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On convergence theorems for single-valued and
multi-valued mappings in p-uniformly convex metric
spaces

JENJIRA PUIWONG and SATIT SAEJUNG

ABSTRACT. We prove ∆-convergence and strong convergence theorems of an iterative sequence generated
by the Ishikawa’s method to a fixed point of a single-valued quasi-nonexpansive mappings in p-uniformly
convex metric spaces without assuming the metric convexity assumption. As a consequence of our single-valued
version, we obtain a result for multi-valued mappings by showing that every multi-valued quasi-nonexpansive
mapping taking compact values admits a quasi-nonexpansive selection whose fixed-point set of the selection
is equal to the strict fixed-point set of the multi-valued mapping. In particular, we immediately obtain all of
the convergence theorems of Laokul and Panyanak [Laokul, T.; Panyanak, B. A generalization of the (CN)

inequality and its applications. Carpathian J. Math. 36 (2020), no. 1, 81–90] and we show that some of their
assumptions are superfluous.

1. INTRODUCTION

Suppose that X := (X, d) is a metric space. Denote by 2X the set of all nonempty
subsets of X . For a given multi-valued mapping T : X → 2X , we say that T : X → X is
a selection of T if Tx ∈ Tx for all x ∈ X . In this paper, we are interested in the following
two notion which play an important role in analysis : a point q ∈ X is called a fixed
point (a strict fixed point, respectively) of a multi-valued mapping T if q ∈ T q ({q} = T q,
respectively). Denote by Fix(T ) and SFix(T ) the sets of all fixed points and of strict fixed
points of the multi-valued mapping T , respectively. For more details, we refer the reader
to the book of Rus et al. [20]. To simplify the notations for a single-valued mapping
T : X → X we also write Fix(T ) := {q ∈ X : q = Tq} for the set of all fixed points of T .
It is obvious that every single-valued mapping can be regarded as a multi-valued one. It
follows that the notion of fixed point and of strict fixed point are the same when we are
dealing with single-valued mappings.

The starting point of this paper is the following result proposed Laokul and Panyanak
[12]. The relevant definitions will be given in the next section. The statements (a), (b), and
(c) below are just Theorems 3.3, 3.4, and 3.5 of [12], respectively.

Theorem LP. Suppose thatX := (X, d) is a complete 2-uniformly convex hyperbolic space. Sup-
pose that T : X → K(X) is a Suzuki’s generalized nonexpansive mapping such that SFix(T ) 6=
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∅. Suppose that {αn}, {βn} ⊂ [0, 1] and {zn} ⊂ X is iteratively defined as follows:

z1 ∈ X is arbitrarily chosen;

z′n ∈ T zn such that d(zn, z
′
n) = sup{d(zn, z) : z ∈ T zn};

wn := (1− βn)zn ⊕ βnz′n;

w′n ∈ Twn such that d(wn, w
′
n) = sup{d(wn, w) : w ∈ Twn};

zn+1 := (1− αn)zn ⊕ αnw′n for each n ≥ 1.

The following statements are true.
(a) If αn, βn ∈ [a, b] ⊂ (0, 1) for all n ≥ 1, then {zn} ∆-converges to a strict fixed point of T .
(b) If T satisfies Condition I* and αn, βn ∈ [a, b] ⊂ (0, 1) for all n ≥ 1, then {zn} converges

strongly to a strict fixed point of T .
(c) If T is semicompact* and

∑
n αnβn = ∞ and limn βn = 0, then {zn} converges strongly to

a strict fixed point of T .

Recall that a metric space X := (X, d) is a 2-uniformly convex hyperbolic space if there
exist a function W : X × X × [0, 1] → X and a constant C > 0 such that the following
conditions are satisfied by all elements x, y, z, w ∈ X and all real numbers s, t ∈ [0, 1]:
(W1) d(W (x, y, t), z) ≤ (1− t)d(x, z) + td(y, z);
(W2) d(W (x, y, s),W (x, y, t)) = |s− t|d(x, y);
(W3) W (x, y, s) = W (y, x, 1− s);
(W4) d(W (x, y, s),W (z, w, s)) ≤ (1− s)d(x, z) + sd(y, w);
(W5) d2(W (x, y, 1/2), z) + Cd2(x, y) ≤ 1

2d
2(x, z) + 1

2d
2(y, z).

Laokul and Panyanak [12] claimed that every uniformly convex Banach space and
every CAT(κ) space with a small diameter where κ > 0 are 2-uniformly convex hyper-
bolic spaces (see [12, Remark 1.1]). We note that the claim above is not correct. First, not
every uniformly convex Banach space is a 2-uniformly convex hyperbolic space. In fact,
every inner product space and every bounded convex subset of a uniformly convex Banach
space are 2-uniformly convex hyperbolic spaces. The boundedness cannot be omitted in
the latter spaces, for more detail, see [26]. Secondly, it is easy to see that a certain sub-
set of S2 := {(s1, s2, s3) ∈ R3 : s2

1 + s2
2 + s2

3 = 1} with the spherical distance d which
is a CAT(1) space together with a function W defined by the natural geodesic structure
does not satisfy Condition (W4). In fact, let x = z := (0, 0, 1), y := (

√
3/2, 0, 1/2), w :=

(0,
√

3/2, 1/2), and s = 1/2. It follows that d(W (x, y, s),W (z, w, s)) = arccos(3/4) ≈ 0.723
but (1− s)d(x, z) + sd(y, w) = 1

2 arccos(1/4) ≈ 0.659.
For the argument above, it is our purpose to use a notion of p-uniformly convex metric

spaces of Naor and Silberman [15], which is more general than the one in [12], to rees-
tablish their results in a more general setting with a simpler proof. Our result does not
require Conditions (W1) and (W4). We also show that there are mappings such that they
are applicable to our results but beyond the scope of [12].

2. MAIN RESULTS

Let X := (X, d) be a metric space and x, y ∈ X . A continuous map γ : [0, 1] → X is
called a geodesic joining x and y if γ(0) = x, γ(1) = y and

d(γ(s), γ(t)) = |s− t|d(x, y) for all s, t ∈ [0, 1].

A metric space X := (X, d) is said to be a geodesic metric space if for any two points in X
there exists a geodesic γ joining them. If for any two points in X are joined by a unique
geodesic, then we say that X is a uniquely geodesic metric space.
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A geodesic metric space (X, d) is called p-uniformly convex [15] where 2 ≤ p < ∞ if
there exists a constant C := CX ∈ (0, 1) such that for any x, y, z ∈ X and for any geodesic
γ : [0, 1]→ X joining x and y, the following inequality holds:

dp(γ(t), z) ≤ (1− t)dp(x, z) + tdp(y, z)− Ct(1− t)dp(x, y) for all t ∈ [0, 1].

Note that the inequality above can hold only for p ≥ 2 (see [15]) so this is why we assume
such a restriction. It is obvious that this notion includes every 2-uniformly convex hyper-
bolic space. Moreover, the inequality proved in Theorem 2.2 of [12] is also included in
the preceding inequality. It is worth mentioning that Conditions (W1) and (W4) are not
required in this setting as were the cases in [12].

Lemma 2.1. Every p-uniformly convex geodesic metric space is uniquely geodesic, that is, if X is
a p-uniformly convex geodesic metric space, then for each x, y ∈ X there exists a unique geodesic
joining x and y.

Proof. We follow the proof of Lemma 2.2 of [16] which is stated for the case p = 2. Suppose
that x, y are two elements in a p-uniformly convex geodesic metric space X := (X, d) and
suppose that γ1 and γ2 are two geodesic joining x and y. We show that γ1(t) = γ2(t) for
all t ∈ (0, 1). To see this, let t ∈ (0, 1) and let η be a geodesic joining γ1(t) and γ2(t). We
observe that

dp(x, η(1/2)) ≤ 1

2
dp(x, γ1(t)) +

1

2
dp(x, γ2(t))− C

4
dp(γ1(t), γ2(t))

=
1

2
dp(γ1(0), γ1(t)) +

1

2
dp(γ2(0), γ2(t))− C

4
dp(γ1(t), γ2(t))

= tpdp(x, y)− C

4
dp(γ1(t), γ2(t)).

Similarly, we also have

dp(y, η(1/2)) ≤ (1− t)pdp(x, y)− C

4
dp(γ1(t), γ2(t)).

In particular,

d(x, y) ≤ d(x, η(1/2)) + d(y, η(1/2))

≤
(
tpdp(x, y)− C

4
dp(γ1(t), γ2(t))

)1/p

+
(

(1− t)pdp(x, y)− C

4
dp(γ1(t), γ2(t))

)1/p

≤ td(x, y) + (1− t)d(x, y) = d(x, y).

This implies that γ1(t) = γ2(t) and the proof is finished. �

If X is a uniquely geodesic space, (for example, X is a p-uniformly convex geodesic
metric space), then we write

(1− t)x⊕ ty := γ(t)

where γ is the unique geodesic joining x and y. In particular, for a uniquely geodesic
space X , we also have (1− t)x⊕ ty = ty ⊕ (1− t)x for all x, y ∈ X and t ∈ [0, 1].

Recall a mapping f : X → R is convex if

f((1− t)x⊕ ty) ≤ (1− t)f(x) + tf(y) for all t ∈ [0, 1] and x, y ∈ X .

It is clear that if X := (X, d) is p-uniformly convex, then f(x) := dp(x, z) is convex for a
fixed element z ∈ X .
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2.1. ∆-convergence and metric projection. We now discuss the concept of ∆-convergence
introduced by Lim [13]. Let {xn} be a bounded sequence in X . The asymptotic center of
{xn} is defined by

A({xn}) :=
{
x ∈ X : lim sup

n
d(x, xn) = inf

y∈X
lim sup

n
d(y, xn)

}
.

We say that {xn} is ∆-convergent to x ∈ X , denoted by xn
∆→ x, if A({xnk

}) = {x} for all
subsequences {xnk

} of {xn}. The asymptotic center of a bounded sequence in a complete
p-uniformly convex geodesic metric space is a singleton as shown below. The second
assertion is related to [26, lemma 2].

Theorem 2.1. If {xn} is a bounded sequence in a complete p-uniformly convex geodesic metric
space X := (X, d), then A({xn}) = {z} for some z ∈ X . Furthermore, if X is p-uniformly
convex with a constant C, then

lim sup
n

dp(z, xn) + Cdp(y, z) ≤ lim sup
n

dp(y, xn)

for all y ∈ X .

Proof. Suppose that {xn} is a bounded sequence in a complete p-uniformly convex geo-
desic metric space X := (X, d). Define f(x) := lim supn d

p(x, xn) for all x ∈ X . It is clear
that f is convex and continuous. Put α := infy∈X f(y). Choose a sequence {ym} inX such
that α ≤ f(ym) ≤ α+ 1

m for all m ≥ 1. Let us consider the following:

α ≤ f
(1

2
ym ⊕

1

2
yk

)
= lim sup

n
dp
(1

2
ym ⊕

1

2
yk, xn

)
≤ 1

2
lim sup

n
dp(ym, xn) +

1

2
lim sup

n
dp(yk, xn)− C

4
dp(ym, yk)

=
1

2
f(ym) +

1

2
f(yk)− C

4
dp(ym, yk)

≤ 1

2

(
α+

1

m

)
+

1

2

(
α+

1

k

)
− C

4
dp(ym, yk).

It follows that limm,k d
p(ym, yk) = 0. Then {ym} is a Cauchy sequence in X . In particular,

since X is complete, the sequence {ym} converges to some element z in X . Since f is
continuous, we have f(z) = limm f(ym) = α. Hence z ∈ A({xn}). Suppose that there
exists z′ in X such that an element z′ ∈ A({xn}). Put y′1 = y′3 = · · · = z and y′2 = y′4 =
· · · = z′. Then f(y′m) = α for all m ≥ 1. Using the same method as above, we have {y′m}
is Cauchy and hence z′ = z.

We now prove the second assertion. Let y ∈ X and let t ∈ (0, 1). Note that

dp((1− t)y ⊕ tz, xn) ≤ (1− t)dp(y, xn) + tdp(z, xn)− Ct(1− t)dp(y, z).

It follows that

f(z) ≤ f((1− t)y ⊕ tz)
≤ (1− t)f(y) + tf(z)− C(1− t)tdp(y, z).

In particular, we have
f(z) ≤ f(y)− Ctdp(y, z).

Letting t ↑ 1 gives the desired result. This completes the proof. �
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It is also known that every bounded sequence in a metric space has a regular subse-
quence (see [8]). Recall that {xn} is regular if

inf
y∈X

lim sup
k

d(y, xnk
) = inf

y∈X
lim sup

n
d(x, xn)

for all subsequences {xnk
} of {xn}. In particular, if X is a complete p-uniformly convex

geodesic metric space, then every bounded sequence has a ∆-convergent subsequence.
The proof of the following result is similar to that of Proposition 3.1 of [10]. Recall that

ω∆({xn}) denotes the set of ∆-limits of all ∆-convergent subsequences of {xn}.

Theorem 2.2. Suppose thatX is a complete p-uniformly convex geodesic metric spaceX . If {xn}
is a bounded sequence in X such that limn d(xn, q) exists for all q ∈ ω∆({xn}), then xn

∆→ x for
some x ∈ X .

Proof. Suppose that A({xn}) = {q} and A({xnk
}) = {q′} where {xnk

} is a subsequence
of {xn} and q, q′ ∈ X . We show that q = q′. Since {xnk

} is bounded, there exists a
subsequence {yk} of {xnk

} such that yk
∆→ y for some y ∈ X . By our assumption,

limn d(xn, y) exists. If q 6= y, then lim supn d(xn, q) < limn d(xn, y) = limk d(yk, y) <
lim supk d(yk, q) ≤ lim supn d(xn, q) which is impossible. Hence q = y. If q′ 6= y, then
lim supk d(xnk

, q′) < limn d(xn, y) = limk d(yk, y) < lim supk d(yk, q
′) ≤ lim supk d(xnk

, q′)
which is impossible. Hence q′ = y. This implies that q = q′ and hence the proof is finis-
hed. �

We discuss a concept of metric projection in this framework. Suppose thatD is a closed
convex subset of a complete p-uniformly convex geodesic metric space X . Recall that a
subset D of X is convex if (1 − t)x ⊕ ty ∈ D for all x, y ∈ D and t ∈ [0, 1]. We also get the
following characterization.

Following the proof of Theorem 2.1 with a slight modification, we also obtain the fol-
lowing result.

Theorem 2.3. Suppose thatD is a closed convex subset of a complete p-uniformly convex geodesic
metric space X with a constant C. For a given x ∈ X , there exists a unique element z ∈ D such
that

dp(z, x) = inf
y∈D

dp(y, x).

Equivalently,
d(z, x) = inf

y∈D
d(y, x).

In this case, we write z := ProjD x. Furthermore, suppose that x ∈ X and z ∈ D. Then
z = ProjD x if and only if

dp(x, z) + Cdp(z, y) ≤ dp(x, y) for all y ∈ D.

2.2. Fejér monotone convergence principle. We prove the following convergence prin-
ciple in p-uniformly convex geodesic metric spaces. Recall that {xn} is a Fejér sequence in
a metric space X := (X, d) with respect to a subset D of X if d(xn+1, q) ≤ d(xn, q) for all
n ≥ 1 and q ∈ D.

Theorem 2.4. Suppose thatD is a closed convex subset of a complete p-uniformly convex geodesic
metric space X and {xn} is a Fejér sequence with respect to D. Then {ProjD xn} is a Cauchy
sequence.

Proof. Put un := ProjD xn. For each k ≥ 1, we note that d(xn+k, un) ≤ d(xn, un). Moreo-
ver, it follows from Theorem 2.3 that

dp(xn+k, un+k) + Cdp(un+k, un) ≤ dp(xn+k, un) ≤ dp(xn, un).
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In particular, we have dp(xn+1, un+1) ≤ dp(xn, un) and hence limn d
p(xn, un) exists. It

follows that limn,k d
p(un+k, un) = 0, that is, {un} is a Cauchy sequence. �

2.3. Convergence theorems. We are ready to discuss the convergence of the following
two iterative sequences. Suppose thatX := (X, d) is a p-uniformly convex geodesic metric
space and T : X → X is a mapping. Let {xn} be iteratively defined as follows: x1 ∈ X is
arbitrarily chosen and for each n ≥ 1

yn := (1− βn)xn ⊕ βnTxn;

xn+1 := (1− αn)xn ⊕ αnTyn;

where {αn} and {βn} are sequences in [0, 1]. This scheme is known as the Ishikawa’s itera-
tion ([9]). If βn := 0 for all n ≥ 1, then the Ishikawa iteration becomes the Mann’s iteration
([14]).

We now give some remark on the Ishikawa’s and Mann’s iterations as suggested by
the referee. It can be seen that the Ishikawa’s iteration is complicated than the Mann’s.
The Ishikawa’s iteration was proposed the first time to deal with the problem of finding
a fixed point of Lipschitz pseudocontractions. Moreover, it was proved by Chidume and
Mutangadura [4] that the simpler Mann’s iteration cannot guarantee the convergence of
the iteration to a fixed point of Lipschitz pseudocontractions. To our best knowledge,
there is no result showing that the Ishikawa’s iteration (Mann’s iteration, resp.) is conver-
gent while the Mann’s (Kransnoselskii’s, resp.) is not in the setting of quasi-nonexpansive
mappings. The only one reason we discuss the Ishikawa’s iteration here is just to recover
the main results of [12] (see Theorem LP).

Recall that a mapping T : X → X is quasi-nonexpansive if Fix(T ) := {q ∈ X : q = Tq}
is nonempty and d(Tx, q) ≤ d(x, q) for all x ∈ X and q ∈ Fix(T ). We say that T is
∆-demiclosed if q ∈ Fix(T ) whenever {xn} is a sequence in X such that xn

∆→ q and
limn d(xn, Txn) = 0.

Lemma 2.2. Suppose that X := (X, d) is a p-uniformly convex geodesic metric space and T :
X → X is a quasi-nonexpansive mapping. Then Fix(T ) is closed and convex.

Proof. Suppose that X is a p-uniformly convex with a constant C := CX . We first show
that Fix(T ) is closed. To see this, let {qn} be a sequence in Fix(T ) such that limn qn = q for
some q ∈ X . Note that d(Tq, qn) ≤ d(q, qn). It follows that limn qn = Tq and hence q = Tq,
that is, q ∈ Fix(T ). Finally, we show that Fix(T ) is convex. Suppose that q1, q2 ∈ Fix(T )
and t ∈ [0, 1]. To see that q := (1− t)q1 ⊕ tq2 ∈ Fix(T ), we note that

d(Tq, q1) ≤ d(q, q1) = td(q1, q2) and d(Tq, q2) ≤ (1− t)d(q1, q2).

This implies that

d(q1, q2) ≤ d(Tq, q1) + d(Tq, q2) ≤ td(q1, q2) + (1− t)d(q1, q2) = d(q1, q2).

In particular, we have

d(Tq, q1) = td(q1, q2) and d(Tq, q2) = (1− t)d(q1, q2).

Since there exists a unique geodesic joining q1 and q2, we have

Tq = (1− t)q1 ⊕ tq2 = q.

That is, q ∈ Fix(T ). �

Using the Ishikawa iteration, we obtain the following ∆-convergence theorem. It is
worth mentioning that we can prove that the ∆-limit of the iterative sequence is the
strong-limit of the sequence of its projection on the fixed point set of the mapping.
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Theorem 2.5. Suppose that X := (X, d) is a complete p-uniformly convex geodesic metric space
and T : X → X is a quasi-nonexpansive mapping which is ∆-demiclosed. Suppose that {xn} is
generated the Ishikawa iteration where {αn} and {βn} satisfy one of the following conditions:
(a) 0 < lim infn βn ≤ lim supn βn < 1 and lim infn αn > 0;
(b) 0 < lim infn αn ≤ lim supn αn < 1 and βn = 0 for all n ≥ 1.

Then xn
∆→ q ∈ Fix(T ) and q = limn ProjFix(T ) xn.

Proof. Suppose that X is a p-uniformly convex with a constant C := CX . Let q ∈ Fix(T ).
For each n ≥ 1, we have

dp(yn, q) = dp((1− βn)xn ⊕ βnTxn, q)
≤ (1− βn)dp(xn, q) + βnd

p(Txn, q)− Cβn(1− βn)dp(xn, Txn)

≤ (1− βn)dp(xn, q) + βnd
p(xn, q)− Cβn(1− βn)dp(xn, Txn)

= dp(xn, q)− Cβn(1− βn)dp(xn, Txn).

Then

dp(xn+1, q) = dp((1− αn)xn ⊕ αnTyn, q)
≤ (1− αn)dp(xn, q) + αnd

p(Tyn, q)− Cαn(1− αn)dp(xn, T yn)

≤ (1− αn)dp(xn, q) + αnd
p(yn, q)− Cαn(1− αn)dp(xn, T yn)

≤ (1− αn)dp(xn, q) + αnd
p(xn, q)− Cαnβn(1− βn)dp(xn, Txn)

− Cαn(1− αn)dp(xn, Tyn).

In particular, we have d(xn+1, q) ≤ d(xn, q), that is, {xn} is a Fejér sequence with respect
to Fix(T ) and hence limn d

p(xn, q) exists. It follows that
∑
n αnβn(1−βn)dp(xn, Txn) <∞

and
∑
n αn(1−αn)dp(xn, T yn) <∞. Suppose that either (a) or (b) is satisfied. This implies

that
∑
n d

p(xn, Txn) <∞ and hence limn d(xn, Txn) = 0.

We now prove that xn
∆→ q ∈ Fix(T ). Note that limn d(xn, q

′) exists for all q′ ∈ Fix(T ).
It suffices to show that ω∆({xn}) ⊂ Fix(T ). To see this, let {xnk

} be a subsequence of
{xn} such that xnk

∆→ q for some q ∈ X . It follows from the ∆-demiclosedness of T
and limk d(xnk

, Txnk
) = 0 that q ∈ Fix(T ). It follows from Theorem 2.2 that xn

∆→ q for
some q ∈ X . It follows from the ∆-demiclosedness of T and limn d(xn, Txn) = 0 that
q ∈ Fix(T ).

Finally, we show that limn ProjFix(T ) xn = q. Since Fix(T ) is closed and convex (by
Lemma 2.2), the projection ProjFix(T ) is well-defined by Theorem 2.3. Let un := ProjFix(T ) xn.
It follows from Theorem 2.4 that {un} is a Cauchy sequence in Fix(T ). Hence limn un = u
for some u ∈ Fix(T ) because Fix(T ) is closed. Furthermore, it follows from Theorem 2.3
that

dp(xn, un) ≤ dp(xn, un) + Cdp(un, q) ≤ dp(xn, q).
This implies that

lim sup
n

d(xn, u) ≤ lim sup
n

d(xn, q).

It follows from xn
∆→ q that limn un = u = q and this completes the proof. �

To discuss the strong convergence, we recall the following concept.

Definition 2.1 ([22]). Suppose that X := (X, d) is a metric space. A mapping T : X → X

• satisfies Condition I if Fix(T ) 6= ∅ and there exists a nondecreasing function h :
[0,∞)→ [0,∞) such that h vanishes only at zero and

h(dist(x,Fix(T ))) ≤ d(x, Tx) for all x ∈ X ;
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• is semicompact if every sequence {xn} in X with limn d(xn, Txn) = 0 contains a
convergent subsequence;
• is strongly demiclosed if q ∈ Fix(T ) whenever {xn} is a sequence in X such that

limn d(xn, Txn) = 0 and limn xn = q ∈ X .

Here dist(x, F ) := inf{d(x, a) : a ∈ F}.

Using the preceding notion and the proof of Theorem 2.5, we obtain the following
strong convergence theorem.

Theorem 2.6. Suppose that X, d, T are the same as Theorem 2.5. Suppose that {xn} is generated
the Ishikawa iteration where {αn} and {βn} satisfy one of the following conditions:

(a)
∑
n αnβn(1− βn) =∞;

(b) βn = 0 for all n ≥ 1 and
∑
n αn(1− αn) =∞.

If one of the following conditions is satisfied:

(i) T satisfies Condition I;
(ii) T is semicompact and strongly demiclosed,

then {xn} converges strongly to a fixed point of T .

To prove this result, let us recall the following fact from [21].

Lemma 2.3. Suppose that F is a closed subset of a metric space X := (X, d) and suppose that
{xn} is a Fejér sequence with respect to F . Then {xn} converges strongly to a point in F if and
only if lim infn dist(xn, F ) = 0.

Lemma 2.4. If {αn} and {γn} are two sequences of nonnegative real numbers such that
∑
n αn =

∞ and
∑
n αnγn <∞, then lim infn γn = 0.

Proof of Theorem 2.6. It follows from the proof of Theorem 2.5 that∑
n

αnβn(1− βn)dp(xn, Txn) <∞ and
∑
n

αn(1− αn)dp(xn, Tyn) <∞.

Consequently, it follows from Lemma 2.4 and either (a) or (b) that lim infn d(xn, Txn) = 0.
We consider the following two cases.

Case 1: T satisfies Condition I. Note that Fix(T ) is closed and {xn} is a Fejér sequence
with respect to Fix(T ). It suffices to prove that lim infn dist(xn,Fix(T )) = 0. Note that
there exists a nondecreasing function h : [0,∞)→ [0,∞) such that h vanishes only at zero
and

h(dist(xn,Fix(T ))) ≤ d(xn, Txn) for all n ≥ 1.

In particular, we have lim infn h(dist(xn,Fix(T ))) = 0. By the property of the function h,
we can conclude that lim infn dist(xn,Fix(T )) = 0. The conclusion follows from Lemma
2.3.

Case 2: T is semicompact and strongly demiclosed. It follows from lim infn d(xn, Txn) =
0 that there exists a convergent subsequence {xnk

} of {xn}. We assume that limk xnk
= q

for some q ∈ X . Since T is strongly demiclosed, we have q ∈ Fix(T ). In particular, since
limn d(xn, q) exists and limk d(xnk

, q) = 0, we conclude that limn d(xn, q) = 0. The proof
is finished. �

2.4. Multi-valued mappings and Theorem LP. To formulate the problem for multi-valued
mappings, we recall the following notion. In this part, we use the bold symbol to denote
a multi-valued mapping and the normal one for a single-valued mapping. Suppose that
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X := (X, d) is a metric space. Denote by K(X) (BC(X), respectively) the set of all no-
nempty compact subsets (nonempty bounded and closed subsets, respectively) of X . Let
H be the Pompeiu–Hausdorff distance on BC(X), that is, for A,B ∈ BC(X)

H(A,B) := max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
.

Note that H({x}, C) = sup{d(x, c) : c ∈ C} for each x ∈ X and C ∈ BC(X). It is clear
that (BC(X),H) becomes a metric space and so does the subspace (K(X),H). For more
details on the role of the Pompeiu–Hausdorff distance in fixed point theory and some
historical motivations, we refer the reader to [1]. Recall that a multi-valued mapping
T : X → BC(X) is

• nonexpansive ifH(Tx,T y) ≤ d(x, y) for all x, y ∈ X ;
• Suzuki’s generalized nonexpansive ([12]) if for all x, y ∈ X the following implication

holds:
1

2
dist(x,Tx) ≤ d(x, y) =⇒ H(Tx,T y) ≤ d(x, y);

• quasi-nonexpansive if Fix(T ) := {x ∈ X : x ∈ Tx} 6= ∅ and H(Tx,T q) ≤ d(x, q)
for all x ∈ X and q ∈ Fix(T );

• quasi-nonexpansive* if SFix(T ) := {x ∈ X : {x} = Tx} 6= ∅ and H(Tx,T q) ≤
d(x, q) for all x ∈ X and q ∈ SFix(T ).

Proposition 2.1. [12] Let X := (X, d) be a metric space and T : X → BC(X) be a multi-valued
mapping. Then the following statements hold.

(a) If T is nonexpansive, then T is Suzuki’s generalized nonexpansive.
(b) If T is Suzuki’s generalized nonexpansive and Fix(T ) 6= ∅, then T is quasi-nonexpansive.
(c) If T is quasi-nonexpansive and SFix(T ) 6= ∅, then T is quasi-nonexpansive*.

Recall that T : X → BC(X) satisfies Condition (Eµ) where µ ≥ 1 [7, 6] if dist(x,T y) ≤
µdist(x,Tx) + d(x, y) for all x, y ∈ X . Kudtha and Panyanak (see [11, Lemma 2.6(iii)])
claimed that every Suzuki’s generalized nonexpansive mapping satisfies Condition (E3)
by referring to Lemma 3.2 of Espı́nola et al. ([6]). However, the definitions of Suzuki’s
generalized nonexpansive mapping of [11] and that of [6] are not the same.

We now give a proof of this claim. We note that our multi-valued mapping T takes
bounded and closed value rather than compact value as it was the case in [11].

Proposition 2.2. Suppose that X is a metric space. If T : X → BC(X) is Suzuki’s generalized
nonexpansive, then it satisfies Condition (E3).

Proof. Let x, y ∈ X . We consider the following two cases.

Case 1: 1
2 dist(x,Tx) ≤ d(x, y). It follows that

dist(x,T y) ≤ dist(x,Tx) +H(Tx,T y)

≤ dist(x,Tx) + d(x, y).

Case 2: d(x, y) < 1
2 dist(x,Tx). Let 0 < ε < 1

2 dist(x,Tx) − d(x, y). We choose
x′ ∈ Tx such that d(x, x′) < dist(x,Tx) + 2ε and note that

dist(x,Tx) ≤ d(x, y) + dist(y,Tx)

<
1

2
dist(x,Tx)− ε+ dist(y,Tx).
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Then 1
2 dist(x,Tx) < dist(y,Tx)− ε ≤ d(y, x′)− ε. Note that 1

2 dist(x′,Tx) = 0 ≤
d(x, x′) and hence dist(x′,Tx′) ≤ H(Tx,Tx′) ≤ d(x, x′). It follows that

1

2
dist(x′,Tx′) ≤ 1

2
d(x, x′) <

1

2
dist(x,Tx) + ε

< d(y, x′)− ε+ ε = d(y, x′).

ThusH(Tx′,T y) ≤ d(y, x′).
Hence

dist(x,T y) ≤ dist(x,Tx) +H(Tx,Tx′) +H(Tx′,T y)

≤ dist(x,Tx) + d(x, x′) + d(x′, y)

≤ dist(x,Tx) + 2d(x, x′) + d(x, y)

≤ 3 dist(x,Tx) + 4ε+ d(x, y).

Letting ε ↓ 0 gives dist(x,T y) ≤ 3 dist(x,Tx) + d(x, y).
This completes the proof. �

Suppose thatX := (X, d) is a metric space. We say that T : X → BC(X) is ∆-demiclosed*
(strongly demiclosed*, resp.) if q ∈ SFix(T ) whenever {xn} is a sequence in X such that
xn

∆→ q ∈ X (limn xn = q ∈ X , resp.) and limnH({xn},Txn) = 0. It follows from the
definition that if T is ∆-demiclosed*, then it is strongly demiclosed*. The following result
is very similar to [11, Theorem 3.1] but the proof given here is simpler. Moreover, the
uniform convexity as was the case in [11, Theorem 3.1] is superfluous.

Theorem 2.7. Suppose that X is a metric space. If T : X → K(X) is a Suzuki’s generalized
nonexpansive mapping, then it is ∆-demiclosed*.

Proof. Suppose that {xn} is a sequence in X such that xn
∆→ q for some q ∈ X and

limnH({xn},Txn) = 0. For each n ≥ 1, since T q is compact, we can choose qn ∈ T q
such that d(xn, qn) = dist(xn,T q). Moreover, since T q is compact, there exists a sub-
sequence {qnk

} of {qn} such that limk qnk
= u for some u ∈ T q. Since T is Suzuki’s

generalized nonexpansive, it follows from Proposition 2.2 that T satisfies Condition (E3),
that is, dist(xnk

,T q) ≤ 3 dist(xnk
,Txnk

) + d(xnk
, q). This implies that

d(xnk
, u) ≤ d(xnk

, qnk
) + d(qnk

, u)

= dist(xnk
,T q) + d(qnk

, u)

≤ 3 dist(xnk
,Txnk

) + d(xnk
, q) + d(qnk

, u)

≤ 3H({xnk
},Txnk

) + d(xnk
, q) + d(qnk

, u).

It follows that lim supk d(xnk
, u) ≤ lim supk d(xnk

, q). Note that xnk

∆→ q. Hence u = q.
This implies that q ∈ T q. To show that T q = {q}, let v ∈ T q. Note that 1

2 dist(q,T q) = 0 ≤
d(q, xn). Hence H(T q,Txn) ≤ d(q, xn) because T is Suzuki’s generalized nonexpansive.
Then

d(xn, v) ≤ H({xn},T q)
≤ H({xn},Txn) +H(Txn,T q)

≤ H({xn},Txn) + d(xn, q).

It follows that lim supn d(xn, v) ≤ lim supn d(xn, q). Since xn
∆→ q, we have v = q. There-

fore T q = {q}, that is, q ∈ SFix(T ). �

Recall that a multi-valued mapping T : X → K(X)
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• satisfies Condition I* if SFix(T ) 6= ∅ and there exists a nondecreasing function
h : [0,∞)→ [0,∞) such that h vanishes only at zero and

h(dist(x,SFix(T ))) ≤ H({x},Tx) for all x ∈ X ;

• is semicompact* if every sequence {xn} in X with limnH({xn},Txn) = 0 contains
a convergent subsequence.

The two notions above were introduced in [19] as a multi-valued version of the correspon-
ding conditions in Definition 2.1.

We present the following selection theorem for a quasi-nonexpansive* multi-valued
mapping taking compact values.

Theorem 2.8. Suppose that X is a metric space and T : X → K(X) is a quasi-nonexpansive*
multi-valued mapping. Then T admits a selection T : X → X such that T is quasi-nonexpansive
and Fix(T ) = SFix(T ). Furthermore, if T is or satisfies P ∗, then the selection T of T above is or
satisfies P where P ∈ {∆-demiclosed, strongly demiclosed, Condition I, semicompact}. (The last
assertion reads, for example: If T is ∆-demiclosed*, then T is ∆-demiclosed.)

Proof. Let x ∈ X . Note that the function y 7→ d(x, y) is continuous on the compact domain
Tx. Hence there exists x′ ∈ Tx such that d(x, x′) = sup{d(x, y) : y ∈ Tx} = H({x},Tx).
In particular, we define a selection T : X → X by Tx := x′. Hence d(x, Tx) = H({x},Tx)
for all x ∈ X . It follows that Fix(T ) = SFix(T ). Finally, we prove that T is quasi-
nonexpansive. To see this, let x ∈ X and q ∈ Fix(T )(= SFix(T )). It follows that
d(Tx, q) ≤ H(Tx, {q}) = H(Tx,T q) ≤ d(x, q). This completes the proof of the first asser-
tion. We note that the ‘Furthermore’ is a consequence of the following expression:

d(x, Tx) = H({x},Tx) for all x ∈ X.
The verification of the assertion is straightforward. �

Corollary 2.1. Suppose that X is a metric space X . If T : X → K(X) is Suzuki’s generalized
nonexpansive such that SFix(T ) 6= ∅, then T admits a selection T : X → X such that T is
quasi-nonexpansive such that Fix(T ) = SFix(T ) and T is ∆-demiclosed.

Using our result, we obtain the following convergence theorem for multi-valued map-
pings.

Theorem 2.9. Suppose thatX := (X, d) is a complete p-uniformly convex metric space. Suppose
that T : X → K(X) is quasi-nonexpansive*. Suppose that {αn} and {βn} are two sequences in
[0, 1] and suppose that {zn} ⊂ X is iteratively defined as follows: z1 ∈ X is arbitrarily chosen
and for each n ≥ 1

z′n ∈ T zn such that d(zn, z
′
n) = sup{d(zn, z) : z ∈ T zn};

wn := (1− βn)zn ⊕ βnz′n;

w′n ∈ Twn such that d(wn, w
′
n) = sup{d(wn, w) : w ∈ Twn};

zn+1 := (1− αn)zn ⊕ αnw′n.
(a) Suppose that T is ∆-demiclosed* and one of the following conditions holds:

(i) 0 < lim infn βn ≤ lim supn βn < 1 and lim infn αn > 0.
(ii) βn = 0 for all n ≥ 1 and 0 < lim infn αn ≤ lim supn αn < 1.

Then zn
∆→ q ∈ SFix(T ) and q = limn ProjSFix(T ) xn.

(b) Suppose that one of the following conditions holds:
(i’) T satisfies Condition I*;

(ii’) T is semicompact* and strongly demiclosed*.
Suppose that one of the following conditions holds:
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(i)
∑
n αnβn(1− βn) =∞;

(ii) βn = 0 for all n ≥ 1 and
∑
n αn(1− αn) =∞.

Then {zn} converges strongly to a strict fixed point of T .

Remark 2.1. Our Theorem 2.9 improves and extends Theorem LP in the following ways.
• Theorem 2.9 deals with a wider class of mappings than Theorem LP. In fact, it is

easy to see that every Suzuki’s generalized nonexpansive mapping with a strict
fixed point is quasi-nonexpansive*.

• The assumptions on the parameters {αn} and {βn} in our Theorem 2.9 are more
general than the ones in Theorem LP. It is clear that the assumptions

∑
n αnβn =

∞ and limn βn = 0 imply Condition (i) of Theorem 2.9(b).
• Our Theorem 2.9 includes a simple situation of the Mann’s iteration and Kransno-

selskii’s iteration while it is not the case for Theorem LP. In fact, Theorem LP does
not allow the case βn = 0 for all n ≥ 1.

We now end the paper by showing that a class of mappings in Theorem 2.9 includes
ones which are not Suzuki’s generalized nonexpansive. Hence our result is a genuine
generalization of Theorem LP.

Suppose that X := (X, d) is a metric space. Recall that T : X → BC(X) is
• Kannan’s nonexpansive [23] ifH(Tx,T y) ≤ 1

2 dist(x,Tx)+ 1
2 dist(y,T y) for all x, y ∈

X ;
• Chatterjea’s nonexpansive if H(Tx,T y) ≤ 1

2 dist(x,T y) + 1
2 dist(y,Tx) for all x, y ∈

X .
We note that the definition of Chatterjea’s nonexpansive mappings is introduced first time
here and it is inspired by the work of Chatterjea [3]. For a single-valued mapping T : X →
X , we say that T is Kannan’s nonexpansive (Chatterjea’s nonexpansive, resp.) if T is Kannan’s
nonexpansive (Chatterjea’s nonexpansive, resp.) where Tx := {Tx} for all x ∈ X .

Proposition 2.3. Every Kannan’s nonexpansive (Chatterjea’s nonexpansive, resp.) mapping with
a fixed point is quasi-nonexpansive. In particular, every Kannan’s nonexpansive (Chatterjea’s
nonexpansive, resp.) mapping with a strict fixed point is quasi-nonexpansive*.

Proof. The proof of the assertion for Chatterjea’s nonexpansive mappings is almost similar
to the proof of that for Kannan’s nonexpansive mappings, so it is omitted. Suppose that
T : X → BC(X) is Kannan’s nonexpansive with a fixed point. To see that T is quasi-
nonexpansive, let x ∈ X and p ∈ Fix(T ). It follows that

H(Tx,T p) ≤ 1

2
dist(x,Tx) +

1

2
dist(p,T p)

=
1

2
dist(x,Tx)

≤ 1

2
d(x, p) +

1

2
dist(p,Tx)

≤ 1

2
d(x, p) +

1

2
H(T p,Tx).

This implies thatH(Tx,T p) ≤ d(x, p). �

Proposition 2.4. Every Kannan’s nonexpansive (Chatterjea’s nonexpansive, resp.) mapping ta-
king compact values is ∆-demiclosed*.

Proof. The proof of the assertion for Chatterjea’s nonexpansive mappings is almost similar
to the proof of that for Kannan’s nonexpansive mappings, so it is omitted. Suppose that
T : X → K(X) is Kannan’s nonexpansive. We prove that T is ∆-demiclosed*. Suppose
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that {xn} is a sequence in X such that xn
∆→ q for some q ∈ X and limnH({xn},Txn) = 0.

For each n ≥ 1, let qn ∈ T q such that d(xn, qn) = H({xn},T q). (Such an element exists
because of the compactness of T q.) In particular, there exists a subsequence {qnk

} of {qn}
such that limk qnk

= u for some u ∈ T q. Note that

H(Txnk
,T q) ≤ 1

2
dist(xnk

,Txnk
) +

1

2
dist(q,T q)

≤ 1

2
H({xnk

},Txnk
) +

1

2
H({q},T q)

≤ 1

2
H({xnk

},Txnk
) +

1

2
d(xnk

, q) +
1

2
H({xnk

},Txnk
) +

1

2
H(Txnk

,T q).

This implies that
lim sup

k
H(Txnk

,T q) ≤ lim sup
k

d(xnk
, q).

Hence

lim sup
k

d(xnk
, u) = lim sup

k
d(xnk

, qnk
)

= lim sup
k
H({xnk

},T q)

≤ lim sup
k

(H({xnk
},Txnk

) +H(Txnk
,T q))

≤ lim sup
k

d(xnk
, q).

Since xnk

∆→ q, we have u = q, that is, q ∈ T q. To show that q ∈ SFix(T ), let v ∈ T q. It
follows since T is quasi-nonexpansive (see Proposition 2.3) and q ∈ Fix(T ) that

d(xn, v) ≤ H({xn},T q)
≤ H({xn},Txn) +H(Txn,T q)

≤ H({xn},Txn) + d(xn, q).

In particular,
lim sup

n
d(xn, v) ≤ lim sup

n
d(xn, q).

Since xn
∆→ q, we have v = q. This implies that T q = {q}, that is, q ∈ SFix(T ). �

The following example shows that there exists a Kannan’s nonexpansive mapping
which is not Suzuki’s generalized nonexpansive.

Example 2.1. Let X := [0, 1] with the usual metric d(x, y) := |x − y| for all x, y ∈ X . It is
clear that X is a complete 2-uniformly convex geodesic metric space. Let T : X → X be
defined by

Tx :=

{
1− x if x ∈ [0, 1/3);

(x+ 1)/3 if x ∈ [1/3, 1].

It follows from [25] that T is Kannan’s nonexpansive. For the sake of completeness, we
give a proof. Let x, y ∈ X . We consider the following three cases.

Case 1: x, y ∈ [0, 1/3). In this case, we have d(Tx, Ty) = |x−y| ≤ 1/3 < 1−(x+y) =
1
2 (1− 2x) + 1

2 (1− 2y) = 1
2d(x, Tx) + 1

2d(y, Ty).

Case 2: x, y ∈ [1/3, 1]. It follows that d(Tx, Ty) = 1
3 |x− y| =

1
6 |(2x− 1)− (2y− 1)| ≤

1
6 |2x− 1|+ 1

6 |2y − 1| = 1
2d(x, Tx) + 1

2d(y, Ty).
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Case 3: x ∈ [0, 1/3) and y ∈ [1/3, 1]. Then d(Tx, Ty) =
∣∣(1− x)− y+1

3

∣∣ ≤ 1
2 |1− 2x|+

1
2

∣∣ 2y−1
3

∣∣ = 1
2d(x, Tx) + 1

2d(y, Ty).
Next, we show that T is not Suzuki’s generalized nonexpansive. Choose x = 1/3 and

y = 5/18. Then
1

2
d(x, Tx) =

1

2

∣∣∣∣13 − 4

9

∣∣∣∣ =
1

18
= d(x, y)

but

d(Tx, Ty) =

∣∣∣∣49 − 13

18

∣∣∣∣ =
5

18
>

1

18
= d(x, y).
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[15] Naor, A.; Silberman, L. Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147 (2011), no.

5, 1546–1572
[16] Ohta, S. Convexities of metric spaces. Geom. Dedicata. 125 (2007), 225–250
[17] Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings.

Bull. Amer. Math. Soc. 73 (1967), 591–597
[18] Outlaw, C. L. Mean value iteration of nonexpansive mappings in a Banach space. Pacific J. Math. 30 (1969),

747–750
[19] Panyanak, B. Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces. J. Fixed

Point Theory Appl. 20 (2018), no. 2, Art. 77, 8 pp.
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