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Approximate optimality and approximate duality in
nonsmooth composite vector optimization

THANATCHAPORN SIRICHUNWIJIT1, RABIAN WANGKEEREE1,2 and NITHIRAT SISARAT1

ABSTRACT. This paper concentrates on studying a nonsmooth composite vector optimization problem (P
for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a non-
convex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approx-
imate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020),
https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide
a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of (P).
Sufficient optimality conditions for approximate (weakly) efficient solutions to (P) are also provided by means
of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a
cone. Moreover, an approximate dual vector problem to (P) is given and strong and converse duality assertions
for approximate (weakly) efficient solutions are proved.

1. INTRODUCTION

Due to the increased complexity of the optimization problems that have many ques-
tions of theoretical and computational interest, the study of problems that encompass as
special instances of the already remedied ones are of great concern. In this paper, we lay
out a unified framework for examining optimization problems by viewing a composite
vector optimization problem of the form:

(P) min
K
{(f ◦ F )(x) | x ∈ Ω, (g ◦G)(x) ∈ −S},

where F : X → W , G : X → V , f : W → Y and g : V → Z are vector functions between
finite-dimensional spaces, K ⊂ Y is a pointed (i.e., K ∩ (−K) = {0}) closed convex cone,
S ⊂ Z is a nonempty closed convex cone and Ω ⊂ X is a nonempty closed set. Hereafter,
we always assume that the topological interior of K is nonempty (i.e., int K 6= ∅) and
F,G, f, g are locally Lipschitz at the corresponding points under consideration. The mo-
deling of problems as (P) covers broad classes of various optimization problems such as
conic vector optimization problems, (standard) multiobjective/vector optimization pro-
blems, multiobjective approximation problems [8, 23, 42], and many optimization pro-
blems manufactured in practical fields like engineering or economics and finance, Over
the last couple of decades, issues related to optimality conditions and duality for (we-
akly) efficient solutions of the model problem (P) have been extensively investigated in
the literature; see [1, 2, 7, 8, 23, 31, 32, 36] and other references therein. For other re-
sults concerning on optimality conditions and duality in both smooth/nonsmooth multi-
objective/vector optimization problems involving convex/generalized convex functions,
we refer the readers to [3, 5, 6, 24, 25, 38, 41] and other references therein.
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As known to all, from the computational point of view, approximate solutions in opti-
mization problems occur naturally by way of stopping numerical procedures after a finite
number of steps. Moreover, in general, optimization problems do not necessarily have
the exact solutions whereas approximate ones exist under very mild hypotheses. The-
refore, it is significant to study approximate solutions instead to optimization problems
from both points of view, and so, many authors have turned their more and more atten-
tion to this topic; see [10, 12, 15, 16, 17, 18, 19, 20, 21, 26, 27, 28, 40] and the references
therein. The interested reader is referred to [9, 13, 14] for more information on optimality
conditions and duality for approximate (weakly) efficient solutions in connection with the
multiobjective/vector optimization. With this aim in view, in this paper, we continue a
broad framework for examining approximate (weakly) efficient solutions for the problem
(P) which, to our knowledge, have not been investigated yet. It should be noted here that
the most notion of approximate solutions for optimization problems involving nonconvex
functions is that of approximate-quasi solutions which can be regarded as a local concepts
of approximate solutions in view of Ekeland’s variational principle [11]. This notion has
also been extended to vector optimization problems, see e.g., [26, 28]. In what follows, let
us now recall the concept of (weak) e-quasi efficient solutions for the problem (P).

Definition 1.1. Let e ∈ K and x̄ ∈ C := {x ∈ Ω | (g ◦G)(x) ∈ −S}.
(i) One say that x̄ is a weak e-quasi efficient solution of problem (P), denoted by

x̄ ∈ e− Sw(P), whenever

∀x ∈ C, (f ◦ F )(x)− (f ◦ F )(x̄) + ‖x− x̄‖e /∈ −int K.

(ii) One say that x̄ is an e-quasi efficient solution of problem (P), denoted by x̄ ∈
e− S(P), whenever

∀x ∈ C, (f ◦ F )(x)− (f ◦ F )(x̄) + ‖x− x̄‖e /∈ −K\{0}.

Note also that in case of e := 0, the above-defined (weak) e-quasi efficient solution collap-
ses to (weak) Pareto solution defined as in [22, 29, 39].

The aim of this paper is to study a class of approximate (weakly) efficient solutions, i.e.,
(weak) e-quasi efficient solutions to a nonsmooth composite vector optimization problem
(P). We apply a fuzzy necessary condition [9, Theorem 3.2] for approximate (weakly)
efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization
problem, which was recently established based on the approximate extremal principle
and the a chain rule for generalized differentiation [34, 35] to achieve a necessary condi-
tion which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of
(P). This formulation is expressed in terms of the limiting/Mordukhovich subdifferential.
Sufficient optimality conditions for approximate (weakly) efficient solutions to (P) are also
provided by means of proposing the use of (strictly) approximately generalized convex
composite vector functions with respect to a cone. According to approximate optimality
conditions, we state an approximate dual vector problem to (P) and explore strong and
converse duality assertions for approximate (weakly) efficient solutions.

The rest of paper is organized as follows. The next section presents some notations
and preliminaries. Sect. 3 is devoted to establishing necessary and sufficient optimality
conditions for a approximate (weakly) efficient solutions of a nonsmooth composite vector
optimization problem (P). Finally, Sect. 4 explores duality relations between approximate
(weak) efficient solutions of the problem (P) and its dual one in the sense of Mond and
Weir.
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2. PRELIMINARIES

In this section, we recall some notations, basic definitions, and preliminary results
which will be utilized throughout the paper. Now, all spaces are assumed to be finite-
dimensional equipped with norms ‖ · ‖. A closed unit ball in X is denoted by BX . The
topological closure and the topological interior of a set Ω ⊂ X are denoted by cl Ω and
int Ω, respectively. As usual, the dual cone of Ω ⊂ X is the set Ω+ := {x∗ ∈ X | 〈x∗, x〉 ≥
0, ∀x ∈ Ω}. Also, for n ∈ N := {1, 2, . . .}, we denote by Rn

+ the nonnegative orthant of
Rn. For a product space X × Y , its norm is defined by ‖(x, y)‖ = ‖x‖+ ‖y‖ for x ∈ X and
y ∈ Y .

Given a set-valued mapping (or multifunctions) H : X ⇒ X , with values H(x) ⊂ X in
the collection of all the subsets of X , we denote by

lim sup
x→x̄

H(x) := {x∗ ∈ X | ∃{xn} → x0, x
∗
n → x∗with x∗n ∈ H(xn) for all n ∈ N}.

the sequential Painlevé-Kuratowski upper/outer limit of H as x→ x̄.
Let Ω ⊂ X be closed around x ∈ Ω, i.e., there is a neighborhood U of x̄ such that Ω∩cl U

is closed. The Fréchet normal cone to Ω at x ∈ Ω is defined by

N̂(x̄; Ω) :=

{
x∗ ∈ X

∣∣∣ lim sup

x
Ω−→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0

}
,

where x Ω−→ x̄ stands for x→ x̄ with x ∈ Ω. If x /∈ Ω, we stipulate that N̂(x; Ω) := ∅.
The Mordukhovich/limiting normal cone N(x̄; Ω) to Ω at x̄ ∈ Ω is obtained from Fréchet

normal cones by taking the sequential Painlevé-Kuratowski upper limits as:

(2.1) N(x̄; Ω) := lim sup

x
Ω−→x̄

N̂(x; Ω).

If x /∈ Ω, we put N(x; Ω) := ∅.
For an extended real-valued function ϕ : X → R := R ∪ {+∞}, the effective domain and

the epigraph are respectively defined by

dom ϕ := {x ∈ X | ϕ(x) < +∞} and epi ϕ := {(x, µ) ∈ X × R | µ ≥ ϕ(x)}.

The Mordukhovich/limiting subdifferential and the Fréchet subdifferential of ϕ at x̄ ∈ dom ϕ
are defined, respectively, by

∂ϕ(x̄) :=
{
x∗ ∈ X | (x∗,−1) ∈ N((x̄, ϕ(x̄)); epi ϕ)

}
,

and
∂̂ϕ(x̄) :=

{
x∗ ∈ X | (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epi ϕ)

}
.

If x̄ /∈ dom ϕ, then one puts ∂ϕ(x̄) := ∂̂ϕ(x̄) := ∅. It is worth noting [34, 35] that if ϕ is
a convex function, the above-defined subdifferential coincides with the subdifferential in
the sense of convex analysis [37].

For any vector function f : X → Y we can associate f with a scalarization function
with respect to some y∗ ∈ Y defined by

〈y∗, f〉(x) := 〈y∗, f(x)〉, x ∈ X.

We close the section by the following results that are needed for our study.

Lemma 2.1. Let y∗ ∈ Rn, and let f : X → Rn be Lipschitz continuous around x̄ ∈ X . We have

(i) [34, Proposition 3.5] x∗ ∈ ∂̂〈y∗, f〉(x̄)⇔ (x∗,−y∗) ∈ N̂((x̄, f(x̄)); gph f).
(ii) [34, Theorem 1.90] x∗ ∈ ∂〈y∗, f〉(x̄)x⇔ (x∗,−y∗) ∈ N((x̄, f(x̄)); gph f).
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Lemma 2.2. [34, Corollary 3.43] Let f : X → Y be locally Lipschitz at x̄ ∈ X , and let
ϕ : Y → R be locally Lipschiz around f(x̄). Then one has

(2.2) ∂(ϕ ◦ f)(x̄) ⊂
⋃

y∗∈∂ϕ(f(x̄))

∂〈y∗, f〉(x̄).

3. APPROXIMATE OPTIMALITY CONDITIONS IN COMPOSITE VECTOR OPTIMIZATION

The aim of this section is to devote to studying necessary and sufficient optimality con-
ditions for (weak) e-quasi efficient solutions of problem (P). The forthcoming theorem
provides a Fritz-John type necessary optimality condition, expressed in terms of the limi-
ting subdifferential, for (weak) e-quasi efficient solutions of problem (P); the proof is mo-
tivated by [8, Theorem 3.1] and [9, Theorem 3.2]. To this aim, we need a fuzzy necessary
optimality condition for (weak) e-quasi efficient solutions in conic vector optimization
problems as follows.

Lemma 3.3. For the problem (P) with X = W = V and F and G are identical maps, let x̄ ∈
e − Sw(P). Then, for a given k ∈ N, one can find x1k ∈ BX(x̄, 1

k ), x2k ∈ BX(x̄, 1
k ), x3k ∈

Ω ∩BX(x̄, 1
k ), y∗k ∈ K+ and z∗k ∈ S+ such that ‖y∗k‖ = 1 and

0 ∈ ∂̂〈y∗k, f〉(x1k) + ∂̂〈z∗k, g〉(x2k) + N̂(x3k; Ω) +

(
〈y∗k, e〉+

1

k

)
BX , |〈z∗k, g(x2k)〉| ≤ 1

k
.

Theorem 3.1. Let x̄ ∈ e−Sw(P). Then, there exist y∗ ∈ K+ and z∗ ∈ S+ with ‖y∗‖+‖z∗‖ = 1,
such that
(3.3){

0 ∈
⋃

w∗∈∂〈y∗,f〉(F (x̄)) ∂〈w∗, F 〉(x̄) +
⋃

v∗∈∂〈z∗,g〉(G(x̄)) ∂〈v∗, G〉(x̄) + 〈y∗, e〉BX +N(x̄; Ω),

〈z∗, g(G(x̄))〉 = 0.

Proof. We begin by putting f̃ = f ◦ F and g̃ = g ◦ G. On account of x̄ ∈ e − Sw(P), we
invoke Lemma 3.3 to assert that for each k ∈ N there exist x1k ∈ BX(x̄, 1

k ), x2k ∈ BX(x̄, 1
k ),

x3k ∈ Ω ∩BX(x̄, 1
k ), y∗k ∈ K+ with ‖y∗k‖ = 1 and z∗k ∈ S+ such that

0 ∈ ∂̂〈y∗k, f̃〉(x1k) + ∂̂〈z∗k, g̃〉(x2k) + N̂(x3k; Ω) +

(
〈y∗k, e〉+

1

k

)
BX , |〈z∗k, g̃(x2k)〉| ≤ 1

k
.

Consequently, we find sequences {x1k} ⊂ X , {x2k} ⊂ X , {x3k} ⊂ X , {x∗1k} ⊂ X , {x∗2k} ⊂
X , {x∗3k} ⊂ X , {y∗k} ⊂ K+ with ‖y∗k‖ = 1 and {z∗k} ⊂ S+ such that x∗1k ∈ ∂̂〈y∗k, f ◦F 〉(x1k),
x∗2k ∈ ∂̂〈z∗k, g ◦G〉(x2k), x∗3k ∈ N̂(x3k; Ω),

(3.4) 0 ∈ x∗1k + x∗2k + x∗3k +

(
〈y∗k, e〉+

1

k

)
BX ,

and

(3.5) x1k → x̄, x2k → x̄, x3k → x̄, 〈z∗k, g ◦G〉(x2k)→ 0 as k →∞.
Let us note by passing to a subsequence if necessary that y∗k → ỹ∗ ∈ K+ as k → ∞,
where ‖ỹ∗‖ = 1. By our assumptions, we suppose that f ◦F is locally Lipschitz at x̄with a
modulus l1 > 0. It then follows from x∗1k ∈ ∂̂〈y∗k, f ◦F 〉(x1k) together with [34, Proposition
1.85] that ‖x∗1k‖ ≤ l1‖y∗k‖ = l1 for all k ∈ N. Hence, as X is a finite-dimensional space, we
may assume by taking a subsequence if necessary that x∗1k → x∗1 ∈ X as k →∞. Similarly,
let l2 > 0 be a Lipschitz constant of g ◦G around x̄, and so,

(3.6) ‖x∗2k‖ ≤ l2‖z∗k‖, ∀k ∈ N.

Let us now consider two the following cases:
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(C1): Assume that {z∗k} is unbounded. There is no loss of generality in assuming that
‖z∗‖ → ∞ and z∗

k

‖z∗
k‖
→ z∗ ∈ S+ with ‖z∗‖ = 1 as k → ∞. It stems from (3.5) we have

〈 z∗
k

‖z∗
k‖
, (g ◦ G)(x2k)〉 → 0 as k → ∞, which in turn gives us the equality 〈z∗, g(G(x̄))〉 = 0.

In addition, by (3.6), we may assume that x∗
2k

‖z∗
k‖
→ x∗2 ∈ X as k → ∞. Then, in view of

(3.4), there exist bk ∈ BX , k ∈ N such that

(3.7) − x∗1k
‖z∗k‖

− x∗2k
‖z∗k‖

−
(〈y∗k, e〉+ 1

k )bk

‖z∗k‖
=

x∗3k
‖z∗k‖

∈ N̂(x3k; Ω), k ∈ N.

Letting k →∞ in (3.7) and noticing (2.1), we get

(3.8) −x∗2 ∈ N(x̄; Ω).

According to Lemma 2.1(i), for each k ∈ N, the inclusion x∗2k ∈ ∂̂〈z∗k, g◦G〉(x2k) amounts to
(x∗2k,−z∗k) ∈ N̂((x2k, (g◦G)(x2k)); gph (g◦G)), and consequently, (

x∗
2k

‖z∗
k‖
,
−z∗

k

‖z∗
k‖

) ∈ N̂((x2k, (g◦
G)(x2k)); gph (g ◦ G)). Passing to the limit as k → ∞ in the preceding inclusion and ta-
king (2.1) into account, we obtain that (x∗2,−z∗) ∈ N((x̄, (g ◦ G)(x̄)); gph (g ◦ G)), which,
by virtue of 2.1(ii), is equivalent to

(3.9) x∗2 ∈ ∂〈z∗, g ◦G〉(x̄).

Combining (3.8) along with (3.9) and by taking y∗ := 0 ∈ K+, we arrive at

(3.10) 0 ∈ ∂〈y∗, f ◦ F 〉(x̄) + ∂〈z∗, g ◦G〉(x̄) + 〈y∗, e〉BX +N(x̄; Ω).

(C2): If {z∗k} is bounded, then we may assume by taking a subsequence if necessary that
z∗k → z̃∗ ∈ S+ as k →∞. Due to (3.6), we also have that {x∗2k} is bounded and so, we may
assume without loss of generality that x∗2k → x∗2 ∈ X as k → ∞. As above, we get from
the inclusion x∗1k ∈ ∂̂〈y∗k, f ◦ F 〉(x1k) that (x∗1k,−y∗k) ∈ N̂((x1k, (f ◦ F )(x1k)); gph (f ◦ F ))
for all k ∈ N. Therefore,

(3.11)
(

x∗1k
‖y∗k‖+ ‖z∗k‖

,
−y∗k

‖y∗k‖+ ‖z∗k‖

)
∈ N̂((x1k, (f ◦ F )(x1k)); gph (f ◦ F )).

Passing (3.11) to the limit as k →∞ and noticing (2.1), we obtain that( x∗1
‖ỹ∗‖+ ‖z̃∗‖

,
−ỹ∗

‖ỹ∗‖+ ‖z̃∗‖

)
∈ N((x̄, (f ◦ F )(x̄)); gph (f ◦ F )),

which amounts to

(3.12)
x∗1

‖ỹ∗‖+ ‖z̃∗‖
∈ ∂〈y∗, f ◦ F 〉(x̄),

where y∗ := ỹ∗

‖ỹ∗‖+‖z̃∗‖ . Similarly, we obtain that 〈z∗, g ◦G(x̄)〉 = 0 and

(3.13)
x∗2

‖ỹ∗‖+ ‖z̃∗‖
∈ ∂〈z∗, g ◦G〉(x̄),

where z∗ := z̃∗

‖ỹ∗‖+‖z̃∗‖ . On the one hand, (3.4) yields that there exist bk ∈ BX , k ∈ N such
that

(3.14) − x∗1k
‖y∗k‖+ ‖z∗k‖

− x∗2k
‖y∗k‖+ ‖z∗k‖

−
(〈y∗k, e〉+ 1

k )bk

‖y∗k‖+ ‖z∗k‖
=

x∗3k
‖y∗k‖+ ‖z∗k‖

∈ N̂(x3k; Ω), k ∈ N.

Also, we may assume by passing to subsequences if necessary that bk → b ∈ BX as
k →∞. Now, letting k →∞ in (3.14) and noticing (2.1), we get the relation

− x∗1
‖ỹ∗‖+ ‖z̃∗‖

− x∗2
‖ỹ∗‖+ ‖z̃∗‖

− 〈ỹ∗, e〉b
‖ỹ∗‖+ ‖z̃∗‖

∈ N(x̄; Ω).
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Combining this with (3.12) and (3.13), (3.10) also holds.
Now, let us note that F andG are locally Lipschitz at x̄, by our assumptions, and 〈y∗, f〉

and 〈z∗, g〉 are locally Lipschitz at F (x̄) and G(x̄), respectively. Invoking (3.10) together
with the chain rule (2.2) with ϕ := 〈y∗, f〉 and ψ := 〈z∗, g〉 proves that (3.3) is valid, and
the proof is complete. �

Let us now illustrate the usefulness of Theorem 3.1 for verifying necessary conditions
for (weak) e-quasi efficient solutions of a substantial vector optimization problem via the
following example, which is motivated by [9, Example 3.5].

Example 3.1. Consider the problem (P) with Ω := R, X := R, K := R2
+ ⊂ Y := R2, S :=

{(y1, y2) ∈ R2 | y1 ≥ |y2|} ⊂ Z := R2, F (x) := (x2, x+1), x ∈ R, f(w) :=
(
− 1

2w1 + 1, |w2|
)
,

w := (w1, w2) ∈ R2, G(x) := x + 1, x ∈ R, and g(v) :=
(

1
2v

2 − v, v
)
, v ∈ R. Let us

notice that C = {v ∈ R | 1
2 −

1
2v

2 ≥ |v + 1|}, and let us select x̄ := −1 ∈ C and consider
e := (e1, e2) ∈ K. We can verify by definition that x̄ ∈ e − Sw(P ). By Taking y∗ :=
( 1√

2
, 1√

2
) and z∗ := (0, 0). Then, y∗ ∈ K+, z∗ ∈ S+ satisfying ‖y∗‖ + ‖z∗‖ = 1 and that

∂〈y∗, f〉(F (x̄)) = {(− 1
2
√

2
, 1√

2
x∗) : x∗ ∈ BX}, ∂〈z∗, g〉(G(x̄)) = {0},⋃

w∗∈∂〈y∗,f〉(F (x̄)) ∂〈w∗, F 〉(x̄) = { 1√
2
} + 1√

2
BX ,

⋃
v∗∈∂〈z∗,g〉(G(x̄)) ∂〈v∗, G〉(x̄) = {0} and

N(x̄; Ω) = {0}. It can be verified that the Fritz-John necessary condition (3.1) in Theorem
3.1 holds.

The following corollary provides a Fritz-John necessary condition for weak Pareto ef-
ficiencies of problem (P). This result develops [8, Theorem 3.2 ] and [9, Theorem 3.4] by
letting Ω := X.

Corollary 3.1. Let x̄ ∈ X be a weak Pareto solution of problem (P). Then, there exist y∗ ∈ K+

and z∗ ∈ S+ with ‖y∗‖+ ‖z∗‖ = 1, such that{
0 ∈

⋃
w∗∈∂〈y∗,f〉(F (x̄)) ∂〈w∗, F 〉(x̄) +

⋃
v∗∈∂〈z∗,g〉(G(x̄)) ∂〈v∗, G〉(x̄) +N(x̄; Ω),

〈z∗, g(G(x̄))〉 = 0.

Proof. Invoking Theorem 3.1 with e := 0, we obtain the desired result. �

Remark 3.1. Corollary 3.1 reduces to [8, Corollary 3.5]. More exactly, the Clarke subdiffe-
rential of fk, k ∈ K, and gi, i ∈ I , at the considered point in framework of [30, Theorem
3.1].

Before we discuss the sufficient conditions for (weak) e-quasi efficient solutions of pro-
blem (P), let us first define an approximate KKT condition for this problem.

Definition 3.2. Let e ∈ K and let x̄ ∈ C := {x ∈ Ω | (g ◦G)(x) ∈ −S}. One says that x̄ is said
to satisfy the e-approximate KKT condition of problem (P) if (3.3) holds with y∗ 6= 0.

Remark 3.2. In view of Theorem 3.1, observe that a weak e-quasi efficient solution x̄
satisfies the above-defined approximate KKT condition solution under the fulfillment of
the following constraint qualification: there does not exist z∗ ∈ S+ with ‖z∗‖ = 1 and
〈z∗, g(G(x̄))〉 = 0, such that

(CQ) 0 ∈
⋃

v∗∈∂〈z∗,g〉(G(x̄))

∂〈v∗, G〉(x̄) +N(x̄; Ω).

It is noteworthy, however, that a feasible point at which the e-approximate KKT condi-
tion holds needs not be a (weak) e-quasi efficient solution in general; see e.g., [4, Example
3.14] in the case of K := R3

+, Ω := R, and F and G are identical maps. This fact leads us
to employ the following notions of (strictly) approximately generalized convexity (with
respect to a cone) for composite vector functions F and G.
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Definition 3.3.
(i) We say that (f ◦ F, g ◦G) is (K × S)-approximately generalized convex on Ω at x̄ ∈ Ω

if for any x ∈ Ω, y∗ ∈ K+, z∗ ∈ S+, ‖y∗‖ + ‖z∗‖ = 1, w∗ ∈ ∂〈y∗, f〉(F (x̄)), x∗1 ∈
∂〈w∗, F 〉(x̄), v∗ ∈ ∂〈z∗, g〉(G(x̄)), and x∗2 ∈ ∂〈v∗, G〉(x̄), one can find v ∈ −N(x̄; Ω)+

satisfying

〈y∗, f ◦ F 〉(x)− 〈y∗, f ◦ F 〉(x̄) ≥ 〈x∗1, v〉,
〈z∗, g ◦G〉(x)− 〈z∗, g ◦G〉(x̄) ≥ 〈x∗2, v〉 and

〈b∗, v〉 ≤ ‖x− x̄‖, ∀b∗ ∈ BX .

(ii) We say that (f ◦ F, g ◦ G) is K-strictly (K × S)-approximately generalized convex
on Ω at x̄ ∈ Ω if for any x ∈ Ω\{x̄}, y∗ ∈ K+, z∗ ∈ S+, ‖y∗‖ + ‖z∗‖ = 1,
w∗ ∈ ∂〈y∗, f〉(F (x̄)), x∗1 ∈ ∂〈w∗, F 〉(x̄), v∗ ∈ ∂〈z∗, g〉(G(x̄)), and x∗2 ∈ ∂〈v∗, G〉(x̄),
one can find v ∈ −N(x̄; Ω)+ satisfying

〈y∗, f ◦ F 〉(x)− 〈y∗, f ◦ F 〉(x̄) > 〈x∗1, v〉,
〈z∗, g ◦G〉(x)− 〈z∗, g ◦G〉(x̄) ≥ 〈x∗2, v〉 and

〈b∗, v〉 ≤ ‖x− x̄‖, ∀b∗ ∈ BX .

Remark 3.3. Given x̄ ∈ Ω. In view of [8, Proposition 3.9], it can be observed that, if
Ω is convex, 〈y∗, f〉 is convex on Ω for every y∗ ∈ K+, 〈z∗, g〉 is convex on Ω for every
z∗ ∈ S+, 〈w∗, F 〉 is convex on Ω for every w∗ ∈ ∂〈y∗, f〉(F (x̄)) and 〈v∗, G〉 is convex on
Ω for every v∗ ∈ ∂〈z∗, g〉(G(x̄)), then (f ◦ F, g ◦G) is (K × S)-approximately generalized
convex on Ω at x̄ ∈ Ω with v := x − x̄ for each x ∈ Ω. Besides, the K-strictly (K × S)-
approximately generalized convexity of (f ◦F, g ◦G) on Ω at x̄ will follows if, in addition,
〈y∗, f〉 is strictly convex on Ω for every y∗ ∈ K+\{0} and F is injective on Ω (i.e., ∀x1, x2 ∈
Ω, F (x1) = F (x2) ⇒ x1 = x2). Furthermore, [8, Remark 3.10] indicated that the class of
approximately generalized convex composite vector functions defined in Definition 3.3 is
properly bigger than the one of convex vector functions.

we are now in a position to provide sufficient conditions for (weak) e-quasi efficient
solutions of problem (P) under the satisfaction of the (strictly) approximately generalized
convexity.

Theorem 3.2. Let e ∈ K and assume that x̄ ∈ C satisfies the e-approximate KKT condition of
problem (P).

(i) If (f◦F, g◦G) is (K×S)-approximately generalized convex on Ω at x̄, then x̄ ∈ e−Sw(P).
(ii) If (f ◦ F, g ◦G) is K-strictly (K × S)-approximately generalized convex on Ω at x̄, then

x̄ ∈ e− S(P).

Proof. As x̄ ∈ C is an e-approximate KKT point of problem (P), there exist y∗ ∈ K+\{0}, z∗ ∈
S+, w∗ ∈ ∂〈y∗, f〉(F (x̄)), x∗1 ∈ ∂〈w∗, F 〉(x̄), v∗ ∈ ∂〈z∗, g〉(x̄), x∗2 ∈ ∂〈v∗, G〉(x̄) and
b∗ ∈ BX such that ‖y∗‖+ ‖z∗‖ = 1 and

(3.15) −(x∗1 + x∗2 + 〈y∗, e〉b∗) ∈ N(x̄; Ω),

(3.16) 〈z∗, g(G(x̄))〉 = 0.

To justify (i), we assume by contradiction that x̄ /∈ e − Sw(P), and consequently, there is
x̂ ∈ C such that (f ◦ F )(x̂) − (f ◦ F )(x̄) + ‖x̂ − x̄‖e ∈ −int K. It then follows from [22,
Lemma 3.21] that

(3.17) 〈y∗, (f ◦ F )(x̂)− (f ◦ F )(x̄)〉+ ‖x̂− x̄‖e〉 < 0.
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Due to the approximately generalized convexity of (f ◦ F, g ◦ G) on Ω at x̄, taking into
account (3.15) together with the fact that 〈y∗, e〉 ≥ 0, we find v ∈ −N(x̄; Ω)+ satisfying

0 ≤ 〈x∗1, v〉+ 〈x∗2, v〉+ 〈y∗, e〉〈b∗, v〉
(3.18)

≤ 〈y∗, f ◦ F 〉(x̂)− 〈y∗, f ◦ F 〉(x̄) + 〈z∗, g ◦G〉(x̂)− 〈z∗, g ◦G〉(x̄) + 〈y∗, e〉‖x̂− x̄‖.

In addition, we have 〈z∗, g(G(x̂))〉 ≤ 0 inasmuch as g(G(x̂)) ∈ −S. Taking (3.16) into
account, we now invoke the second inequality in (3.18) to deduce that

0 ≤ 〈y∗, (f ◦ F )(x̂)− (f ◦ F )(x̄)〉+ ‖x̂− x̄‖e〉,
which contradicts to (3.17), and so the proof of (i) has been established.

Next, we now prove (ii) by the method of contradiction and suppose that x̄ /∈ e−S(P ).
So, we can find x̃ ∈ C such that (f ◦ F )(x̃) − (f ◦ F )(x̄) + ‖x̃ − x̄‖e ∈ −K\{0}, which in
turn implies that x̃ 6= x̄ and

(3.19) 〈y∗, (f ◦ F )(x̃)− (f ◦ F )(x̄) + ‖x̃− x̄‖e〉 ≤ 0.

Proceeding similarly as in the proof of (i), we arrive at

0 < 〈y∗, (f ◦ F )(x̂)− (f ◦ F )(x̄)〉+ ‖x̂− x̄‖e〉,
which is a contradiction to (3.19), and so the proof is complete. �

4. DUALITY FOR APPROXIMATE SOLUTIONS IN COMPOSITE VECTOR OPTIMIZATION

In this section, we address a dual vector problem to the composite vector optimization
problem (P) and examine converse and strong dualities assertions for approximate (weak)
efficient solutions of (P) and its dual which is formulated in the sense of Mond and Weir
[33].

Given e ∈ K, we consider a dual vector program in connection with the problem (P) as
follows:

(D) max
K
{L(z, y∗, z∗) := (f ◦ F )(z) | (z, y∗, z∗) ∈ CD},

where the feasible set CD is given by

CD :=
{

(z, y∗, z∗) ∈ Ω× (K+\{0})× S+
∣∣∣ 0 ∈

⋃
w∗∈∂〈y∗,f〉(F (z))

∂〈w∗, F 〉(z)

+
⋃

v∗∈∂〈z∗,g〉(G(z))

∂〈v∗, G〉(z) + 〈y∗, e〉BX +N(z; Ω), 〈z∗, g(G(z))〉 ≥ 0
}
.

The approximate efficient solutions for the dual vector problem (D) are defined in an
analogous manner as for the primal problem (P) stated in Definition 1.1.

Definition 4.4.
(i) We say that (z̄, ȳ∗, z̄∗) ∈ CD is an e-quasi efficient solution of problem (D), denoted

by (z̄, ȳ∗, z̄∗) ∈ e− S(D), whenever

∀(z, y∗, z∗) ∈ CD, L(z, y∗, z∗)− L(z̄, ȳ∗, z̄∗)− ‖(z, y∗, z∗)− (z̄, ȳ∗, z̄∗)‖e /∈ K\{0}.
(ii) One say that (z̄, ȳ∗, z̄∗) ∈ CD is a weak e-quasi efficient solution of problem (D),

denoted by (z̄, ȳ∗, z̄∗) ∈ e− Sw(D), whenever

∀(z, y∗, z∗) ∈ CD, L(z, y∗, z∗)− L(z̄, ȳ∗, z̄∗)− ‖(z, y∗, z∗)− (z̄, ȳ∗, z̄∗)‖e /∈ int K.

The next theorem describes strong duality relations for (weak) e-quasi efficient soluti-
ons of problem (P) and problem (D).
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Theorem 4.3 (Strong Duality). Let e ∈ K and assume that (CQ) is satisfied at x̄ ∈ e− Sw(P).
Then, there exists (ȳ∗, z̄∗) ∈ K+ × S+ such that (x̄, ȳ∗, z̄∗) ∈ CD. Furthermore, the following
statements hold:

(i) If (f ◦ F, g ◦ G) is (K × S)-approximately generalized convex on Ω at z for all z ∈ Ω,
then (x̄, ȳ∗, z̄∗) ∈ e− Sw(D).

(ii) If (f ◦F, g ◦G) is K-strictly (K ×S)-approximately generalized convex on Ω at z for all
z ∈ Ω, then (x̄, ȳ∗, z̄∗) ∈ e− S(D).

Proof. In view of Theorem 3.1, it stems from x̄ ∈ e − Sw(P) that there exist ȳ∗ ∈ K+ and
z̄∗ ∈ S+ with ‖ȳ∗‖+ ‖z̄∗‖ = 1 such that{

0 ∈
⋃

w∗∈∂〈ȳ∗,f〉(F (x̄)) ∂〈w∗, F 〉(x̄) +
⋃

v∗∈∂〈z̄∗,g〉(G(x̄)) ∂〈v∗, G〉(x̄) + 〈y∗, e〉BX +N(x̄; Ω),

〈z̄∗, g(G(x̄))〉 = 0.

Since the (CQ) is satisfied at x̄, it follows that ȳ∗ 6= 0. So, we conclude that (x̄, ȳ∗, z̄∗) ∈ CD.
We first justify (i). Let (f ◦F, g ◦G) be (K ×S)-approximately generalized convex on Ω

at any z ∈ Ω. Suppose on the contrary that (x̄, ȳ∗, z̄∗) /∈ e− Sw(D). This means that there
exists (z, y∗, z∗) ∈ CD such that L(z, y∗, z∗) − L(x̄, ȳ∗, z̄∗) − ‖(z, y∗, z∗) − (x̄, ȳ∗, z̄∗)‖e ∈
int K, which in turn is equivalent to the assertion

(4.20) (f ◦ F )(z)− (f ◦ F )(x̄)− ‖(z, y∗, z∗)− (x̄, ȳ∗, z̄∗)‖e ∈ int K,

owing to the definition of L. As (z, y∗, z∗) ∈ CD, there exist w∗ ∈ ∂〈y∗, f〉(F (z)), x∗1 ∈
∂〈w∗, F 〉(z), v∗ ∈ ∂〈z∗, g〉(z), x∗2 ∈ ∂〈v∗, G〉(z) and b∗ ∈ BX such that ‖y∗‖+ ‖z∗‖ = 1, and

(4.21) −(x∗1 + x∗2 + 〈y∗, e〉b∗) ∈ N(z; Ω),

(4.22) 〈z∗, g(G(z))〉 ≥ 0.

On the one hand, it should be noted that y∗ ∈ K+\{0}. So, taking [22, Lemma 3.21] into
account, we derive from (4.20) that

(4.23) 〈y∗, (f ◦ F )(x̄) + ‖(z, y∗, z∗)− (x̄, ȳ∗, z̄∗)‖e− (f ◦ F )(z)〉 < 0.

By virtue of the approximately generalized convexity of (f ◦ F, g ◦ G) on Ω at z ∈ Ω, we
deduce from (4.21) that, for such x̄, there exists v ∈ −N(z; Ω)+ such that

0 ≤ 〈x∗1, v〉+ 〈x∗2, v〉+ 〈y∗, e〉〈b∗, v〉
≤ 〈y∗, f ◦ F 〉(x̄)− 〈y∗, f ◦ F 〉(z) + 〈z∗, g ◦G〉(x̄)− 〈z∗, g ◦G〉(z) + 〈y∗, e〉‖x̄− z‖,(4.24)

where we should remind that 〈y∗, e〉 ≥ 0. Due to the feasibility of x̄, we have 〈z∗, g ◦
G〉(x̄) ≤ 0. This together with (4.22) and (4.24) in turn gives us that

(4.25) 0 ≤ 〈y∗, (f ◦ F )(x̄) + ‖x̄− z‖e− (f ◦ F )(z)〉.
Now, combining (4.23) and (4.25), we arrive at

〈y∗, e〉‖(z, y∗, z∗)− (x̄, ȳ∗, z̄∗)‖ < 〈y∗, e〉‖x̄− z‖,
which is a contradiction. Hence, (x̄, ȳ∗, z̄∗) ∈ e− Sw(D).

Now, we prove (ii). Let (f ◦ F, g ◦G) be K-strictly (K × S)-approximately generalized
convex on Ω at any z ∈ Ω and assume that (x̄, ȳ∗, z̄∗) /∈ e − S(D). Then, one can find
(z, y∗, z∗) ∈ CD such that

(4.26) (f ◦ F )(z)− (f ◦ F )(x̄)− ‖(z, y∗, z∗)− (x̄, ȳ∗, z̄∗)‖e ∈ K\{0}.
Observe that (4.26) infers to x̄ 6= z. Moreover, we also have (4.21) and (4.22) by the dual
feasibility of (z, y∗, z∗). Now, it holds by (4.26) that

(4.27) 〈y∗, (f ◦ F )(x̄) + ‖(z, y∗, z∗)− (x̄, ȳ∗, z̄∗)‖e− (f ◦ F )(z)〉 ≤ 0,
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and, by definition of the dual cone and the K-strictly (K × S)-approximately generalized
convexity of (f ◦ F, g ◦ G) on Ω at z ∈ Ω, we conclude by (4.21) that for x̄ above, one can
find v ∈ −N(z; Ω)+ such that

0 ≤ 〈x∗1, v〉+ 〈x∗2, v〉+ 〈y∗, e〉〈b∗, v〉
< 〈y∗, f ◦ F 〉(x̄)− 〈y∗, f ◦ F 〉(z) + 〈z∗, g ◦G〉(x̄)− 〈z∗, g ◦G〉(z) + 〈y∗, e〉‖x̄− z‖.(4.28)

Since as 〈z∗, g ◦G〉(x) ≤ 0 shown above, (4.22) together with (4.28) gives us that

0 < 〈y∗, (f ◦ F )(x̄) + ‖x̄− z‖e− (f ◦ F )(z)〉.

This together with (4.27) establishes a contradiction. So, (x̄, ȳ∗, z̄∗) ∈ e− S(D).
�

Remark 4.4. It is worth noting that the (CQ) imposed in Theorem 4.3 plays a key role
to confirm the existence of multiplier vectors (ȳ∗, z̄∗) ∈ K+ × S+ corresponding to x̄ ∈
e − Sw(P) so that (x̄, ȳ∗, z̄∗) ∈ CD. Note also that the conclusion of Theorem 4.3 may go
awry if the approximate generalized convexity of (f ◦F, g ◦G) on Ω at x̄ is violated. These
facts will demonstrate in Example 4.2 and Example 4.3, respectively.

Example 4.2. Let Ω := R,K := R2
+ and S := [0,+∞). Considering the problem (P), where

F (x) := (x+1, x+1), x ∈ R, f(w) := (w1, w2+1), w := (w1, w2) ∈ R2,G(x) := x+1, x ∈ R,
g(v) := v2, v ∈ R. It is easy to verify that C = {−1}, and hence, x̄ := −1 ∈ e − Sw(P)(=
e−S(P)) with any given e ∈ K; see e.g., [9, Example 4.3]. It could be convenient to observe
that (f ◦ F, g ◦ G) is (K × S)-approximately generalized convex on Ω at y for all y ∈ Ω.
We now examine the dual vector problem (D) with e := ( 1

2 ,
1
2 ) ∈ K. We can verify that

there does not exist (y∗, z∗) ∈ K+ × S+ fulfilling (x̄, y∗, z∗) ∈ CD. This means that the
conclusion of Theorem 4.3 fails to hold in this case. The reason is that the (CQ) at x̄ was
violated.

Example 4.3. Let Ω := R+, K := R2
+ and S := [0,+∞). We consider the problem (P),

where F (x) := (x− 2)3 + 1, x ∈ R, f(w) := (w,w2 + 2w− 1), w ∈ R, G(x) := x− 1, x ∈ R,
g(v) := −|v|, v ∈ R. Then, C := [1,+∞), and let us select x̄ := 1 ∈ C. It can be verified
that x̄ ∈ e− Sw(P) for any e ∈ K; see e.g., [9, Example 4.4] and the (CQ) is satisfied at x̄.

Now, let us consider the dual problem (D). Theorem 4.3 yields that there exist ȳ∗ :=
(ȳ∗1 , ȳ

∗
2) ∈ K+ and z̄∗ ∈ S+ such that (x̄, ȳ∗, z̄∗) ∈ CD. Choosing z := 2 ∈ Ω, y∗ :=

(1, 1) ∈ K+, and z∗ := 0 ∈ S+, we can see that (z, y∗, z∗) ∈ CD. By selecting e :=
(e1, e2) ∈ K with e1 < 1

‖(z,y∗,z∗)−(x̄,ȳ∗,z̄∗)‖ , e2 < 3
‖(z,y∗,z∗)−(x̄,ȳ∗,z̄∗)‖ , it can be checked

that (f ◦ F )(z) − (f ◦ F )(x̄) − ‖(z, y∗, z∗) − (x̄, ȳ∗, z̄∗)‖e ∈ int K, which is nothing else
than (x̄, ȳ∗, z̄∗) /∈ e − Sw(D). This shows that the conclusion of Theorem 4.3 fails since
(f ◦ F, g ◦G) is not (K × S)-approximately generalized convex on Ω at z.

We close this paper by presenting converse-like duality relations for (weak) e-quasi
efficient solutions of problem (P) and problem (D).

Theorem 4.4. Let (x̄, y∗, z∗) ∈ CD be such that x̄ ∈ C.
(i) If (f◦F, g◦G) is (K×S)-approximately generalized convex on Ω at x̄, then x̄ ∈ e−Sw(P).

(ii) If (f ◦ F, g ◦G) is K-strictly (K × S)-approximately generalized convex on Ω at x̄, then
x̄ ∈ e− S(P).

Proof. Since (x̄, y∗, z∗) ∈ CD, we have that y∗ ∈ K\{0}, z∗ ∈ S+ and
(4.29){

0 ∈
⋃

w∗∈∂〈y∗,f〉(F (x̄)) ∂〈w∗, F 〉(x̄) +
⋃

v∗∈∂〈z∗,g〉(G(x̄)) ∂〈v∗, G〉(x̄) + 〈y∗, e〉BX +N(x̄; Ω),

〈z∗, g(G(x̄))〉 ≥ 0.
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Let us notice, as x̄ ∈ C, i.e., (g ◦ G)(x̄) ∈ −S, that 〈z∗, g(G(x̄))〉 ≤ 0. Consequently,
〈z∗, g(G(x̄))〉 = 0. Note in addition that as y∗ ∈ K\{0}, we can put ȳ∗ := y∗

‖y∗‖+‖z∗‖ , z̄
∗ :=

z∗

‖y∗‖+‖z∗‖ , and so, ȳ∗ ∈ K+\{0}, z̄∗ ∈ S+ and ‖ȳ∗‖ + ‖z̄∗‖ = 1. It can be observed
that (4.29) also holds if y∗ and z∗ are replaced by ȳ∗ and z̄∗, respectively. So, in view of
Definition 3.2, we arrive at the conclusion that x̄ satisfies the e-approximate KKT condition
of problem (P). The rest of the proof follows by applying Theorem 3.1. �
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[18] Gutiérrez, C.; Jiménez, B.; Novo, V. A unified approach and optimality conditions for approximate solutions
of vector optimization problems. SIAM J. Optim. 17 (2006), no. 3, 688–710.
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