), we get lim supn→∞ ‖Tnwn − wn‖2 ≤ 0. Then,

lim
n→∞

‖Tnwn − wn‖ = 0.

Hence,
‖xn − Tnxn‖ ≤ ‖xn − wn‖+ ‖wn − Tnwn‖+ ‖Tnwn − Tnxn‖

≤ 2‖xn − wn‖+ ‖wn − Tnwn‖ → 0 as n→∞.
Since {Tn} satisfies NST∗-condition, we get ωw(xn) ⊂ Ω :=

⋂∞
n=1 Fix(Tn). Hence, by

Lemma 2.2, we obtain that {xn} converges weakly to a point w ∈ Ω. �

Finally, we apply Algorithm (3.7) for solving the minimization problem (1.3) by setting
Tn = proxrng(I − rn∇f), the forward-backward operator of f and g with respect to rn,
where g : H → R ∪ {∞} is proper convex and lower semi-continuous, and f : H → R
is a continuously differentiable convex function, whose gradient is Lipschitz continuous
(L > 0).

Theorem 3.2. Let H be a Hilbert space, f : H → R be a convex and differentiable function such

that ∇f is
1

L
-Lipschitz continuous and let g : H → R ∪ {∞} be a proper convex and lower

semi-continuous function. We define a sequence {xn} by the iterative scheme, for any x0, x1 ∈ H,

(3.37)


wn = xn + θn(xn − xn−1),

zn = (1− τn)xn + τn
(
(1− γn)wn + γn proxrng(wn − rn∇f(wn))

)
,

xn+1 = (1− δn)xn + δn
(
(1− λn)zn + λn proxrng(zn − rn∇f(zn))

)
,

where {τn}, {γn}, {δn}, {λn}, {rn} and {θn} are sequences such that
(i) 0 ≤ θn ≤ θn+1 ≤ 1;

(ii) 0 < τ ≤ τn ≤ τn+1 ≤
1

2 + α
:= ε, α > 0;

(iii) 0 < γ ≤ γn ≤ ρ < 1;

(iv) 0 < δ ≤ δn ≤ δn+1 ≤
1

2 + β
:= ε, β > 0;

(v) 0 < λ ≤ λn ≤ ι < 1;

(vi) 0 < rn <
2

L
.

Then the sequence {xn} generated by (3.37) converges weakly to a point w ∈ arg min(f + g).

Proof. Let T be the forward-backward operator of f and g with respect to r, and Tn be the
forward-backward operator of f and g with respect to rn, that is T := proxrg(I − r∇f)
and Tn := proxrng(I − rn∇f). Then T and {Tn} are nonexpansive operators for all n,
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and Fix(T ) =
⋂∞

n=1 Fix(Tn) = arg min(f + h)(see Proposition 26.1 in [1].) Using Lemma
2.3, we have that {Tn} satisfies the NST∗-condition. Hence, we obtain the required result
directly by Theorem 3.1. �

4. NUMERICAL EXPERIMENTS

In this section, we will discuss the results of some of the tests using our proposed al-
gorithm in Theorem 3.2 to solve the problem of image restoration. In Theorem 3.2, we set

f(x) =
1

2
‖Ax − h‖22 and g(x) = µ‖x‖1, it is easy to see that f is a smooth function with

L-Lipschitz continuous gradient ∇f(x) = A∗(Ax − h), where L = ‖A∗A‖. The 1-norm is

“simple”, as its proximal operator is a soft thresholding: proxrg(xn) = max

(
0, 1− µr

|xn|

)
xn.

We consider two blurring functions from MATLAB: a Gaussian blur (Matlab function is,
“fspecial(‘gaussian’,7,7)”) and a motion blur (Matlab function is, “fspecial(‘motion’,15,45)”)
respectively.

Numerical experiments presented in this section aim at proving the validity of our
proposed algorithm compared with NAGA proposed in (1.6). We set θn = 0.99, µ =
10−4, τn = γn = δn = λn = 0.91. In our paper, the comparison is done in terms of the
relative error defined as

‖xn − x‖22
‖x‖22

,

the quality of image recovery is measured by the improvement in signal to noise ratio
(ISNR). Note that ISNR defined as

ISNR = 10 log
‖x− h‖22
‖x− xn‖22

,

where x, h, and xn are the original image, the observed image, and estimated image at
iteration n, respectively. All algorithms are implemented under Windows 10 and MAT-
LAB 2017b running on a Dell laptop with Intel(R) Core(TM) i5 CPU and 4 GB of RAM.
The stopping criterion of the algorithm is

‖xn+1 − xn‖2
‖xn+1‖2

< 10−4.

The test images are Kitkuan(256×256), Butterfly(256×256), HeadCT(256×256) and
Brain(256×256), which show in Figure 3.

(A) Kitkuan (B) Butterfly (C) HeadCT (D) Brain

FIGURE 3. Test images

We show numerical results for case Gaussian blur in Table 1, restoration image results
for case Gaussian blur in Figure 4, ISNR and relative error results for case Gaussian blur
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in Figure 5, numerical results for case Motion blur in Table 2, restoration image results for
case Motion blur in Figure 6, ISNR results for case Motion blur in Figure 7

TABLE 1. Numerical results in case Gaussian blur

Figure
Our algorithm NAGA

Iter. Time ISNR Relative error Iter Time ISNR Relative error

Kitkuan 149 1.73 6.14 2.49× 10−3 362 3.79 4.70 3.48× 10−3

Butterfly 268 4.29 7.74 5.68× 10−3 733 10.66 6.82 7.03× 10−3

HeadCT 277 2.38 9.10 2.82× 10−3 893 7.68 7.54 4.05× 10−3

Brain 264 2.99 6.51 5.71× 10−3 753 7.90 5.71 7.08× 10−3

TABLE 2. Numerical results in case Motion blur

Figure
Our algorithm NAGA

Iter. Time ISNR Relative error Iter Time ISNR Relative error

Kitkuan 157 1.51 11.51 1.63×10−3 606 5.48 10.04 2.09× 10−3

Butterfly 321 3.15 14.22 4.42× 10−3 1155 10.51 13.89 4.77× 10−3

HeadCT 277 2.52 18.99 7.29× 10−4 1088 23.65 17.69 9.85× 10−4

Brain 288 2.80 16.01 1.85× 10−3 1023 8.56 15.55 2.05× 10−3

(A) Original (B) Observed (C) Our (D) NAGA

(E) Original (F) Observed (G) Our (H) NAGA
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(A) Original (B) Observed (C) Our (D) NAGA

(E) Original (F) Observed (G) Our (H) NAGA

FIGURE 4. Restoration image results in case Gaussian blur

(A) Kitkuan ISNR results (Gaussian) (B) Kitkuan relative error results (Gaussian)

(C) Butterfly ISNR results (Gaussian) (D) Butterfly relative error results (Gaussian)
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(A) HeadCT ISNR results (Gaussian) (B) HeadCT relative error results (Gaussian)

(C) Brain ISNR results (Gaussian) (D) Brain relative error results (Gaussian)

FIGURE 5. ISNR and relative error (Gaussian)

(A) Original (B) Observed (C) Our (D) NAGA

(E) Original (F) Observed (G) Our (H) NAGA
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(A) Original (B) Observed (C) Our (D) NAGA

(E) Original (F) Observed (G) Our (H) NAGA

FIGURE 6. Restoration image result in case Motion blur

(A) Kitkuan ISNR results (Motion) (B) Kitkuan relative error results (Motion)

(C) Butterfly ISNR results (Motion) (D) Butterfly relative error results (Motion)
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(A) HeadCT ISNR results (Motion) (B) HeadCT relative error results (Motion)

(C) Brain ISNR results (Motion) (D) Brain relative error results (Motion)

FIGURE 7. ISNR and relative error (Motion)

5. CONCLUSION

In this paper, we present the iterative methods using the ideas of the Ishikawa type
and inertial technique to solving optimization problems and image restoration problems.
A convergence theorem of our proposed methods, Theorem 3.1, is established and pro-
ved under some suitable conditions. We applied our main result to solving a minimiza-
tion problem in the form of the sum of two proper lower semi-continuous and convex
functions. As applications, we applied our algorithm (3.37), to solving image restoration
problems. Moreover, we did some numerical experiments to illustrate the performance of
the studied algorithms and show that ISNR of algorithm (3.37) is better than those of the
NAGA [22].
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